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Abstract
This paper presents a system for automatic optical localization of distant moving targets using
multiple pan-tilt cameras. The cameras were precisely calibrated and stationed using custom
designed calibration targets and methodology. The detection of the target is performed manually,
while the automatic visual tracker combines the background/foreground modeling and motion
model in the particle filer framework. The estimation of the 3D location is based on the N-view
triangulation. A basic setup consisting of two camera units was tested against static targets and
a moving terrestrial target, and the location estimation precision was compared to the theoretical
model. The modularity and portability of the system allows fast deployment in a wide range of
scenarios including perimeter monitoring or early threat detection in defense systems, as well as air
traffic control in public space.
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1. Introduction

An autonomous localization of arbitrary moving tar-
gets is an essential system component in multiple do-
mains, such as air traffic control, robotic workspaces or
surveillance and defense systems. If the sensory data
measured by the target are available, it is straightfor-
ward to derive its location (by means of the GPS, radio
multilateration, etc.). There are scenarios, however,
were the target is unable (malfunctioning aircraft) or
reluctant (UAV intruder) to expose its location. Then
the localization estimation system is left with its own
observations.

Radars, the most widely used devices for localizing
distant targets, suffer from being unportable, energy-

intensive and expensive. Furthermore, it might be
desirable that the tracked object not find out that it
is being tracked, which is the condition an actively
radiating system cannot achieve.

This paper introduces a semi-autonomous passive
multi-camera system for tracking and localizing the
distant objects, which is based merely on ordinary
RGB cameras — Optical Localization System (OLS).
The system is designed to suit mobility and temporary
deployment because each camera station weighs no
more than twenty kilograms and the whole system is
inexpensive by comparison to radars as well.
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2. Related Work
The choice of how the targets are represented deter-
mines the domain of approaches used for visual detec-
tion and/or tracking. In general, two main representa-
tions are used [1]: a shape model which encompasses
e.g. points [2], contours [3, 4] or articulated models
[5, 6], and an appearance model which is represented
by a template [7] or active appearance model [8].

Moving object detection Depending on the object
model, the detection might be performed either by
detecting keypoints and matching them against the pre-
trained model [9, 10, 11], or by dividing the image into
individual patches in which the object is searched for.
For each patch, the template matching is performed
[12, 7] or feature set is extracted; consequently, the
model presence probability is evaluated using the gen-
erative or the discriminative classifier [13, 14]. Since
the exhaustive search within the whole image is com-
putationally expensive, the cascade classifiers are ap-
plied [15, 16]. Alternatively, the moving object can
be detected in the image regions yielding the highest
response of frame differencing [17, 18].

Object tracking There are multiple approaches to
visual tracking. Keypoint tracking represents one of
the most common ones [2, 19]. Kernel approaches are
based on a weighted kernel used to derive smooth dis-
tance function which can be optimized in the means of
target position using traditional gradient based meth-
ods such as gradient descent [20], or even multiple
collaborative kernels might be used [21, 22]. Other ap-
proaches rely on tracking-by-detection concept which
heavily utilizes the detection principles in combination
with motion-aware approaches to localize the object
[23, 24]. To reinforce the tracker robustness, the mo-
tion models are often used, Kalman filter and particle
filter being the most popular ones [25, 7].

Multi-view optical localization Multi-camera local-
ization is mostly used in the domain of robotics, where
the intelligent space consisting of several cameras with
a priory known and fixed intrinsics and extrinsics is
utilized [26]. The centralized system uses either mere
visual information or enhances the localization with
the help of robots’ sensory data [27, 28, 29, 30]. Bound
to the predefined space and using fixed cameras, those
systems do not need to deal with the imprecise esti-
mates of a current camera pose.

3. System Overview
The main building block of the OLS is a camera station
(CS), a standalone unit consisting of hardware modules

Figure 1. Tracking camera station (left) and a use case
scenario (right) showing the positioning of four tracking
stations (red dots) and one observation station (green dot)
to protect a real world area.

necessary for capturing the images, manipulating the
pose of the camera and estimating its own geographical
coordinates. There are two type of CSs. The overview
station is designed to be controlled manually by the
human operator and is equipped with the zooming
lens that allows achieving both a wider scanning range
and a more detailed view of the farther objects. The
tracking station consists of the fixed lens and takes
part in the autonomous tracking of the moving objects.

The OLS is designed to work with an arbitrary
number of CSs. Due to the geometric limitations of
the multi-view systems, which affect the localization
precision, the tracking stations should be positioned so
as to form approximately regular polygon with long
enough bases (see Section 4, see Figure 1).

The camera station itself consists of a surveying
tripod, a P&T unit1 Flir PTU-D46-70, a camera Prosil-
ica GT 1290C (RGB, 1280× 960 px, 33.3 FPS), an
inclinometer and a GPS sensor. A camera unit is mod-
eled as a kinematic chain consisting of six joints and
five links corresponding to the distance between sep-
arate parts of the tripod and the manipulator (see Fig-
ure 2). The transformation between the GROUND and
ORIGIN reflects the positioning and heading of the
given manipulator within the local coordinate frame.

The kinematic chain is designed as composition
of transformation matrices where a single joint can be
located by applying the Euclidean transformation on
the position of the joint which it is depending on:

Mnext = MpreviousTnextRZnext RXnext RYnext , (1)

where M is the transformation matrix of the given joint,
T is the translation between successive joints and Ra

is the rotation around axis a.

4. Localization Precision
The precision of estimating the target position is sub-
ject to systematic error (miscalibration of the instru-

1Pan and Tilt.
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Figure 2. The model of a camera unit represented by a
kinematic chain consisting of six joints (yellow dots) and 5
links (black arrows). The joints AZI and ELE share exactly
the same position, the joint CAMERA is further along the X
axis than the joint FOCUS.

ments) and random error (wrong measurements and
disturbances in the environment) [31]. Atmospheric
turbulence, refractive index fluctuations and uncer-
tainty of the visual tracker are the main causes of the
random error which is analysed in section 4.1. The sys-
tematic error was alleviated and/or measured using the
custom designed stationing and rectification process.

4.1 Random Error Analysis
Stereoscopic systems are affected by a phenomenon
of diminishing accuracy of depth measurement with
increasing distance of the target from the cameras [32].
The depth measurement resolution for canonical stereo
setup is R = rZ2

f b−rZ , where f is the focal length, b is the
base length, r is the horizontal size of one pixel and Z
is the target distance. By substituting r by pr, where p
is the random error represented by integer number of
pixels we obtain the position estimation error function
E = prZ2

f b−prZ .
The OLS does not conform to the canonical stereo

setup (all cameras can rotate freely), so the depen-
dence of the error on the target distance is no longer
quadratic (considering the setup of two cameras where
only one of them makes error): E = B tan(arctan(D

B )+
arctan( r

f ))−D. The cameras setup as well as the error
shown as the function of the base length and target
distance is depicted in Figure 3.

A more realistic scenario, where each camera makes
a random error p, is depicted in Figure 4. A significant
advantage of using multiple cameras is demonstrated —
geometrical limitations of the two-camera setup make
it impossible to precisely evaluate the position of the
target placed close to the line collinear with the base-
line. In the multi-camera setup, on the other hand,
the subset of two cameras forming the baseline Bi is
used for each position of the target, following the rule:
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Figure 3. Left figure depicts the setup of two cameras C1
and C2, where only C2 makes an error worth p pixels. T
represents the ground truth position of the target whereas
T ′ is the wrongly estimated position. Right figure shows
the position estimation error as the function of base size
and target distance (given the random error p = 10 px and
following constants: r = 3.75e−6 m, f = 50e−3 m).
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Figure 4. The position estimation error as a function of
the horizontal position of the target. Two-camera (left) and
three-camera (right) setup with b = 20 m are confronted,
where utilization of more cameras always yields lower er-
rors. The first two cameras are placed on the X axis with the
coordinate frame center in the middle of their baseline. The
third camera is placed on the Y axis, so that all the cameras
form a regular triangle.

i = argmax
i

~ti~ni, where~ti is the direction of the line seg-

ment linking the center of the baseline and the target
and ni is the normal vector of the baseline Bi.

4.2 Stationing and Rectification
The stationing procedure alleviates two types of sys-
tematic error: wrong heading estimation and undesir-
able tilt of the camera station. Since the accuracy of
the commercial magnetometers is too low (hundreds
to thousands of milliradians), the precise heading must
be estimated visually by observing the distinctive land-
marks. To achieve the horizontality of the station a
digital inclinometer can be used.

The imprecision of the camera-manipulator attach-
ment causes slight undesirable rotation of the camera
coordinate frame. Three horizontally leveled rectifi-
cation targets are used to alleviate and/or measure all
rotation angles (around X, Y and Z axis): 5):

Rotation around optical axis The target contains
parallel horizontal lines and the camera displays the
blend of the original and vertically mirrored streams.
The aim is to rotate the camera manually so that the



Figure 5. Three rectification targets (bottom) used to alle-
viate and/or measure the undesirable rotation angles of the
cameras (top).

lines would appear aligned.

Rotation around azimuthal axis The target con-
tains parallel horizontal lines and a pair of crosses
whose distance equals the distance between ELE and
CAMERA joint (see Figure 2). The aim is to measure
the distance between the right cross and the intersec-
tion of the optical axis with the target, which translates
to an error angle in the azimuth.

Default elevation angle Two targets which contain
black and white lines representing a ruler are posi-
tioned in a row. The aim is to adjust the tilt of the
camera so that the optical axis would intersect the
same mark on both targets and the resulting elevation
angle could be measured.

5. Object Tracking
The detection itself has been performed manually so
far in the man-in-the-loop manner, while the autonomous
tracking uses the implementation of the visual tracker
combining the background subtraction, motion model
and object model in the particle filter framework [7].
This approach can even cope with the moving cameras
and thus is suitable for the OLS. The operation of the
tracker is described below.

The target is represented as a rectangular template
(consisting of gray-scale intensity values), which is
normalized to the size 24×24 pixels. The advantage
of the template representation is that it contains both
spatial and appearance information. The template is
created only once during the initialization, and thus the
tracker could fail if the target changed its appearance
significantly during the course of tracking. However,
for very distant targets, no or merely small change is
expected.

The Bootstrap particle filter (BPF) — the variant
of a particle filter following the sequential importance
sampling approach [33] — is used to generate and
evaluate candidate positions of the target. Each par-
ticle (i.e. the state of the system) is represented as
~xn = (x,y,vx,vy,h,w), where (x,y) represents the 2D
position of the target, (vx,vy) represents the estimated
speed of the target and (h,w) represents the bounding
box size.

The perturbations in the observed position of the
target caused by the moving camera are alleviated us-
ing the motion model which is applied in the prediction
step of the BPF:

posn+1 = posn + veln + γpos ∼N (µ,σ), (2)

veln+1 = veln + γvel ∼N (µ,σ), (3)

bbn+1 = bbn + γbb ∼N (µ,σ), (4)

where scalar posn is the x or y position, scalar veln is
the x or y velocity, scalar bbn is the w or h size of the
bounding box in time n, and γ is the noise drawn from
the Gaussian distribution N (µ,σ), where scalars µ

and σ parameters are set empirically for each parame-
ter.

In the update step, each particle is assigned a new
weight w using the objective function reflecting the
similarity of the template and the candidate patch:

w = ∑
(x,y)∈I

emin(M(x,y)
t ,M(x,y)

c )(1−|I(x,y)t − I(x,y)c |)2, (5)

where Mt and Mc are the foreground masks (FM) of
the template and the current candidate respectively, I
is the image, t,c subscripts denote template and candi-
date patch respectively, and (x,y) superscript denotes
indexing 2D array (an image). The FMs are estimated
by subtraction of the two images where the bound-
ing boxes denoting the position of the target do not
overlap (the FM Mt is estimated only once). The re-
sulting estimate of the target position is chosen using
the Maximum a posteriori approach.

In order to enable the motion of the camera, the
transformation between each pair of adjacent frames
is estimated by detecting and tracking the keypoints
using KLT tracker [2] and then estimating the homog-
raphy using the RANSAC algorithm [34].

The homography might not be found, which often
occurs if the airborne target with the uniform back-
ground of the sky is tracked or if the manipulator
moves the camera too harshly. To deal with such cases
in OLS, the tracker was adjusted so that in a prediction
step of the BPF a small subset of particles would be
forced to take the image positions yielding the high-
est response of adjacent frame differencing which is
expected to contain the moving target of interest.
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Figure 6. A schematic view of a problem of 3D position
estimation using triangulation in two-cameras scenario. The
camera units M1 and M2 observe the target T in the direc-
tions~u and~v. The plane M1M2W is used as a common plane
where the projected vectors ~u′ and ~v′ intersect.

6. Target Localization Using Triangula-
tion

The hardware cameras are modeled as finite pinhole
cameras based on the projection matrix P [34]:

P = KR[I|−C],

K =

αx s x0
0 αy y0
0 0 1

 ,

where K is the intrinsics matrix and R and C are the
rotation and translation matrices representing the ori-
entation and position of the camera frame. The 3D
point ~X projects to the 2D image point~x via~x = P~X . If
only the projection~x is observed, the 3D line mapping
to~x can be computed using back-projection:

X(λ ) = P+~x+λC,

where P+ is the pseudo-inverse of P (P+=PT (PPT )−1).
In OLS, the intrinsics were estimated for each cam-

era during calibration and extrinsics are known at each
time due to the sensory data streamed from the manip-
ulators. However, the rays backprojected from each
camera might not intersect in the 3D space due to both
systematic and random errors (see Figure 6).

The estimation of the 3D position of the target
consists of the following steps. First, back-projection
is used to find the vectors ~u and ~v which form the
planes M1M2U and M1M2V with the angle α between
them. Both vectors are then rotated around the axis
~m so that they lie in the same plane M1M2W : ~u′ =
R(β1)~u, ~v′ = R(β2)~v. The rotation angles might be of
the same value β1 = β2 = α/2; however, to achieve
higher precision the angles might be weighted by the

trackers’ beliefs b: β1 = α
b2

b1+b2
, β2 = α−β1. Finally,

the intersection W of the vectors ~u′ and ~v′ is found.
If multiple camera units are used, 3D location can

be estimated as the weighted centroid of the estimates
computed by each pair of the camera units forming
the base bi (see Algorithm 1). The weights correspond
to the angle between the baseline and the line inter-
secting the (estimated) position of the target and the
baseline center, since this angle significantly affects
the precision (see Section 4).

Since the 3D position estimation might be com-
pletely wrong occasionally, the position estimates are
smoothed by the moving average computed over h
consecutive estimates (h was empirically set to 10).

Algorithm 1: Estimation of the 3D position
from n-views

Input: Set of bases B = b1,b2, ...,bN .
Output: 3D position estimate T .

/* 3D location estimate disregarding weights */
1 foreach bi ∈ B do
2 ~ti = Estimate3DPosFrom2Views(bi)
3 end
4 ~T ′ = 1

N ∑
N
i=1~pi

/* Weighted estimation of the 3D location. ~bci

represents center of the baseline bi */
5 foreach bi ∈ B do

6 wi =
e~ni(

~T ′− ~bci)

∑
N
j=1 e~n j(

~T ′− ~bc j)

7 end
8 ~T = ∑

N
i=1 wi~ti

7. Implementation and Experimental Re-
sults

The implementation is built on a robotic framework
ROS2 and a physical simulator Gazebo3. ROS was
chosen for its wide support of hardware components
and a seamless way to implement multi-process dis-
tributed system. The whole system was modeled and
simulated in Gazebo (see Figure 7), which facilitated
hardware-in-a-loop testing of the manipulators [35].

The system was tested in the real-world environ-
ment in the basic two-camera setup. The CSs were
precisely positioned using the differential GPS sen-
sor (achieving accuracy of ca 0.01 m) so that the base
would be exactly 30 m long. The local heading was es-
timated by aiming the units on each other. The system

2Robot Operating System: http://www.ros.org
3Gazebo: http://gazebosim.org
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Figure 7. A sample scene captured within the Gazebo sim-
ulator. The scenario consists of four CSs and one moving
object (red ball). The simulated image streams are displayed
on the right.

Figure 8. The two-camera setup, where a distant target is
tracked by both CSs (left and right). The estimated position
of the target is displayed in the map (center) in real time.

was tested against both static and dynamic targets, and
in both cases only horizontal position was considered.

As for the static targets, nine landmarks with a
priori known UTM coordinates (obtained from the
cadastral map) and one target carrying an ordinary
mobile GPS sensor were chosen (see Figure 8). The
localization error, given as the Euclidean distance be-
tween the ground truth and the estimated locations,
was compared with the estimated error (see Table 1).
Note that both measured and estimated error follow
the same trend (see Figure 9); however, the measured
error is higher mainly due to the insufficient precision
of calibration, stationing and rectification.
Table 1. The table shows the position as well as the lo-
calization error for each static target. The estimated error
est. ∆ is affected by the distance of the target and the angle
α between the target and the base, and it was computed for
the scenario where each CU makes random error p = 4 px
(see Section 4). See also Figure 9 for graphical comparison
of the estimated and the measured error.

object dist. [m] α [rad] est. ∆ [m] ∆ [m]
pillar1 91,92 0,38 0,20 4,41
pillar2 199,14 0,46 0,95 5,51
pillar3 285,01 0,48 1,93 11,73
pillar4 386,81 0,41 3,39 17,16
tree1 433,88 0,34 4,13 17,20

person 479,96 0,10 4,65 23,90
hide 526,86 0,77 7,57 22,77
tree2 634,46 0,35 8,56 28,33
mast 1379,67 0,33 41,24 34,21

The system was tested against one dynamic ter-
restrial target equipped with a mobile GPS sensor (a

pillar1 pillar2 pillar3 pillar4 tree1 person hide tree2 mast
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Figure 9. The plot displays both measured and estimated
localization error for all static targets, which are sorted in
ascending order with respect to the estimated error. The
measured error is higher due to imprecise calibration, recti-
fication and stationing.
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Figure 10. The comparison of the ground truth and esti-
mated trajectory of a target moving in the distance range of
ca 50–200 m (left). The error as the function of the distance
of the target is also displayed (right). The system makes the
average error of 6.25 m.

walking person). The target was tracked for 120 s and
the estimated positions were captured and compared
to the ground truth path (see Figure 10). On average
the system achieved the precision of 6.25 m. Note
that the position estimates oscillate around the ground
truth trajectory, which is caused by the random error
made by both trackers; the error, however, keeps in
the specific range and reaches maximum of 13.35 m.
The mean error is higher as compared to the estimated
error (see Section 4), which is again caused by the
systematic error (imprecise calibration, rectification
and stationing).

8. Conclusion
This paper introduced a novel system capable of au-
tonomous tracking and localization of distant moving
targets using multiple cameras. The paper proposes
precision analysis which aims on finding and alleviat-
ing the most prominent sources of error, as well as the
methodology to calibrate and station all camera units.

The system utilizes a visual tracker based on the
Bootstrap particle filter framework combining both
visual and motion model of the target and position-
able camera. The localization of the target uses the
principle of triangulation, where both the belief of the
tracker and the geometrical limitations given by the
angle between the base and the target are incorporated
into the final weighted estimate.

The system was tested in real world conditions
against static and dynamic targets whose position was



known either from the cadastral map or captured by
the GPS sensor. The localization precision follows the
trend of diminishing accuracy of depth measurement
and reaches slightly higher error then the theoretical
model, namely due to the insufficiently precise calibra-
tion, rectification and stationing. This, however, can
be improved by using more reliable hardware compo-
nents and by performing the rectification procedure
more thoroughly.

Though still in early development, the OLS system
has great potential for being widely used as a passive,
modular and highly portable substitute for the recently
widely used radars for the applications ranging from
automatic traffic control to national defense systems
protecting the sensitive perimeters.

In the near future, the OLS system will be ex-
tended by the 3D environment reconstruction subsys-
tem which should make the tracker predict occlusion
and estimate more accurately the motion of the tracked
target. Furthermore, more thorough tests will be car-
ried out in order to spot the sources of error and rein-
force the overall precision.
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