
http://excel.fit.vutbr.cz

Vulkan based render toolkit
Matěj Mainuš*

2156 4510 6726
0

40

80

120

Frame Time

[m
s]

Draw calls

Abstract
This paper presents results of the experiments with next-generation rendering API Vulkan. These
experiments focused on performance gain of techniques based on batching, parallel rendering,
staging buffers, effective descriptors binding, and memory pool allocations. The measured results
of the reference render system implementation show performance gain of used methods over
baseline implementation. This paper could be useful for engineers which need to design Vulkan
based render system targeted to real time rendering.

Keywords: Vulkan — Realtime rendering

Supplementary Material: Source code
*xmainu00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
The goal of this project was demonstrate the features
of new rendering API Vulkan. This API is sometimes
called as redesigned or low level OpenGL. Vulkan was
designed from scratch at purpose to fit modern PC,
console, and GPGPU architecture. Vulkan belongs to
group of graphic API family called ”next-generation”.
This APIs are based on concepts described in Section
2.

Section 3 describes the design of render toolkit
with techniques that needs to be implemented in al-
most all render systems using next generation render-
ing APIs, which aims to real time rendering. Simple
and naive render system implementation could leads
to slow, expensive and inefficient rendering due to
bad utilization of the GPU architecture due to missing
optimization performed by driver in prior-gen APIs.

The result of this project are benchmark results of
an dynamic scene with many dynamic objects. These
results show advantages of Vulkan and implementation
efficiency. The tests are described in detail in Section
4.

2. Previous works
Evolution in GPU hardware leading from fixed graph-
ics pipeline via programmable pipeline into GPGPU,
requires changes in rendering APIs. In case of OpenGL,
many changes are performed, but some of concepts
survived and limit the performance of OpenGL. This
led to release of new rendering API called Vulkan. It
is designed with these key features [1]:

Context less Vulkan drops global state machine, which
didn’t allow parallel API access. This is an im-
portant feature to maximize CPU and GPU uti-
lization.

Zero driver overhead Vendor driver implementation
did perform any state or parameter checks or
any optimization. It is application responsibility
to call methods in the right context and opti-
mize the call chain. For example the application
could not destroy buffer when the GPU uses
them. The application also has to manage execu-
tion and memory dependencies to avoid memory
conflicts.

http://excel.fit.vutbr.cz
https://bitbucket.org/matejmainus/dt.git
mailto:xmainu00@stud.fit.vutbr.cz

Layers Part of API call chain that could be unloaded
without functionality effect. Layers are mostly
used to check the state and function parameters
during development. In production build they
could be removed [2].

Explicit operations Vulkan does not hide implemen-
tation of queues, devices, pipelines, command
buffers, descriptor sets, render passes . . . like
OpenGL. Instead of is composed of entities that
abstract render process [3]. It also does not
hide shader compilation process, because load
shaders from SPIR-V bytecode.

Direct memory management Application could man-
age memory allocations for images and buffers
directly on targeted GPU heaps. It could pre-
allocate or reuse allocated memory, it has full
control over memory management process [4].

Unfortunately, Vulkan does not guarantee incred-
ible performance. Clear driver implementation and
missing optimization like in OpenGL requires big
emphasis to optimize the application rendering pro-
cess. First important method is draw call batching
[5]. This method clusters objects to be rendered by
pipeline configuration, object data, and rendered mesh.
By clusters are generated command buffers with mini-
mal context switching (pipeline, descriptor set or ver-
tex buffer). CommandBuffer is a list of GPU com-
mands which are executed after the application pushes
the command buffer into the device work queue. Com-
mand buffer creation could also be done in parallel [6].
Draw command batching method should be used with
hierarchical descriptor set binding [7]. Descriptor sets
are structures which describe binding between shaders
and buffers or images.

Memory management is the next part where to
optimize. Key approach is to allocate memory for per-
formance critical data (like vertexies, textures) in most
powerful heaps. But mostly this memory is not accessi-
ble from CPU. It is time for staging buffers. It is buffer
bound to GPU memory allocated on the heap which is
accessible from CPU. Then the application copies data
from RAM into staging buffer, and creates a command
buffer with copy operation that transfers data from the
staging buffer into the destination buffer [4]. Both
data transfers also should be done in batches and stag-
ing buffers memory should be allocated from memory
pool. To copy large amount of data from CPU to GPU,
only GPU memory mapping is supported. It is ineffi-
cient in case of frequent usage. It is recommended to
map a large GPU region at application start and then
flush dirty regions, or use coherent GPU memory. In
case of GPU images, the staging buffer should be used

to transfer image data layout into GPU implementation
optimal layout.

Memory pool preallocation is another method
that prevents frame drops. In this case, application for
each heap preallocate some amount of memory which
provides to GPU objects requiring small amount of
GPU memory to bind own buffers or images [4]. In
some Vulkan implementations, this method could save
GPU memory in case when application allocates many
small memory regions, because implementation could
allocate memory aligned by page size.

3. Design

For demonstration purposes of Vulkan API and meth-
ods described in Section 2, I created a render toolkit
and benchmark application. The toolkit consists of a
render and core module, that handles events, manages
application and toolkit life cycle and contains scene
components.

The render toolkit frame loop consists of three ma-
jor steps. An event phase, update phase and render
phase. In the event phase, the render toolkit kernel pro-
cess user events by registered event handlers. Then ren-
der loop continues to update phase. This step updates
all active scene object components in all active scenes.
The toolkit scene consists of objects that build up a
scene graph. Each object has a child and components
such as mesh renderer, transform, camera, components
related to rendering like mesh, material, texture, have
reference to render system specific implementation.
The update traversal is single threaded, so components
does not need guarded access by another components
(scripts). After update traversal core module delegate
work to a render module. This frame loop process is
shown in figure 1.

Frame loop

Event pass

Event
listener

Event
listener...

handleEvent()

CompositorUpdate pass

Scene Scene

Scene
object

Scene
object

Transform
component

Scene obj
component

...

...

...

update(Δtime)

Render
component

Figure 1. Application frame loop. It handle events at
the beginning, then update active scene object
components in active scenes.

The rendering module creates compositor that man-
ages the draw process. The compositor creates a ren-
der pass with subpasses and a render worker. This
worker creates several render threads, where each one
initialize command and descriptor pools to avoid ex-
pensive locking during rendering process. Also creates
a instance of staging buffer pool, which is going to
be described in detail later. Before the drawing pro-
cess, the compositor executes scene traversal process
to build render tree.

Each render component from present scene that
will pass render conditions and going to be rendered is
added to the render list. In second step this list is sorted
by render hash. This hash has to meet a condition of
norm where larger distance means more difficult con-
text or data switch. For example, renderers with same
pipeline but different mesh has smaller distance then
with the different materials but same mesh. It is similar
with shared materials, which is closer then different
one. This approach is preliminary for batching. Then
by hash difference and crowdedness is created two
level deep render tree. Each render node contains a
reference to similar render contexts. The render tree
generation process shows also figure 2.

Compositor

sort(hash)

Cull pass

Render
component

Scene

Draw pass

Scene
object

Render
context

Render
list

materialType material mesh

hash =

Render
list

Render
tree

Tree
child

Tree
child

Render
context

Render
context

...

...

cluster(hash)

Figure 2. Render tree process generation. Render
worker process all active render components in scene
and creates list, then sort them and cluster into the
render tree.

Render process starts in compositor which resets
render worker and his threads. Then, for each ren-
der pass executes a worker that joins render threads
that work parallel with the render tree. Each thread
fetches a render node, processes them and fetches an-
other. Render node process shows figure 3. This the

render node draw phase consists of four steps. At the
beginning threads prepare the phase. There they allo-
cate internal draw structure and secondary draw and
update command buffers. In the next steps, on each
renderer from render node performs data upload to
GPU, sets the pipeline, binds images, buffers, sam-
plers and records the draw call into draw command
buffer. The data binding via descriptor set is hierarchi-
cal, by frequency of rebind. For example viewport and
scene buffers are bound once for each secondary draw
command buffer. Pipeline configuration is rebound by
different material type. Then material or mesh data are
rebound by material/mesh instance, so many mesh ren-
derers could share same instance of material or mesh
and then could save performance. At last, scene object
data is bound. The descriptor sets updates are executed
in batch by the worker thread cycle.

Data are uploaded to GPU via staging memory
pools. This pool preallocates a set of buffers called
pages, and allocate new one if does not have enough
free space. These pages are constantly mapped into
the CPU accessible memory, and flushed before the
primary copy command enqueuing. Then the render
components copy data into the mapped page. Into
render worker copy command buffer inserts copy com-
mands that transfers data from staging buffer into com-
ponent private memory, which is allocated on CPU in-
accessible GPU memory heap. These secondary copy
command buffers are executed by primary command
buffer before any draw commands in each render pass.
The draw and update command buffer dependencies
shows figure 4.

Render
Worker

Render
Thread

Render
Thread

Render
tree

Tree
child...

finish()prepare()

GPU Render
component

Draw pass

prepare() finish()

bufferData() bind() draw()

GPU
Mesh

GPU
Material

 GPU
Scene obj

Figure 3. Draw traversal. The tree nodes is consumed
by the render threads. The figure shows also draw
phase actions.

Component private buffers or images could be

Draw pass

Primary
update cmdBuff

Primary
draw cmdBuff

Render
Thread

Render
tree

Tree
child

Tree
child...

Secondary
update cmdBuff

Secondary
draw cmdBuff

Command buffer
pool

Descriptor set
pool

Staging buffer
pool

reset()

reset()

Figure 4. Command buffers and command, descriptor
and staging pools ownership and dependency graph.

bound to inherent memory blocks or to memory pages
from global memory pool. Memory manager creates a
pool for each memory type, where it preallocate some
pages for each one by estimated usage. Then, for each
request, memory pool iterates over allocated pages
and find one where it could suballocate the required
amount of memory for buffer or image.

Entities like meshes, materials or textures are di-
vided to the core part and the render implementation.
The core part stores user data (like material attributes,
or mesh info). The renderer part cares about GPU
buffer management and data upload, when data are
dirty. Upload process with staging buffers describes
figure 5. Material type also defines pipeline configu-
ration and pipeline layout. These layouts are shared
between material instances.

 GPU
Scene obj

suballocate(GPUBuffer)

copy(CPUBuffer)

Staging buffer
pool

Mapped
memory page

Mapped
memory page...

GPU memory
pool

GPU memory
page

GPU memory
page...

copyToGPU(CPUBuffer, GPUBuffer)

Secondary
draw cmdBuff

map()

Figure 5. Usage of the memory pool and staging
buffer in the GPUScene object.

4. Tests
Reference implementation of the render toolkit was
tested by the benchmark app. The application using
toolkit build dynamic scene (fig. 7, where objects
are created and destroyed. The scene objects could
be split into categories like static objects, dynamic ob-
jects (which changes transform or material properties),

or mutable object, which changes material or mesh
during application runtime. The test was designed to
measure dependency between rendered objects count
and GPU/CPU frame time in the high dynamic scene.
In this test case, the application updates, allocates and
frees a lot of the GPU memory, shares resources like
a material properties, textures and meshes between
many objects. The scene objects have multiple differ-
ent materials, that shows advantages or disadvantages
of the context switch minimization optimization. The
application uses simple shaders because render quality
and shader optimization methods was out of scope of
this project.

Figure 6 and Table 1 show dependency between
CPU/GPU frame time and render object count with
different levels of the optimization:

Level 0 No optimization enabled
Level 1 Parallel rendering (5 threads)
Level 2 Level 1 + staging buffers
Level 3 Level 2 + memory pool
Level 4 Level 3 + minimal pipeline state change

Level 0

Level 1

Level 2

Level 3

Level 4

2156
2492

2806
3117

3401
3679

3956
4233

4510
4787

5064
5341

5618
5895

6172
6449

6726
0

20

40

60

Draw calls

Fr
a
m

e
 t

im
e
 [

m
s]

(a) CPU frame time

Level 0

Level 1

Level 2

Level 3

Level 4

2156
2492

2806
3117

3401
3679

3956
4233

4510
4787

5064
5341

5618
5895

6172
6449

6726
0

25

50

75

Draw calls

Fr
a
m

e
 t

im
e
 [

m
s]

(b) GPU frame time

Figure 6. The frame time dependency of the rendered
objects count and the level of optimization.

The tests were executed on a laptop with CPU Intel
Core i7-5500U @ 2,4GHz with GPU AMD Radeon

1k 2k 3k 4k 5k 6k 7k
Level 0 6.2 9.1 14.8 16.7
Level 1 4.9 6.2 11.6 13.3 13.1 16.7
Level 2 6.5 7.4 27.9 49.7 46.9 42.0 37.0
Level 3 6.7 7.6 8.2 13.2 16.3 18.0 19.9
Level 4 8.8 8.7 11.9 16.9 19.8 22.9 25.3

(a) CPU frame times.

1k 2k 3k 4k 5k 6k 7k
Level 0 48.3 61.0 68.1 66.3
Level 1 49.4 61.2 67.8 64.3 63.7 63.2
Level 2 5.7 7.7 9.7 10.5 11.7 13.1 14.0
Level 3 5.5 7.5 9.3 10.0 10.6 11.0 11.9
Level 4 5.2 7.0 8.6 9.4 10.0 10.8 11.4

(b) GPU frame times.

Table 1. Average CPU/GPU frame times in
milliseconds grouped by thousands of the draw calls
for each optimization level.

R5 M240. The results in case of the Level 0 shows that
GPU access to main memory is bottleneck of the base-
line solution. The parallel rendering gain is significant
from large object count, but the gain is not negligible.
The Level 2 bottleneck is GPU memory allocation/free.
On the CPU side the peaks are probably related with a
GPU memory fragmentation on a small mobile GPU
memory heap. This issue was not preset in case of
Level 0 and 1, because the driver allocates memory on
larger host memory heap. The Level 3 had suboptimal
performance characteristic on CPU but not on GPU,
which has to change render states more frequently than
in case of Level 4, but the Level 4 was not optimal in
CPU case, due to sorting operations.

Figure 7. Benchmark scene.

5. Conclusions
This paper describes the design of render system suit-
able for Vulkan API. This render system includes sev-
eral optimization techniques, which help to reach opti-

mal performance and minimal overhead with complex
scenes. It is achieved by parallel rendering, with draw
calls batched by pipeline and input data, preallocation
strategies which allocates important memory on most
powerful GPU memory heap, staging buffers and hi-
erarchical descriptors binding. With the optimization
methods the render toolkit is able to render complex
and high dynamic scene in real time.

Future development of the render toolkit should
focus on Vulkan implementation of other techniques
used in nowadays rendering such as post processing,
occlusion culling, virtual textures, level of details,
global illumination methods, etc. . .

Acknowledgements
I would like to thank Prof. Adam Herout, Ph.D. for his
help and valuable advice with my diploma thesis, on
which this paper is based.

References
[1] The Khronos Vulkan Working Group.

Vulkan specification. online, Mar 2016.
https://www.khronos.org/registry/
vulkan/specs/1.0-wsi_extensions/
xhtml/vkspec.html.

[2] Daniel Rákos. Using the vulkan val-
idation layers. online, Mar 2016.
http://gpuopen.com/using-the-
vulkan-validation-layers/.

[3] Tobias Hector. Vulkan: Explicit operation
and consistent frame times. online, Mar 2016.
http://blog.imgtec.com/powervr/
vulkan-explicit-operation-and-
consistent-frame-times.

[4] Chris Hebert and Christoph Kubisch. Vulkan
memory management. online, Mar 2016.
https://developer.nvidia.com/
vulkan-memory-management.

[5] Christoph Kubisch. Vulkan & opengl threaded
cad scene sample. online, Mar 2016. https:
//developer.nvidia.com/vulkan-
opengl-threaded-cad-scene-sample.

[6] Ashley Smith. Gnomes per second in vulkan and
opengl es. online, Mar 2016. http://blog.
imgtec.com/powervr/gnomes-per-
second-in-vulkan-and-opengl-es.

[7] Christoph Kubisch. Vulkan shader resource
binding. online, Mar 2016. https:
//developer.nvidia.com/vulkan-
shader-resource-binding.

https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/xhtml/vkspec.html
http://gpuopen.com/using-the-vulkan-validation-layers/
http://gpuopen.com/using-the-vulkan-validation-layers/
http://blog.imgtec.com/powervr/vulkan-explicit-operation -and-consistent-frame-times
http://blog.imgtec.com/powervr/vulkan-explicit-operation -and-consistent-frame-times
http://blog.imgtec.com/powervr/vulkan-explicit-operation -and-consistent-frame-times
https://developer.nvidia.com/vulkan-memory-management
https://developer.nvidia.com/vulkan-memory-management
https://developer.nvidia.com/vulkan-opengl -threaded-cad-scene-sample
https://developer.nvidia.com/vulkan-opengl -threaded-cad-scene-sample
https://developer.nvidia.com/vulkan-opengl -threaded-cad-scene-sample
http://blog.imgtec.com/powervr/gnomes-per-second -in-vulkan-and-opengl-es
http://blog.imgtec.com/powervr/gnomes-per-second -in-vulkan-and-opengl-es
http://blog.imgtec.com/powervr/gnomes-per-second -in-vulkan-and-opengl-es
https://developer.nvidia.com/vulkan-shader-resource-binding
https://developer.nvidia.com/vulkan-shader-resource-binding
https://developer.nvidia.com/vulkan-shader-resource-binding

	Introduction
	Previous works
	Design
	Tests
	Conclusions
	References

