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Abstract

This paper reports experiments focusing on 3D reconstruction of vehicles passing in front of a traffic
surveillance camera. Calibration process of surveillance camera is first introduced and the relation
of automatic calibration with 3D information about observed traffic is described. Afterwards, a set of
experiments with feature matching and Structure from Motion algorithm are presented and their
results on images of passing vehicles are examined. Modifications to the correspondence search
stage of Structure from Motion pipeline are then proposed. Most importantly, instead of using SIFT
features, DeepMatching algorithm (originally devised to find quasi-dense point matches in optical
flow calculation) is used to obtain point correspondences for subsequent reconstruction phase. As
a result of implemented modifications, the overall completeness of reconstructed point cloud model

of passing vehicle has improved significantly.
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Deployment of high-resolution digital cameras in traf-
fic surveillance has increased the need for computer
vision algorithms that automatically extract data from
captured video streams. When supplemented with
computer vision methods, traffic surveillance cameras
can serve a wide range of purposes, such as counting
of passing vehicles, finding driving lanes, detecting
traffic jams and discovering drivers in the opposite
direction. Moreover, the primary aim of many traffic
surveillance systems is to measure the speed of passing
vehicles. Nevertheless, many of the tasks cannot be
achieved without preceding camera calibration.

This paper addresses the problem of reconstruction
of 3D information about vehicles passing in front of a
surveillance camera. In existing algorithms developed

for automatic traffic surveillance, the only obtained
3D data about a passing vehicle is its bounding box.
This work therefore aims to devise a method that could
acquire more precise 3D representation of a vehicle
captured in a video stream. Such information can then
be utilized to infer the scale of the projected scene, and
thus contribute to the camera calibration process.

First, available tools for 3D reconstruction are ex-
amined and tested to find out whether they could di-
rectly be used for the outlined task. Additionally, a
set of experiments carried out with keypoint extraction
is described. Lastly, a modification of the correspon-
dence search stage of 3D reconstruction pipeline is pro-
posed and implemented. An example of improved key-
point search and resultant 3D reconstruction is shown
in Figure 1.
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Figure 1. An example of keypoints found by
modified correspondence search stage of 3D
reconstruction pipeline (left) and the corresponding
result of 3D reconstruction of a passing truck (right).

Monocular cameras can be utilized in numerous tasks
of traffic analysis and surveillance, one of which is
speed measurement of passing vehicles. Techniques
for visual speed measurement have been developed
by various authors [1, 2, 3, 4]. Nevertheless, many
of the traffic surveillance tasks, especially accurate
speed measurements, require precise calibration of
the particular roadside camera. This section therefore
focuses on the approaches to calibration of monocular
camera employed in traffic surveillance.

2.1 Camera Calibration Model

Standard camera calibration involves finding its in-
trinsic parameters (matrix K) and extrinsic param-
eters (matrix [RT]) that form the projection matrix
P = K[RT]. However, for the purpose of speed mea-
surement in visual traffic surveillance, it is more con-
venient to define the problem of camera calibration as
finding the intrinsic parameters, determining the road
plane, and finding the scale of the road plane. Such
approach is more suitable, as it enables direct speed
measurement of vehicles driving on the road plane.
This concept of camera calibration can be considered
equivalent with the above mentioned standard cam-
era model and methods exist to convert the obtained
parameters from one model to the other [1].

When determining the intrinsic parameters, surveil-
lance camera is assumed to exhibit zero pixel skew
and to have principal point in the center of the image.
The only remaining intrinsic parameter to determine
is therefore the camera’s focal length. This parameter
can be calculated using two vanishing points. Once the
vanishing points are known, the parameters of the road
plane (without scale) can also be obtained. The scale
of the road plane is thus the last necessary parameter
to infer [1].

2.2 Automatic Calibration Using the Motion
of Passing Vehicles

Since manual calibration is impractical for large-scale
deployment of roadside cameras, it is desirable for the
calibration process to be fully automatic. Whenever
automatic calibration of a surveillance camera is to
be performed, it is suitable to extract the information
necessary for obtaining the aforementioned calibration
parameters from observed traffic flow [5, 1].

Finding Vanishing Points and Road Plane
Methods, such as the one presented by Dubski et
al. [5], first detect vanishing points using the observed
motion of vehicles. Once positions of two perpendicu-
lar vanishing points in image space are obtained, focal
length of the camera can be calculated. Moreover, the
two vanishing points also define the road plane. The
only remaining parameter is thus the distance of the
road plane from the camera which establishes the rela-
tion between the image and real-world units, i.e. the
scale [1].

Determining the Scale of the Road Plane

If passing vehicles are to be used as the source of in-
formation to obtain the scale of the road plane, camera
calibration inevitably becomes closely related to 3D
structure of the vehicles. Two significant approaches
to determine the scale of the road plane from observed
traffic flow have been developed.

The first approach, presented by Dubsk4 et al. [3],
uses 3D bounding boxes of passing vehicles and statis-
tical domain adaptation of their dimensions. The au-
thors detect a vehicle blob and construct its 3D bound-
ing box using lines that pass through vanishing points
and that are tangent to the vehicle blob. 3D coordi-
nates of the base of the bounding box, together with
the information about the real-world dimensions of the
vehicle, can be used to determine the scale of the road
plane. Dubska et al. [3] collected statistical data about
sold cars and their dimensions and determine the scene
scale by fitting the obtained statistics and the measured
data from the observed traffic.

It is important to note that when extraction of
3D information about observed traffic is considered,
bounding boxes have been so far the only 3D infor-
mation obtained about passing vehicles. Moreover,
edges of the vehicle blobs tend to be bent, and thus
constructing the bounding boxes using lines tangent
to these edges has negative influence on the overall
accuracy.

The second approach to scale inference is proposed
by Sochor et al. [1], who infer the scene scale by
aligning rendered 3D models of frequently passing



cars. They use fine-grained information about vehicle
type (i.e. make, model, variant, model year) and obtain
3D models for two vehicle types that are commonly
observed. When vehicle type with available 3D model
is detected, the image of its 3D model is rendered (from
the proper viewpoint) in multiple different scales and
its 2D bounding box is matched with 2D bounding
box of the detected vehicle blob. Once the rendered
3D model is aligned to the detected vehicle in the
image, two points representing the front and the rear
of the vehicle are projected to the road plane. Knowing
the real-world distance of these points from available
vehicle dimensions provides sufficient information for
the scene scale to be calculated.

2.3 Prospective Contribution of This Work to

Camera Calibration Process
As this work aims to reconstruct 3D information about
vehicles passing in front of surveillance camera, the
extracted 3D data can contribute to further improve-
ment of the camera calibration process. In particular,
obtained 3D model could provide additional informa-
tion for the calibration phase in which scale of the road
plane is computed.

Fine-grained classification of detected vehicles
could be used to distinguish between various vehicle
models. Real-world dimensions would also be stored
for each vehicle model. Once particular vehicle with
known dimensions is recognized, its detailed 3D re-
construction could be created and utilized to infer the
scene scale. Unlike the method where rendered 3D
model alignment is used, this approach would only
require the information about vehicles’ dimensions to
be saved in the traffic surveillance system, and no prior
3D model data would be necessary.

This section introduces computer vision algorithms
that have been used throughout the work on this pa-
per. First, Structure from Motion (SfM) algorithm is
described. Secondly, the concepts of optical flow and
DeepMatching are addressed. Lastly, a modification
of the SfM pipeline is proposed.

3.1 Structure from Motion

Structure from Motion (SfM) is an algorithm used
for 3D reconstruction from image collections. Sev-
eral implementations of this reconstruction strategy
exist, such as COLMAP [6], Bundler [7], and Visu-
alSFM [8]. This subsection introduces and describes
individual phases of incremental Structure from Mo-
tion algorithm.

General pipeline of incremental Structure from
Motion is shown at the top part of Figure 2. The input
to SfM is a set of unordered images with projections
of a scene that is to be reconstructed. The first stage
of the SfM pipeline consists of correspondence search
and is followed by the second stage that is represented
by an iterative reconstruction component. The output
of SfM is sparse 3D reconstruction in the form of a
point cloud.

Correspondence Search

The first stage of the Structure from Motion pipeline is
correspondence search. This stage involves extraction
of local feature points, identification of corresponding
projections of the same points in overlapping images
(matching), and subsequent geometric verification of
the found matches.

Feature extraction encompasses detecting coordi-
nates of feature points within every image and repre-
senting the points using descriptors. These points need
to be distinctive in order to be uniquely recognized
in multiple images, and thus SIFT [9] is a common
choice in many implementations. Next, sets of feature
points are matched to find corresponding point pairs.
Obtained point correspondences are then geometrically
verified and filtered [6].

Incremental Reconstruction

The stage of incremental reconstruction receives the
obtained set of image pairs with their point correspon-
dences and performs iterative reconstruction of the
scene. Initialization by two-view reconstruction is fol-
lowed by a cycle in which additional images are regis-
tered to the already reconstructed model. A newly
added image observes existing scene points in the
model and can also increase the number of points in
the model through triangulation. Furthermore, bun-
dle adjustment is employed to improve and refine the
precision of the model. This step is necessary to pre-
vent reconstruction from drifting into non-recoverable
state due to the accumulation of uncertainties in pose
estimations and errors in point coordinates [6].

3.2 Optical Flow and DeepMatching
Optical flow belongs to the set of algorithms used for
motion estimation between two images. The aim of
optical flow is to compute an estimate of motion at
each pixel, i.e. to find a vector for every pixel that
defines the displacement of the pixel between the two
images [10].

In order to address the problem of large displace-
ments contained within the two input images, some au-
thors also incorporate descriptor matching component
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Figure 2. Standard pipeline of incremental Structure from Motion algorithm (top) and modified correspondence
search stage (bottom), which employs DeepMatching to obtain quasi-dense point correspondences for the

subsequent reconstruction phase.

into the calculation process. Weinzaepfel et al. [11]
argue that even though this modification significantly
improves the results of optical flow algorithm, stan-
dard methods for feature point extraction only produce
points for salient image locations and are thus too
sparse. Therefore, in their method for optical flow,
named DeepFlow, Weinzaepfel et al. [11] enhance
their approach with a custom descriptor matching al-
gorithm called DeepMatching.

The proposed DeepMatching algorithm aims to re-
trieve quasi-dense point correspondences for later opti-
cal flow calculation phase. DeepMatching is strongly
inspired by non-rigid 2D warping and deep convolu-
tional networks. Instead of keeping the fixed 4 x 4
SIFT grid, it is divided into 4 quadrants and each of
the quadrants is allowed to move independently in
order to yield non-rigid matching. This approach is
then applied recursively together with max-pooling
and convolution. As a result, DeepMatching produces
point correspondences with very high density [11].

3.3 Modification of the Structure from Motion

Pipeline using DeepMatching
As shown by experiments described in Section 4, the
correspondence search stage of general Structure from
Motion pipeline proved to be unsuitable for the out-
lined task of 3D reconstruction of passing vehicles.
Therefore, a modification of this SfM stage was car-
ried out in order to achieve improved reconstruction
results.

Instead of using SIFT features in the correspon-
dence search stage, DeepMatching is utilized to find a
high number of corresponding points within pairs of
input images. Furthermore, filtering with foreground
mask is performed in order to remove points that do
not belong to the passing vehicle. Obtained matches
are then fed to the incremental reconstruction phase,

which remains unchanged. The modified SfM pipeline
is presented at the bottom part of Figure 2. Imple-
mented modifications are described in full details in
Section 5.

4. Experiments with SIFT Features and

Structure from Motion Tools

Throughout the first part of the work on this paper,
a series of preliminary experiments was carried out
in order to evaluate to what extent the current state-
of-the-art Structure from Motion algorithms can be
used when solving the problem of 3D reconstruction
of passing vehicles. For this purpose, two Structure
from Motion tools were selected, COLMAP [6] and
VisualSFM [8]. However, before examining the per-
formance of SfM tools, one more set of experiments
was carried out. Since both of the selected SfM tools
base their correspondence search stage on SIFT fea-
tures [9], experiments were first performed to evaluate
the behaviour of SIFT feature extraction and matching
on images of vehicles.

4.1 Obtained Test Data

Several image sequences of passing vehicles were ob-
tained for experiments presented in this section. In
order to ensure sufficient quality and resolution, im-
ages were captured using stationary reflex camera used
in burst mode. Therefore, images in each sequence
represent frames that would be extracted from a video
at different points in time. Each created sequence con-
tains from 7 to 15 images. For the purpose of exper-
iments, a sample containing sequences of 6 different
cars, 2 vans, and 1 truck was selected. Additionally,
all images in the selected sequences were cropped to
include the vehicle with only a small border containing
the background. Examples from two image sequences
are shown in Figure 3.



Considering the fact that Structure from Motion
algorithms expect static scene and moving photogra-
pher, another set of image sequences was obtained
using a stationary car with camera moving around. It
is therefore possible to compare the results of inputs
containing stationary and moving vehicles.

Figure 3. Examples of obtained sequences of images
with a passing vehicle.

4.2 Experiments with SIFT Feature Extraction
and Matching

First, positions of detected SIFT keypoints were in-
spected on single images. Secondly, found feature
correspondences between pairs of images in each se-
quence were studied. In this case, various image
pairs with different steps between images (i.e. differ-
ent distance of the images within the sequence) were
considered. All experiments were carried out on se-
quences of both stationary and passing vehicles, with
equivalent results.

When SIFT keypoint detection algorithm is ap-
plied, the vast majority of obtained keypoints is located
on the front part of the vehicle (mainly on grilles and
license plate). The remaining parts of the vehicle are
covered very sparsely, as only low numbers of feature
points are detected there. Furthermore, when feature
point matching is performed, correct correspondences
are often found only for small steps between the im-
ages in the particular sequence (i.e. small changes
in vehicle orientation). Larger steps between images
result into significant numbers of incorrectly calcu-
lated correspondences, especially for points which
are not on the front part of the vehicle (grilles and
license plate). An example of computed SIFT corre-
spondences is shown in Figure 4.

The results of experiments with SIFT features in-
dicate that algorithms for 3D reconstruction that rely
on SIFT in their correspondence search stage are very
likely to have only small numbers of feature points
for subsequent reconstruction phase. Moreover, the
number will probably be further reduced by incorrectly

Figure 4. Example of found SIFT point
correspondences on a static vehicle (30 best matches
are shown). The vast majority of feature points is
detected on the front part of the vehicle. Moreover, a
significant number of incorrect matches can be
observed.

found correspondences.

4.3 Experiments with Structure from Motion
Experiments with 3D reconstruction were performed
using COLMAP tool, which was released in 2016 and
is currently the state-of-the-art Structure from Motion
implementation [6]. Reconstruction process was tested
for all created image sequences of both stationary and
passing vehicles.

First, experiments with image sequences of station-
ary vehicle were performed. Out of 11 experiments,
reconstruction was successfully completed in only six
cases. In the remaining cases, SfM algorithm failed to
produce any result at all, reporting that no good initial
image pair was found. Only three of the successful
reconstructions contained recognizable points that be-
long to the original vehicle. The best achieved result
is presented in Figure 5.

Figure 5. The best obtained result using COLMAP
Structure from Motion tool for a sequence of images
containing a stationary vehicle. Point cloud model (on
the right) includes partially recognizable front part of
the vehicle (especially its license plate) and the front
wheel. Remaining parts of the vehicle are not
included at all, or reconstructed incorrectly.

Next, COLMAP was used on the image sequences
of passing vehicles. Out of six image sequences of
cars, only one reconstruction was successfully com-
pleted and a point cloud model was produced, whereas
all other reconstructions failed (again, the algorithm
reported that no good initial image pair was found). As



expected, only front part of the car is partially recogniz-
able in the successfully created model. A successful
reconstruction was obtained for image sequence of
passing truck, where a significant portion of the front
part is recognizable. The resultant model is shown in
Figure 6.

Gl

Figure 6. The best obtained result using COLMAP
Structure from Motion tool for image sequence of
passing vehicle. Resultant point cloud (on the right)
contains recognizable front part of the truck.

The results of the Structure from Motion algorithm
confirm the conclusions drawn from the previous ex-
periments with SIFT features. As expected, recon-
structed models are often severely incomplete. In a
vast majority of cases, the reconstruction process either
failed entirely, or the resultant point cloud contained no
meaningful structure. Apart from the presented tests
using COLMAP, several experiments were also car-
ried out with VisualSFM tool, producing comparable
results.

Based on the experiments described in the previous sec-
tion, two main aspects hindering the 3D reconstruction
process can be identified. The first problem is insuffi-
cient number of feature correspondences, as standard
SIFT features are not a suitable input for reconstruction
of passing vehicles. The second significant problem
is represented by points and point correspondences lo-
cated in the image background. In this section, changes
to the reconstruction process are proposed and applied
in order to improve the overall quality of the resultant
3D model.

5.1 Substitution of SIFT Features

In order to increase the number of point correspon-
dences located on vehicle, it is necessary to substitute
SIFT features with a different method for keypoint
extraction and matching. In particular, a method pro-
ducing matches with higher density is desirable. One
option would be to use output of an algorithm for op-
tical flow calculation, which would produce a vector

that estimates movement of each pixel in an image pair.
Nevertheless, in order to address large displacements,
optical flow methods often utilize feature matching al-
gorithms, too. It is therefore more beneficial to inspect
the feature matching approaches used within optical
flow, rather than entire methods for optical flow them-
selves.

As described in Subsection 3.2, optical flow algo-
rithm DeepFlow employs a custom feature matching
procedure, called DeepMatching, to calculate quasi-
dense point correspondences before smoothing them
to obtain optical flow estimation. The power of Deep-
Matching algorithm, even though originally designed
for optical flow, could be harnessed to provide a high
number of point matches for subsequent 3D recon-
struction of passing vehicles. An illustration of point
matches found by DeepMatching algorithm is shown
in Figure 8.

5.2 Filtering of Obtained Correspondences
The second necessary modification of the correspon-
dence extraction procedure is removal of those point
matches that belong to the scene background, as these
points can be considered outliers, and thus negatively
affect the reconstruction process. Obtained correspon-
dences should therefore be filtered using a foreground
mask of every individual image, so that only matches
located on the vehicles in both images of particular
image pair are taken as an input for reconstruction
phase. An example of the original image and its re-
spective foreground mask is shown in Figure 7, filtered
correspondences are illustrated by Figure 8.

il

Figure 7. Original image of passing truck and its
foreground mask.

5.3 Application of the Proposed Modifications
Implementation of the proposed modifications requires
a possibility of defining custom keypoint locations and
point correspondences as an input for the following
stage of incremental reconstruction. A suitable in-
terface is offered by VisualSFM and application of
presented modifications was therefore realized using
the VisualSFM tool.

Correspondences were first calculated using Deep-
Matching algorithm for all possible pairs of images in



Figure 8. Correspondences for two images of a
passing truck calculated using the DeepMatching
algorithm and filtered with foreground masks.

an image sequence. Next, foreground masks were cre-
ated and applied to perform filtering of point matches.
A file with locations of matched points is then gener-
ated for every image. It should be noted that unlike
standard SIFT keypoint detection, DeepMatching can
obtain slightly different sets of points for one particular
image when matching this image with several other
images. Therefore, union of the obtained point sets
is performed before the output file with keypoint co-
ordinates is created. Furthermore, one file containing
information about all found matches is generated. The
described procedure replaces the first stage of the StM
pipeline, in which correspondence search is performed
(as shown in Figure 2).

Examples of the models reconstructed by the al-
tered SfM pipeline can be seen in Figure 9 and 10.
When compared to the reconstruction obtained with
original SfM algorithm, the results of the proposed
modifications significantly improve completeness of
the resultant point cloud model.

6. Conclusion

In this paper, a set of experiments with SIFT feature
matching and Structure from Motion algorithm was
carried out in order to examine their results on images
of passing vehicles. SIFT features were found to be
unsuitable for images of vehicles when 3D reconstruc-
tion is to be performed. Reconstructions using the
SfM algorithm that utilizes SIFT correspondences of-
ten failed or produced a point cloud with a minimal
number of points belonging to the original vehicle.
Therefore, two modifications to the correspon-

Figure 9. Resultant 3D reconstruction of a passing
truck obtained when proposed improvements to
Structure from Motion pipeline are applied.

Figure 10. Examples of 3D reconstructions obtained
with modified Structure from Motion pipeline.

dence search stage of Structure from Motion pipeline
were proposed. Firstly, SIFT features were substituted
by DeepMatching. DeepMatching, which is originally
intended for obtaining quasi-dense point matches for
optical flow calculation, is used to obtain correspon-
dences for the subsequent reconstruction phase. The
second modification involves filtering of the computed
correspondences using foreground masks in order to
eliminate points that are not located on the vehicle.

Implementation of both proposed modifications
significantly improves the overall completeness of the
reconstructed point cloud models of passing vehicles.
After further processing and refinement, the obtained
3D models could be utilized to determine the scale of
the observed road plane, and thus contribute to traffic
analysis tasks, such as speed measurement.
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