
http://excel.fit.vutbr.cz

PPTX to HTML Conversion
Hynek Vilı́mek*

Abstract
PowerPoint is an excellent tool for creating presentations and people are accustomed to use it. Its
only handicap is that it is not installed everywhere and it exists in numerous versions. But there
is an application that is installed almost everywhere and that application is the web browser. This
work aims to create the PowerPoint presentation viewer for the web browser. With the internet
as the environment, it may have a wide range of applications from the content sharing point of
view. The solution is the web application that allows to upload the PowerPoint file and then the
application displays the content of the file. The application also offers functionality such as the
navigation between slides and the full-screen mode. The rendered slides in the web browser are
very similar to the slides in the PowerPoint. It clearly does not support advanced features, but it
supports displaying text, pictures, video and audio. Further, it supports basic styling options such
as colours, margins, position and line height. This work shows current possibilities of the web
environment and the web development. Moreover, this application may be a core of some start-up
project.

Keywords: PowerPoint converter — PowerPoint to HTML — PowerPoint presentation viewer

Supplementary Material: Demonstration Video
*xvilim04@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
My work allows people to view the PowerPoint pre-
sentation on each computer, which has a newer web
browser version. This can fulfil the need of portabil-
ity and flexibility, because no one will be forced to
check if the PowerPoint is installed and in what ver-
sion. The application also gives the presentations the
share-ability. Each presentation is possible to address
by URL and the same is true for each slide.

The solution consists of three parts. The first part
extracts the information from the presentation file.
This results in the part with a clearly specified input
and output. The input is the presentation file and the
output is the internal representation of the presentation.
This can be easily evaluated by the unit tests. The

second part interprets the internal representation of the
presentation and displays it as PowerPoint. This part
results in the application that takes the internal repre-
sentation and visually interprets it. The precision of
the interpretation can be evaluated by the comparison
of the reference image generated by the PowerPoint
and the image of the actual result. The third part is
the part of the application that surrounds the second
part and adds features like a full-screen mode, naviga-
tion and asynchronous data loading. This can be also
evaluated by the unit tests.

The existing solutions do not offer the same level
of user experience as my application. The first found
solution is the web application called Zamzar. It offers
a PowerPoint to HTML conversion, but it generates a

http://excel.fit.vutbr.cz
https://vimeo.com/162275560
mailto:xvilim04@stud.fit.vutbr.cz


action
creator

dispatcher reducer

application
state

user 
interaction

change
application state

render connected components

connected
components

application

Figure 1. Processing the synchronous action through the application

zip archive, which is delivered to the previously filled
email. The main difference is in the result of the con-
version. It converts slides into images and places text
over it. It does not support video, audio and the method
of conversion is not suitable for display scaling. This
service fulfils the function of partly viewing the con-
tent of the presentation file, but clearly does not fulfil
the function to view it in the presentation mode. The
second solution is from Microsoft itself and it is of-
fered in the package called Office 365. But it also
renders slides into images and uses SVG technology to
set the correct position. The result of this application
is better, but it still renders text into image, which is
not optimal solution. In addition, this is a paid so-
lution. The third solution is from Google and it is
implemented as part of the Google Drive and Google
Slides. These applications are not usable, because they
have for example problems with fonts and margins.
They clearly do not aim to the same use cases, but
they aim to fulfil the need of a simple viewer for the
PowerPoint presentations and they also allow to create
new ones.

My solution is the web application and it consists
of the server side part and the client side part. The
server side part is responsible for extracting the infor-
mation from the uploaded file and for their transfor-
mation to the internal representation. The client side
part visually displays this representation and offers
some functionality of the presentation mode from the
PowerPoint. It supports timed transitions, full-screen
mode with content scaling, navigation between slides
and it partly supports an animated transition.

The achieved results are very clear because they
can be very easily measured and tested. The accuracy
of displaying the slide is very high. The full-screen
scaling is also working. Each presentation and each
slide has their own URL and that gives many options to
transform this application into a start-up. It can be for
example the application that allows to remotely control
the presentation by smart-phone or the application that
allows to distribute the content in the network. The

client side application is so called single page appli-
cation and therefore it delivers great user experience,
because there is no need to reload whole application
during the navigation process.

2. Theoretical background

2.1 ReactJS Components as the Key element
of Building the Client-side Part

ReactJS components can be imagined as simple func-
tions that take parameters called props and state and
their output is a HTML mark-up. ReactJS automat-
ically keeps the interface up-to-date when the data
changes. This might normally lead to the unnecessary
redrawing and to the performace issues, but ReactJS
solves this with the mock DOM. Mock DOM is the
internal representation of the current DOM. When the
redrawing is going to happened, ReactJS takes the
current and new mock DOM, compares them and com-
putes the most efficient DOM mutation [1].

2.2 Handling the Application state with Reac-
tJS and Redux libraries

The application state is the core of the client part of
the application. The application state is only one and
is stored in an object tree within one Store. Store is
an object that allows manipulation with the state. The
state is read-only and the only way of mutating the
state is to emit an action. An action is a simple object
that describes what happened. The state mutating is
performed by reducers, functions that take the previous
state and action and return the next state. Reducers
have to be subscribed to Store to process dispatched
actions. The way of processing a synchronous action
is shown in Figure 1.

It all starts with an interaction. This can be a user
interaction such as a click or it can even be a timed
interaction. In the callback, which is hooked to the
interaction, is called the action creator. The result of
this call is an action. This action is dispatched by the
dispatcher. The store automatically passes the action
to the reducers. All this results in the new application



state and may lead to redrawing of connected com-
ponents. While the component is connecting to the
Store, it may specify which part of the application state
affects the component [2].

This procedure is not applicable to an asynchronous
action. This can be supported by an additional library
called Redux thunk. This library allows action creators
to return not only an action object, but also a function.
The whole asynchronous process can be built from
three synchronous actions inside this function. The
first action describes the action that starts the asyn-
chronous action. The second one is fired when the
asynchronous action is successful and the third one is
fired when the asynchronous action failed [3].

2.3 Presentational and Container Components
This division of ReactJS components is convenient
for the cooperation with Redux library and also with
other libraries that handle the application state. The
summary of their features is shown in Table 1.

This approach is good for the following reasons.
Firstly, it offers better re-usability, because the presen-
tational components have no application logic. That
allows to have more container components with dif-
ferent logic for one presentational component. It also
offers a better separation of concerns. It separates ap-
plication logic from UI components, which is better
for testing the components [4].

2.4 Higher-order Components as the Way of
the Composing Components together

This principle allows to share functionality that some-
how interacts with life-cycle hooks across many com-
ponents. It is based on the idea of composing function-
alities together. It is a function that takes one param-
eter, which is the inner component, and the result is
a new component, which implements new functional-
ity and renders the inner component. This approach
allows to apply a higher-order principle to any compo-
nent many times [5].

2.5 Routing in the Application with React-router
library

React-router library keeps the UI synchronized with
the URL. The key object from this library is the Route
object and it specifies which component has to be dis-
played according to the URL. If the URL has some
parameters, then this parameters are passed to the com-
ponent. Other parts of the library allow for example to
programmatically move the application to the different
URL, to create links to URLs, handle the web browser
history and allow server-rendering [6].

VIEW
5.

Welcome in PowerPoint
Perfect presentations and slideshow 
in a easy way

VISUALIZE
4.

</>

PROCESS
3.

UPLOAD

2.1.

CREATE

PPTX

Figure 2. The general use case of the application

3. Application Design

There are several ideas behind the application design.
The first one is that the client has to be as minimal as
possible. This is advantageous for many reasons. The
main ones are that it reduces the requirements for the
processing power on the client and exposes only the
necessary parts of the application on the client. The
second one is to have a user-friendly web interface.
This means that there has to be an option to address
the presentation by its name and also slides by some
number. This is convenient because it allows to share
the presentations through the internet and this extends
the usability of the application to more use cases. The
last one is that the web client has to be a single page
application. The reason is to have the best possible
user experience from the application.

The application design aims to fulfil the process
behind the use case of running the PowerPoint pre-
sentation in the web browser. This process is shown
in Figure 2. It consists of uploading the presentation
file to the server, analysing the file and converting the
presentation into the internal representation, sending
this representation to the client side application, vi-
sualizing this representation and reacting to the user
actions such as moving between slides and viewing
the presentation in the full screen mode.

3.1 The Server side Part of the Application
The primary functionality of the server is to transform
the presentation file to the internal representation. It
consists of several tasks such as parsing the presenta-
tion files, extracting the relevant information and trans-
forming it into the internal representation. The format
of the presentation file specifies standard ECMA-376 1.
The parsing part contains numerous file readings and

1http://www.ecma-international.org/publications/standards/Ecma-
376.htm



Table 1. Features overview of the presentational and container components

Presentational components Container components
Purpose How things look (markup, styles) How things work (data fetching, state updates)
Aware of redux No Yes
To read data Read data from props Subscribe to Redux state
To change data Invoke callbacks from props Dispatch Redux actions
Are written By hand Generated by React Redux or written by hand

Page

Slideshow controller

Interactive slideshow view

Slide view / Transition

Figure 3. Overview of the components composition

therefore it is convenient to read them asynchronously.
It also has to follow the standard specification. This
makes the implementation more difficult, but on the
other hand it is easily testable by unit tests. The next
part is the transformation. This part is important, be-
cause the specifications of the objects in the data from
the parsing part are distributed into numerous modules.
This part transforms the data so that each object holds
its own complete specification.

3.2 The Components in the Client side Part
The overview of the components is shown in Figure 3.
The root component is named Page. It is simple com-
ponent, which holds the other components together.
This component is addressed from the Route compo-
nent from react-router library and accepts parameters
from the URL as they were set in the Route compo-
nent. The last responsibility of this component is that
it specifies the data used for server rendering. Every
action that should be fired during the server render-
ing, has to be assigned to the component’s field called
fetchActions. This approach is used because the action
is asynchronous. The server has to wait with rendering
the static mark-up for the response from this action.

The following component is the Slideshow con-
troller. Due to its simplicity, it reacts to the application
state changes and also defines its visual appearance. It
contains one button, which switches the presentation
to the full-screen mode.

The next component is called Interactive slideshow
view. It is the container component for the presenta-
tional component called Slideshow view with the full-

screen and the navigation functionality. The Slideshow
view component is the presentational component and
it is responsible only for displaying the presentation.
The full-screen and the navigation functionality are im-
plemented by the higher-order components principle
and they are also the presentational components. This
separates the application logic from displaying logic
and on top of that also helps re-usability.

The Interactive slideshow view component may
contain either the Slide view component or the Transi-
tion component. The Slide view component contains
the logic that displays one slide and the Transition
component contains the logic of performing the tran-
sition between the slides. The Transition component
internally consists of the components performing the
animation and two Slide view components. The anima-
tion components are from the library called Velocity-
react2.

The Slide view component overview is shown in
Figure 4. It consists of many Shape view components
and many Media view components. The Shape view
represents a positioned rectangular object. It may dis-
play shape related styles such as a background colour.
The Shape view may contain the Text view component.
This component displays text with all the margins and
indentations between text runs and paragraphs. The
Media view component is very similar to the Shape
view component. It is also a positioned rectangular
object. The difference is that it displays media files
such as images, video and audio. The video and audio
files are not delivered with the internal representation,
but they are delivered on a demand from player.

3.3 Automated Integration Testing and Com-
paring with the Reference Images

The automated testing is the key aspect of continual
developing because they can validate certain use cases.
Tests can check if a change is actually the improvement
or the deterioration and do it in bigger scope. This
may not sometimes be faster than the developer, but
it is repeatable. The key part of the application is
visualizing the slide and therefore it is the first part that

2https://github.com/twitter-fabric/velocity-react



Slide view

Shape view

Shape view

Shape view

Media view

Figure 4. The Slide view component displaying
sample data

RUNNING 
APPLICATION

TEST

BROWSER

SELENIUM
 SERVER

1.

2.

3.

4.

5.

6.

Figure 5. The process of the automated testing

should be tested. That was achieved with Webdriver.IO
library3. The scheme of how it works is shown in
Figure 5.

The running test is sending orders to the selenium
server, which fulfils them through the web browser.
The orders allow to request a screen-shot of some part
of the web application. This part can be defined by a
CSS selector. These screenshots can be compared and
determine, how much they are identical. This purpose
fulfils the library called WebdriverCSS.

4. Experiments and Implementation
The implementation process and experimenting with
the results are the key parts of this work. The experi-
ments were done in parallel with the implementation
process. This speeds up the implementation itself and
it also gives earlier feed-back to the current state of the
application.

4.1 The Tools used in the Implementation Pro-
cess

The whole implementation is written in JavaScript.
This is natural for the client side of the web appli-
cation, but thanks to NodeJS technology, it is also
possible in the server side. It allows sharing the code
in between and allows to run the complete applica-
tion as a standalone application in the browser. The
application uses new features that were introduced in
ECMAScript 2015 standard, such as arrow functions,
function generators, classes and promises. Because
this standard is not fully supported by some browsers

3http://webdriver.io/

and the old ones does not support them at all, there
is need to use some compiler. The used compiler is
named Babel. The implementation is based on the
library called Este, which unites some useful libraries
together.

4.2 Comparing the Reference Images with the
Results

The results of the application are shown in Figure 6.
The images in the first column are the reference images
generated by PowerPoint. The images in the second
column are images from the application and the im-
ages in the third column are showing the difference
between them. As can be seen, there are some posi-
tional errors with the text. This is due to difference in
the PowerPoint and the web browser with handling the
fonts. The measured percentage difference is lower
then 5% for all the images. The smallest difference is
1.5% and the highest is 4.5%.

5. Conclusions
This paper shows the application that allows to view
PowerPoint presentations in the web browser. This
allows to view and share the content of the presentation
through the web environment.

The precision of the conversion is the key aspect
of this application. If the slides follow basic rules and
do not contain special effects, then the 5% difference
between the original slide and the actual slide is easily
achievable. In addition the application also contains
the development tools to iteratively increase the level
of the precision.

This work shows how modern web applications are
built. The web environment is very dynamic and there
are numerous tools to choose from and to use. This
work shows one approach how the tools can be used
and combined together. The application can also be
the core of a start-up project, because the application
extends the ability of editing the content in the web
environment from the PowerPoint.

Except the application, the work introduces one
approach of how to build modern web applications.
This can be used by web developers to inspire and
use some tools or procedures in their project. The
idea of displaying the PowerPoint presentation in the
web browser also deserves to extend in some start-up
project.

Acknowledgements

I would like to thank my supervisor Prof. Ing. Adam
Herout, Ph.D. for his help.



Figure 6. The comparsion of the reference images with the results

References
[1] Facebook Inc. Why react? Web page,

2013. https://facebook.github.io/
react/docs/why-react.html.

[2] Dan Abramov. Basics. Web page, 2015.
http://redux.js.org/docs/basics/
index.html.

[3] Dan Abramov. Async actions. Web
page, 2015. http://redux.js.org/docs/
advanced/AsyncActions.html.

[4] Dan Abramov. Presentational and container com-
ponents. blogpost, 2015. https://goo.gl/
Cu8fud.

[5] Dan Abramov. Mixins are dead. long live com-
position. blogpost, 2015. https://goo.gl/
GocvhS.

[6] Michael Jackson. Introduction. Web page,
2015. https://github.com/reactjs/
react-router/blob/master/docs/
Introduction.md.

https://facebook.github.io/react/docs/why-react.html
https://facebook.github.io/react/docs/why-react.html
http://redux.js.org/docs/basics/index.html
http://redux.js.org/docs/basics/index.html
http://redux.js.org/docs/advanced/AsyncActions.html
http://redux.js.org/docs/advanced/AsyncActions.html
https://goo.gl/Cu8fud
https://goo.gl/Cu8fud
https://goo.gl/GocvhS
https://goo.gl/GocvhS
https://github.com/reactjs/react-router/blob/master/docs/Introduction.md
https://github.com/reactjs/react-router/blob/master/docs/Introduction.md
https://github.com/reactjs/react-router/blob/master/docs/Introduction.md

	Introduction
	Theoretical background
	Application Design
	Experiments and Implementation
	Conclusions
	References

