
fd*

fd*

fd

fd*

fd fdfdOperating
System

Logical
Address
Space

Application
Logic

Time

read() write() write() write() read()

hash_match() = true hash_match() = true

BR_Transact <IContentProvider>

Call with Tainting

Tainted / Untainted / Unknown
Memory Blocks

Call without Tainting

Restricted Call

Selected Private File

Tainted File

Untainted File

Event

read()

Hash Map:

Trusted Application Untrusted Application 

Trusted Library
Taint Source

Taint Sink

Binder IPC Library Binder Hook

Binder Kernel Module

Dalvik VM
Interpreter

Dalvik VM
Interpreter Virtual Taint MapVirtual Taint Map

Binder IPC LibraryBinder Hook

(1)

(2) (3)

(4)

(5)

(6)

(7)

(8)

(9)internal

standards

is

DVM InterpreterDVM Intepreter

Binder Kernel Module

K
e
r
n
e
l

Binder Kernel Module

K
e
r
n
e
l

In
te

rp
re

te
d 

C
od

e
U

se
rs

pa
ce

K
er

ne
l

Hardened App Binder Driver Android Comp.

BC_TRANSACTION

BR_TRANSACTION

BC_REPLY

BR_REPLY

BC_TRANSACTION

BR_TRANSACTION

BC_REPLY

BR_REPLY

Interception

This poster presents the system for dynamic enforcement of access rights. Each suspicious 
application can be repackaged by this system, so that the access to selected private data is 
restricted for the outer world. The system is designed and developed, utilizing the possibil-
ities of one of the examined frameworks – Aurasium framework. The system adds an inno-
vative approach of tracking the information flows from the privacy-sensitive sources using 
tainting mechanism without need of administrator rights. There has been designed file-lev-
el and data-level taint propagation and policy enforcement based on Android binder.

Matúš Vančo – xvanco02@stud.fit.vutbr.cz

#58

Fig. 1: Tainting Principle

System Calls Monitoring Data Tainting

System for Private Data Protection 

Fig. 3: Analysis of Interception

Fig. 4: Design of Architecture

Fig. 2: Forms of Component Interaction

Starting an Activity for a Result Communicating with a Service Querying a Content Provider Receiving an Intent Broadcast

Activity Activity ActivityActivity Service Content
Provider

System/
Activity/
Sevice

Broadcast
Receiver

return

start start/stop/bind
call

callback

Read/Write Query

return

Send
Intent

Communication between components is maintained using Reference Monitor, 
which is part of Android OS Middleware. It ensures communication between 
applications separated on the OS level, permission label mediation and man-
datory access control. ACL in Android is statically defined and user-autho-
rized during installation and does not provide ability to further modificate the 
subset of manifested requested permissions as it is possible in the Windows 
Phone OS. Reference Monitor utilizes Inter-component Communication simi-
lar to IPC in Unix-based systems. Android utilizes this communication in sev-
eral different forms accoring to involved components which is shown in 
figure 2. However, all forms are using the same IPC principle based on system 
call ioctl(). In this project, there are also monitored system calls open(), 
close(), read() and write() which enables communication with file system.

File-level tainting between memory and the OS's file system 
can be performed in full scope, because Aurasium can fully in-
tercept this communication using system calls open(), close(), 
write() and read(). Fuction open() is used for obtaining the 
opening mode. This is used for taint adaptation. If the untainted 
memory is written to tainted file in append mode, the files re-
mains tainted, but if it is written in read mode, the file becomes 
untainted. The system calls are used for tainting the memory 
blocks as well as new files. The data in memory read from taint-
ed file are marked similarily and the files, which are read from 
tainted memory blocks becomes tainted too. However, data in 
memory are also directly propagated. 

Since the Aurasium can intercept only specific places (system 
calls) and not instruction itself, it is impossible to implement 
full-scope memory-level tainting as is introduced by Taint-
Droid. This is replaced by the newly designed data-level taint-
ing concept (fig. 4). Data-level tainting uses the storage of file 
contents or hashes in order to track the private files. If the se-
lected file (upper screenshot) is copied to another location and 
shared like in lower screenshot, the system prevents the leak-
age. The project is designed to secure the user-selected files or 
folders as a entity, which are intended to be invariable like 
images, pictures or videos. Usability is a big advantage, since 
the application does not require administrator rights.

The tainting is based on the principle used in TaintDroid architecture. In 
TaintDroid, there are monitored instructions on the level of virtual machines. 
TaintDroid uses Virtual Taint Map (VTM), which mirrors the address space, 
but does not contain the content of memory. It represents the division of 
memory into protected and public part (fig. 1). Before tainting process, the 
tainted files are marked in VTM. Then, every copying of memory invokes 
copying of blocks in VTM. In this project, there has been designed and inte-
grated two granularities of taint propagation – file-level tainting and data-lev-
el tainting. The message-level tainting (between components) principle from 
TaintDroid is used only for final policy enforcement (restriction), because 
Aurasium intercepts only single applications and does not have possibility to 
monitor the unhardened ones.

DYNAMIC SECURITY POLICY ENFORCEMENT
ON ANDROID PLATFORM


