
http://excel.fit.vutbr.cz

Dynamic security policy enforcement on Android
Matúš Vančo

Abstract
This work deals with the concepts of Android security and proposes the system for dynamic
enforcement of access rights. Each suspicious application can be repackaged by this system,
so that the access to selected private data is restricted for the outer world. In the first phase,
interprocess communication and existing frameworks, which are capable to intercept communication
between application and the operating system on the level of system calls, are explored. After that,
the system is designed and developed, utilizing the possibilities of one of the compared frameworks –
Aurasium framework. The system adds an innovative approach of tracking the information flows
from the privacy-sensitive sources using tainting mechanism without need of administrator rights.
There has been designed file-level and data-level taint propagation and policy enforcement based
on Android binder.

Keywords: private data — Aurasium framework — operating system — system call — binder driver
— Android security — policy enforcement — security policy

Supplementary Material: Downloadable Code
*xvanco02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Android’s fast growth of popularity has a lot of causes
and consequences. Growing number of applications,
increasing a number of devices and growing level of
integration have been interfered and influenced each
other, implying increasing volume of the private data.
People have put their trust in their devices and become
more dependent on mobile technologies, using it for
socialization, trading or entertainment. Hovewer, the
private data is being used for the profit still more often
during globalization, because it is the base for the
knowledge-based business and targeted advertising.
Even Google’s free Android generates the significant
part of its revenue just this way [1].

Since this asset is seized by many groups of peo-
ple using illegal ways, Android has become the most
assaulted mobile operating system facing the wave of

malware, which is even more capable and stealthy, and
can even establish a permanent presence on the de-
vice [2]. In order to address these challenges, Android
includes permission model that protects access to sensi-
tive resources. However, since permissions are overly
broad and misunderstood, applications are provided
with more access than they truly require. In particular,
they are granted statically during install-time and so
does not correspond to the actual use at the time. This
implicates big vulnerability even if a certain applica-
tion is not intended to misuse the private data because
it can be exploited.

Based on this insufficient built-in Android security
and his later refinements, plenty of third-party frame-
works seek to supplement overall security. The current
state of the art comprises several effective countermea-
sures to issues like coarse granularity of permissions,

http://excel.fit.vutbr.cz
https://bitbucket.org/matvanc/policy-enforcement-source/
mailto:xvanco02@stud.fit.vutbr.cz


over-claim of permissions and permission escalation
attack. Hovewer, most of these solutions are rather
too complex and less straightforward. They replace
the whole Android permission model, or tries to track
the information flow on the level of operating system
which requires the rooted device. In contrast, there
is Aurasium framework, which automatically repack-
age and harden chosen applications, interposing the
sandboxing code in the applications themselves. Nev-
ertheless, it is robust enough to interpose almost all
types of interactions between the application and the
operating system.

The aim of this work is to develop the system,
which utilizes the Aurasium framework and restrict
the access of private data outside the device through
the selected applications. In contrast to original Aura-
sium framework, this work focuses more on the real
asset, the private data, and especially on the high us-
ability and easy deployment. The solution is focused
on tracking the information flows from the privacy-
sensitive sources to the system sink where they aim to
leave the system.

2. Android Security

Android security has been built upon fundamental secu-
rity concepts of the operating systems themselves. An-
droid’s Permission Label Model (PAM) has been built
upon Linux security mechanisms including Mandatory
Access Control (MAC) mechanism and Principle of
Least Privilege (PLP) [3]. Security enforcement using
MAC uses two types of permissions – granted permis-
sions (used or requested permissions) and required per-
missions (access permissions). Granted permissions
are manifested during installation and are inherited by
all of the application’s components. On the other hand,
required permissions are usually created by the devel-
oper to protect their important components. Required
permissions are always assigned to application com-
ponents separately. When the application is started,
the launcher component is invoked and the other com-
ponents are called subsequently from the same or the
other application or system. The mechanism of the
passing to another component and access control is
transparent in both situations. Communication be-
tween components is based on Linux Inter-component
Communication (ICC), because each application runs
in the separate process. It uses message passing, where
messages contain data with the required action and are
called intents (ACTION SEND, ACTION VIEW, etc.)
[4]. Android maintains this communication using Ref-
erence Monitor (RM), which is part of the Android OS
Middleware.

3. Aurasium Framework

Aurasium project has been developed in 2012 as a
project at the University of Cambridge, UK. Aura-
sium use repackaging mechanism, wrapping around
the DVM under which the Android applications run,
with monitoring code. It do not require rooted An-
droid device. To attach sandboxing code, Aurarium
exploits Android’s unique application architecture of
mixed Java and native code execution and introduces
libc interposition code. Because of this, Aurasium
is capable to mediate almost all types of interactions
between the application and the Android OS.

This project consists of three parts – automated
repackaging system written in Python programming
language named pyAPKRewriter, sandboxing code
included in ApkMonitor application and Aurasium’s
Security Manager (ASM) application enabling
central handling of policy decision of all repackaged
application on the device. [2]

Starting with sandboxing code, the top layer of the
framework is written in Java. The aim is to create an
well-documented easy-to-use abstraction layer upon
cumbersome native layer of the framework. The up-
per layer creates interface for other possible programs
and delegates all requests to the low-level part of the
framework implemented in native C++ code. This
layer consists of few shared objects that do all the real
work, such as communication with the Dalvik VM or
establishing the machanism for IPC communication.

The second part of Aurasium, the repackaging
Python script utilizes the previously mentioned sand-
boxing code and deploy it to Android APK installation
package. APK file is similar to Java JAR archive and
contains AndroidManifest file, application logic in
the form of dex bytecode, compiled XML resources
and native libraries. Each application package is also
signed with authorship information. Besides the sand-
boxing code, Aurasium has to include also several
additional parts to APK in order to ensure the function-
ality.

The last part of the Aurasium is called Aurasium
Security Manager (ASM). ASM handles the policy
decisions centrally, so that all repackaged applications
can be maintained at one place. Security policy is
based on decision of application or user. Application
decision works transparently without user interaction,
while the user decision is consented by dialog window
and can be remembered and used by default during
next occurrence.



4. Android Binder

In order to perform the required mediation, the part
of Android middleware called the Binder needs to be
rewritten. The Binder was originally developed under
the name OpenBinder by Be Inc. and later under Palm
Inc. and provides high-level abstraction on top of tradi-
tional modern operating system services including the
facility to provide bindings to functions and data from
one execution environment to another [5]. In Android,
OpenBinder is customized to provide Inter-component
Communication as described before. All interposition
code needs to be placed in the suitable position in the
original Binder implementation. Therefore, there is
important to understand the concepts and to analyse
the architecture of this part of system.

The communication between two processes is en-
sured using Binder Objects (BO), which are instances
of classes that implement ioctl-based Binder interface.
The most important operation which is declared in
this interface is transact(int code, Parcel
data, Parcel reply, int flags). The cor-
responding callback method in the Binder object is
called onTransact(). The interface can be fur-
ther extended by additional business operations us-
ing Android Interface Definition Language (AIDL).
Each BO uses local and global identifier. The local
ID is unique in the process and the global ID is cre-
ated when the BO is passed to another process us-
ing Binder Driver (BD). The BD then works like net-
work switch and persists the mapping from local ID to
global ID in the table structure and translate it trans-
parently, similarly than the mapping using ARP pro-
tocol. The Binder framework communication uses
the client-server model. However, the process can
implement the server as well as client, so the commu-
nication can be still bidirectional. The Binder Client
(BC) invokes an operation on a remote Binder ob-
ject called Binder Transaction (BT), which may in-
volve sending or receiving data over the Binder Pro-
tocol. The communication is performed indirectly
using Binder Driver. In the Android, the Binder Driver
is exposed via /dev/binder file and simple API
based on open(), release(), poll(), mmap(),
flush() and ioctl() operations. Most commu-
nication happens via ioctl(int fd, unsigned
long request, ... method. The first parameter
is the file descriptor number which identifies currently
opened file and is used in /proc/<pid>/fd/<fd>
file. The second parameter specifies the ioctl().

In fact, most communication happens via
ioctl(binderFD, BINDER WRITE READ,
&bwd) operation, where the binderFD is used to ac-

cess the /dev/binder file and the bwd structure is
defined as:

The write buffer contains a series of com-
mands for the driver to perform, while the
read buffer contains commands for the BO in
user-space. The commands for driver are called Binder
Call (BC) commands and the commands for the BO are
called Binder Return (BR) commands. Each command
is couple (operation code, data).

The Binder Transaction is a passing data from the
client to the service, while the Binder Reply is a pass-
ing data from the service back to the client. This is
shown in figure 1. The whole Binder framework mech-
anism is transparent for the Android developer, since
the Binder Transaction is performed as a local function
call using so-called thread migration. This is ensured
by the proxies and stubs, which are auto-generated
helper classes from the AIDL files [6]. The proxy is
the helper class which transforms Java code to low-
level commands for the Binder Driver. The stub works
in reverse to proxy and automatically parses and per-
forms read commands on the service side. Since the
Binder Driver is implemented on the low layer using C
language, there has to be mechanism for encapsulation
of high-level Java objects. This is ensured by Parcel
container and corresponding Parcelable interface.
A procedure for converting this higher-lever applica-
tions data structures into parcels is called marshalling.
The marshalling as well as unmarshalling are also in
the responsibility of the proxies and stubs.

Binder 1 Driver Binder 2

BC_TRANSACTION

BR_TRANSACTION

BC_REPLY

BR_REPLY

Figure 1. Binder Driver Interaction1

5. System Design and Implementation

Design of the system is based on previous analysis
and various experiments, which were focused on the
Android system behaviour. Design consists of three
parts – design of architecture and principle of applica-
tion, design of data structures and design of configura-
tion. Design of architecture can be further devided into
two parts – desing of tainting mechanism and design
of restriction.

1Inspired by Schreiber’s article [5]



Starting with the overall architecture and tainting
principle, the tainting is based on the principle used
in TaintDroid architecture. In order to perform real
memory-level tainting, there has to be tracked each
atomic memory transfer, which from a programator’s
point of view means each assignment to a variable.
This can be done only through monitoring of instruc-
tions on the level of machine. In TaintDroid, there
are monitored instructions on the level of virtual ma-
chines, because all possibly harmful applications are
run under Dalvik virtual machine. TaintDroid uses
Virtual Taint Map (VTM), which mirrors the address
space, but does not contain the content of memory. It
represents the division of memory into protected and
public part. Before tainting process, the tainted files
are marked in VTM. Then, every copying of memory
invokes copying of blocks in VTM. Since the applica-
tions, which run on separate DVM can also exchange
data, TaintDroid introduces message-level tainting as
well.

In this project, there has been designed and in-
tegrated two granularities of taint propagation – file-
level tainting and data-level tainting. The message-
level tainting (between components) principle from
TaintDroid is used only for final policy enforcement
(restriction), because Aurasium intercepts only single
applications and does not have possibility to moni-
tor the unhardened ones. File-level tainting and data-
level tainting uses the previously mentioned concept
of VTM, but it is stored in higer-level abstract data
structure and file instead of VTM.

File-level tainting between memory and the OS’s
file system can be performed in full scope, because
Aurasium can fully intercept this communication us-
ing system calls fopen(), open(), write() and
read(). Fuction fopen() is used for obtaining the
opening mode. This is used for tainting customization
(TA). If the untainted memory is written to tainted file
in append mode, the files remains tainted, but if it is
written in read mode, the file becomes untainted. The
open() and read() calls are used for tainting the mem-
ory blocks as well as new files. The data in memory
read from tainted file are marked similarily and the
files, which are read from tainted memory blocks be-
comes tainted too. However, data in memory are also
directly propagated.

Since the Aurasium can intercept only specific
places (system calls) and not instruction itself, it is im-
possible to implement full-scope memory-level taint-
ing as is introduced by TaintDroid. This is replaced by
the newly designed data-level tainting concept. This
concept together with the file-level tainting is depicted

in figure 2. When the data are read from the file, con-
tent of data is read and tagged using hash function
which assigns unique number. This tag, together with
the size of block is used during the writing unknown
memory block into file. Each unknown memory block
is tested with respect to any existing hash and marked
as tainted if the hash matches. Subsequently, the file is
marked as tainted as well.

fd*

fd*

fd

fd*

fd fdfdOS:

LAS:

AL:

Time

read write write write read

hash_match() = true hash_match() = true

BR_Transact <IContentProvider>

Call with Tainting

Call without Tainting

User-selected Private File

Tainted File

Not tainted fileEvent

Figure 2. Design of Architecture

The final policy enforcement is performed using
the interception of ioctl() call. Specifically, when the
BR TRANSACTION command which contains desti-
nation component ContentProvider is read, all the
read() calls for the tainted files are in the mode of
restriction.

The project is designed to secure the user-selected
files or folders as a entity, which are intended to be
invariable like images, pictures or videos. Documents
that are often changed can be restricted for opening,
or there can be assigned unique rights for opening
to hardened application and the files are encrypted
for other applications (reverse mode). In this reverse
mode, data are protected with unhardened applications
and uncovered and possibly exploited by the hardened
application. The reverse mode is designed as optional
and may not be implemented. Further extension is
finer granularity of data-tainting. Unknown memory
block which is being written to file is compared against
the tainted memory blocks which are smaller than the
unknown memory block, and the memory block which
is being read from file has been divided into smaller
units with separate hash.

Data structure which works as TaintDroid’s VTM
is designed as simple array of memory blocks, which
are the interconnection part between the file system
level and application logic performing described data-
tainting. From designed perspective, each memory
block is considered as tainted or untainted. Appli-
cation can store only tainted data and other will be
implicit. Initially, only the files are marked as tainted
and during tainting process, the other files and new



memory blocks are added. Each memory block can
have only one source file, one hash tag, but a lot of
destination files to which this data are written. Due
to Tainting Customization (TA), also the file modes
need to be stored, because read() and write() functions
does not dispose with this information in the passed
arguments.

6. Testing and Conclusion
Application has been tested on platform 4.3.1 and sev-
eral publicly-available applications, which share data
using Bluetooth, Wi-fi, SMS, Email and other chan-
nels. In the first phase, there were performed tests and
experiments related with Aurasium framework. The
second step was developing of mocking environment
according to previous stage. Here, the processing of
gathered system call sequences has been tested and
debugged. The last stage was to integrate these hook
functions in real environment – firstly in developed test
application and then in selected real application. Ex-
cept for testing of configuration utility, which has been
tested interacting with GUI, all the tests have been
performed via logging files and manual evaluation.

The aim of this work was to provide the system
for securing the user-selected private data of chosen
applications with the sandboxing mechanism. The
solution is focused on tracking the information flows
from the privacy-sensitive sources to the system sink
where they aim to leave the system. There has been
examined Android platform from the security perspec-
tive and investigated the code and the possibilities of
Aurasium framework. From this analysis, there has
been designed and implemented solution, which uses
file-level tainting and hash-tagging of memory in pro-
cess’s logical address space. The private data from the
user-selected private files is restricted.

7. Acknowledgements
I would like to thank my supervisor Lukáš Aron for
his help and motivation.

References
[1] JOEL ROSENBLATT. Google’s android gener-

ates 31 billion dollars revenue, oracle says. [on-
line], 2016. [cit. 2016-01-21].

[2] RUBIN XU, HASSEN SAÏDI, and ROSS AN-
DERSON. Aurasium: Practical policy enforce-
ment for android applications. In USENIX Security
Symposium, pages 539–552, 2012.

[3] ABRAHAM SILBERSCHATZ, PETER B.
GALVIN, GREG GAGNE, and A. SILBER-

SCHATZ. Operating system concepts, volume 4.
Addison-Wesley Reading, 9th edition, 1998.

[4] ANDROID. Android Developers. [online], 2016.
[cit. 2016-01-26].

[5] THORSTEN SCHREIBER. Android binder. Mas-
ter’s thesis, Ruhr-Universität Bochum, 2011.

[6] ALEKSANDAR GARGENTA. Deep dive into
android ipc/binder framework. In AnDevCon: The
Android Developer Conference, 2012.


	Introduction
	Android Security
	Aurasium Framework
	Android Binder
	System Design and Implementation
	Testing and Conclusion
	Acknowledgements
	References

