
http://excel.fit.vutbr.cz

A Reduction of Finitely Expandable Deep
Pushdown Automata
Lucie Dvořáková

Abstract
For a positive integer n, n-expandable deep pushdown automata always contain no more than n
occurrences of non-input symbols in their pushdowns during any computation. As its main result,
the present paper demonstrates that these automata are as powerful as the same automata with
only two non-input pushdown symbols—$ and #, where # always appears solely as the pushdown
bottom as it would in the regular pushdown automaton. The paper demonstrates an infinite hierarchy
of language families that follows from this main result. In its conclusion, the paper suggests open
problems and topics for the future investigation.

Keywords: Deep Pushdown Automata, Finite Expandability, Reduction, Non-Input Pushdown
Symbols

Supplementary Material: N/A

*xdvora1f@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In essence, deep pushdown automata represent language-
accepting models based upon new stack-like structures,
which can be modified deeper than on their top. As
a result, these automata can make expansions deeper
in their pushdown lists as opposed to ordinary push-
down automata, which can expand only the very push-
down top. At present, the study of deep pushdown
automata represent a vivid trend in formal language
theory (see [1, 2, 3, 4]). The present paper makes a
contribution to this trend.

This paper narrows its attention to n-expandable
deep pushdown automata, where n is a positive inte-
ger. In essence, during any computation, their push-
down lists contain #, which always appears as the
pushdown bottom, and no more than n−1 occurrences
of other non-input symbols. As its main result, the
paper demonstrates how to reduce the number of their
non-input pushdown symbols different from # to one
symbol, denoted by $, without affecting the power of
these automata. Based on this main result, the paper
establishes an infinite hierarchy of language families
resulting from these reduced versions of n-expandable
deep pushdown automata. More precisely, consider n-

expandable deep pushdown automata with pushdown
alphabets containing #, $, and input symbols. The pa-
per shows that (n+ 1)-expandable versions of these
automata are stronger than their n-expandable versions,
for every positive integer n. In addition, it points out
that these automata with # as its only non-input symbol
characterize the family of regular languages. In its con-
clusion, this paper formulates several open problem
areas related to the subject of this paper for the future
study.

The paper is organized as follows. Section 2 gives
all the definitions needed to follow the paper. Section
3 establishes all the results sketched above, and in
its conclusion, it also brings the reader’s attention to
several open problems.

2. Preliminaries and Definitions
We assume that the reader is familiar with formal lan-
guage theory (see Harrison [5] or Meduna [6, 7]). Let
N denote the set of all positive integers. For an alpha-
bet Γ, Γ∗ represents the free monoid generated by Γ

under the operation of concatenation. The identity of
Γ∗ is denoted by ε . For w ∈ Γ∗, |w| denotes the length
of w.

http://excel.fit.vutbr.cz
mailto:xdvora1f@stud.fit.vutbr.cz

A deep pushdown automaton (Deep PDA) is a 7-
tuple M = (Q,Σ,Γ,R,s,S, F), where Q is a finite set of
states, Σ is a input alphabet, Γ is a pushdown alphabet,
Σ ⊆ Γ is an input alphabet, s ∈ Q is the start state,
S ∈ Γ \Σ is the start pushdown symbol, and F ⊆ Q
is the set of final states. Γ \ Σ contains the bottom
pushdown symbol denoted by #. In what follows, N =
Γ\ (Σ∪{#}). R is a finite subset of (N×Q×N×Q×
(Γ\{#})+) ∪ (N×Q×{#} × Q× (Γ\{#})∗{#}). R
is called the set of rules; instead of (m,q,A, t,v) ∈ R,
we write mqA→ tv throughout.

A configuration of M is any member of Q×Σ∗×
(Γ \ {#})∗{#}. Let Ξ denote the set of all config-
urations of M. Next, we define three binary rela-
tions over Ξ — p `, e `, and `. Let q, t ∈ Q, x ∈ Σ∗,
z ∈ (Γ\{#})∗{#}).

1. Let a ∈ Σ; then, (q,ax,az) p` (q,x,z).
2. Let mqA→ tv ∈ R, z = uAw, u ∈ (Γ \ {#})∗, u

contains m− 1 occurrences of symbols from
N, either A ∈ N, v ∈ (Γ \ {#})+ and w ∈ (Γ \
{#})∗{#} or A = #, v ∈ (Γ\{#})∗{#}, and w =
ε; then, (q,x,uAw) e` (t,x,uvw).

3. Let α,β ∈ Ξ; α ` β if and only if α p` β or α

e` β .

Intuitively, in p` and e`, p and e stand for pop and
expansion, respectively. Consider 2 above; to express
that (q,x,uAw) e ` (q,x,uvw) is made according to
mqA→ tv, write (q,x,uAw) e` (t,x,uvw) [mqA→ tv].
If α,β ∈ Ξ, α ` β in M, we say that M makes a move
from α to β .

In the standard manner, extend e`, p`, and ` to
e`i, p`i, and `i, respectively, for i≥ 0; then, based on
e`i, p`i, and `i, define e`+, e`∗, p`+, p`∗, `+, and
`∗. The language of M, L(M), is defined as L(M) =
{w | (s,w,S#) `∗ (f ,ε,#) in M, w ∈ Σ∗, f ∈ F}.

Let n ∈ N. If during any α `∗ β in M, α,β ∈ Ξ,
M has no more than n occurrences of symbols form
Γ\Σ in its pushdown, then M is an n-expandable Deep
PDA.

A right-linear grammar is a quadruple G = (N,T,
P,S), where N is an alphabet of nonterminals, T is an
alphabet of terminals such that N∩T = /0, P is a finite
subset of N×T ∗(N∪{ε}), and S ∈ N. P is called the
set of rules in G; instead of (A,x) ∈ P, we write A→ x.
Define the language of G, L(G), as usual (see [6]).

Let n,r ∈ N, nDPDA denotes the language family
accepted by n-expandable Deep PDA. nDPDAr de-
notes the language family accepted by n-expandable
deep pushdown automata with # and no more than
(r−1) non-input pushdown symbols. Reg denotes the
regular language family. Recall that Reg is charac-

terized by right-linear grammars (see Theorem 7.2.2.
in [6]).

3. Result
Next, we establish Lemma 3.1, which implies the main
result of this paper.

Lemma 3.1. Let n ∈N. For every n-expandable Deep
PDA M, there exists an n-expendable Deep PDA MR

such that L(M) = L(MR) and MR contains only two
non-input pushdown symbols—$ and #.

Proof. Construction. Let n ∈ N. Let

M = (Q,Σ,Γ,R,s,S,F)

be an n-expandable Deep PDA. Recall that rules in
R are of the form mqA→ tv, where m ∈ N, q, t ∈ Q,
either A ∈ N and v ∈ (Γ \ {#})+ or A = # and v ∈
(Γ\{#})∗{#}, where # denotes the pushdown bottom.

Let $ be a new symbol, $ /∈ Q∪Γ, and let homo-
morphisms f and g over Γ∗ be defined as f (A) = A
and g(A) = $, for every A ∈ N, and f (a) = ε and
g(a) = a, for every a ∈ (Σ∪{#}). Next, we construct
an n-expandable Deep PDA

MR = (QR,Σ,Σ∪{$,#},RR,sR,$,FR)

by performing 1 through 4, given next:

1. Add m〈q;uAz〉$→〈t;u f (v)z〉g(v) to RR and add
〈q;uAz〉, 〈t;u f (v)z〉 to QR if mqA→ tv∈R, u,z∈
N∗, |u| = m− 1, |z| ≤ n−m− 1, |u f (v)z| < n,
m ∈ N, q, t ∈ Q, A ∈ N, and v ∈ (Γ\{#})+;

2. Add m〈q;u〉#→ 〈t;u f (v)〉g(v)# to RR and add
〈q;u〉, 〈t;u f (v)〉 to QR if mq#→ tv#∈R, u∈N∗,
|u| = m− 1, |u f (v)| < n, m ∈ N, q, t ∈ Q, and
v ∈ (Γ\{#})∗;

3. Set sR = 〈s;S〉;
4. Add all 〈t;u〉 to FR, where t ∈ F , u ∈ N∗, u < n.

Later in this proof, we demonstrate that L(M)=L(MR).

Basic Idea States in QR include not only the states
corresponding to the states in Q but also strings of non-
input symbols. Whenever M pushes a non-input sym-
bol onto the pushdown, MR records this information
within its current state and pushes $ onto the pushdown
instead.

By Lemma 3.1. in [8], any n-expandable Deep
PDA M can accept every w ∈ L(M) so all expansions
precede all pops during the accepting process. Without
any loss of generality, we assume that M and MR work
in this way in what follows, too.

To establish L(M) = L(MR), we prove the follow-
ing four claims.

Claim 3.1. Let (s,w,S#)` j (q,v,x#) in M, where s,q∈
Q, w,v∈Σ∗, and x∈ (Γ\{#})∗. Then, (〈s;S〉,w,$#)`∗
(〈q; f (x)〉,v,g(x)#) in MR, where 〈s;S〉, 〈q; f (x)〉 ∈QR,
and g(x) ∈ (Σ∪{$})∗.

This claim is proved by induction on j ≥ 0.

Basis Let j = 0, so (s,w,S#)`0 (s,w,S#) in M, where
s ∈ Q and S ∈ N. Then, from 3 in the construction, we
obtain

(〈s;S〉,w,$#) `0 (〈s;S〉,w,$#)

in MR, so the basis holds.

Induction Hypothesis Assume there is i ≥ 0 such
that Claim 3.1 holds true for all 0≤ j ≤ i.

Induction Step Let (s,w,S#) `i+1 (q,w,x#) in M,
where x∈ (Γ\{#})∗, s,q∈Q, w∈ Σ∗, k, `≥ 1, k+` <
n.

Since i + 1 ≥ 1, we can express (s,w,S#) `i+1

(q,w,x#) as

(s,w,S#) `i (t,w,x0A1x1...Am...Akxk#)

` (q,w,x0A1x1...Am−1xm−1y0B1y1...B`y`
xmAm+1...xk−1Akxk#)

[mtAm→ qy0B1y1...B`y`]

where A1, ...,Ak,B1, ...,B` ∈N and x0x1...xk,y0y1...y` ∈
Σ∗, t ∈ Q. By the induction hypothesis, we have

(〈s;S〉,w,$#) `∗ (〈t;A1...Am...Ak〉,w,x0$x1$...$xk#)

Since mtAm→ qy0B1y1...B`y` ∈ R, we also have

m〈t;A1...Am...Ak〉$→
〈q;A1...Am−1B1...B`Am+1...Ak〉y0$y1$...$y` ∈ RR

(see 1 in the construction). Thus,

(〈t;A1...Am...Ak〉,w,x0$x1$...$xk#)

` (〈q;A1...Am−1B1...B`Am+1...Ak〉,w,
x0$x1$...$xm−1y0$y1$...$y`xm$...$xk#)

[m〈t;A1...Am...Ak〉$→
〈q;A1...Am−1B1...B`Am+1...Ak〉y0$y1$...$y`]

Analogically, we can prove the induction step for the
case when # is rewritten (see 2 in the construction).
Therefore, Claim 3.1 holds true.

Claim 3.2. L(M)⊆ L(MR).

Proof. Consider Claim 3.1 for v = ε , q∈ F , and x = ε .
Under this consideration Claim 3.1 implies Claim 3.2.

Claim 3.3. Let (〈s;S〉,w,$#) ` j (〈q;A1...Ak〉,v,x#) in
MR, where sR = 〈s;S〉, 〈q;A1...Ak〉 ∈ QR, w,v ∈ Σ∗,
A1, ...,Ak ∈N, x= x0$x1$...$xk, and x0...xk ∈Σ∗. Then,
(s,w,S#) `∗ (q,v,x0A1x1...Akxk#) in M, where s,q ∈
Q.

Proof. This claim is proved by induction on j ≥ 0.

Basis. Let j = 0, so (〈s;S〉,w,$#) `0 (〈s;S〉,w,$#)
in MR, where sR = 〈s;S〉. From 3 in the construction,
we have

(s,w,S#) `0 (s,w,S#)

in M, so the basis holds.

Induction Hypothesis. Assume there is i≥ 0 such
that Claim 3.3 holds true for 0≤ j ≤ i.

Induction Step. Let (〈s;S〉,w,$#) `i+1 (〈q;A1...Ak〉,
w, x0$x1$...$xk#) in MR, where 〈s;S〉,〈q;A1...Ak〉 ∈
QR, A1, ..., Ak ∈ N, w ∈ Σ∗, and x0...xk ∈ Σ∗, k, `≥ 1,
k+ ` < n. Since i+ 1 ≥ 1, we can express (〈s;S〉, w,
$#) `i+1 (〈q;A1...Ak〉, w, x0$x1$...$xk#) as

(〈q;(〈s;S〉,w,$#) `i (〈t;A1...Am...Ak〉,w,x0$x1$...$xk#)

` A1...Am−1B1...B`Am+1...Ak〉,w,x0$x1$...

$xm−1y0$y1$...$y`xm$...$xk#)

[m〈t;A1...Am...Ak〉$→
〈q;A1...Am−1B1...B`Am+1...Ak〉y0$y1$...$y`]

By the induction hypothesis, we obtain

(s,w,S#) `i (t,w,x0A1x1...Am...Akxk#)

Since m〈t;A1...Am...Ak〉$→ 〈q;A1...Am−1B1...B`

Am+1...Ak〉y0$y1$...$y` ∈ RR, we also have mtAm →
qy0B1y1...B`y` ∈ R as follows from 1 in the construc-
tion. We obtain

(t,w,x0A1x1...Am...Akxk#)

` (q,w,x0A1x1...Am−1xm−1y0B1y1...

B`y`xmAm+1...xk−1Akxk#)

[mtAm→ qy0B1y1...B`y`]

Analogically, we can prove the case when # is ex-
panded (see 2 in the construction). Therefore, Claim 3.3
holds true.

Claim 3.4. L(MR)⊆ L(M).

Proof. Consider Claim 3.3 with v = ε , 〈q;A1...Ak〉 ∈
FR, and x = ε . Under this consideration, Claim 3.3
implies Claim 3.4.

As L(M) ⊆ L(MR) (see Claim 3.2) and L(MR) ⊆
L(M) (see Claim 3.4), L(MR)=L(M). Thus, Lemma 3.1
holds.

Example Take this three-expandable Deep PDA M =
({s,q, t},{a,b, c},{a,b,c,A,S,#}, R,s,S,{ f}) where

R = {1sS→ qAA,

1qA→ f ab,

1 f A→ f c,

1qA→ taAb,

2tA→ qAc}

By the construction given in the proof of Lemma 3.1,
we construct MR = (QR, {a,b,c}, {a,b,c,$,#}, RR,
〈s;S〉, $, {〈 f ;A〉,〈 f ;ε〉}), where QR = {〈s;S〉,〈q;AA〉,
〈 f ;A〉,〈 f ;ε〉,〈t;AA〉} and

RR = {1 : 1〈s;S〉$ → 〈q;AA〉$$,

2 : 1〈q;AA〉$ → 〈 f ;A〉ab,

3 : 1〈 f ;A〉$ → 〈 f ;ε〉c,
4 : 1〈q;AA〉$ → 〈t;AA〉a$b,

5 : 2〈t;AA〉$ → 〈q;AA〉$c,

6 : 1〈s;SA〉$ → 〈q;AAA〉$$,

7 : 1〈s;SS〉$ → 〈q;AAS〉$$,

8 : 1〈q;AA〉$ → 〈 f ;A〉ab,

9 : 1〈q;AS〉$ → 〈 f ;S〉ab,

10 : 1〈 f ;AA〉$→ 〈 f ;A〉c,
11 : 1〈 f ;AS〉$ → 〈 f ;S〉c,
12 : 1〈q;A〉$ → 〈t;A〉a$b,

13 : 1〈q;AS〉$ → 〈t;AS〉a$b,

14 : 2〈t;SA〉$ → 〈q;SA〉$c}

For instance, MR makes

(〈s;S〉,aabbcc,$#) e` (〈q;AA〉,aabbcc,$$#) (1)

e` (〈t;AA〉,aabbcc,ab#) (4)

p` (〈t;AA〉,abbcc,b#)

e` (〈q;AA〉,abbcc,bc#) (5)

e` (〈 f ;A〉,abbcc,abb$c#) (2)

p` (〈 f ;A〉,cc,$c#)

e` (〈 f ;ε〉,cc,cc#) (3)

p` (〈 f ;ε〉,ε,#)

Theorem 3.1. For all n≥ 1, nDPDA = nDPDA2.

Proof. This theorem follows from Lemma 3.1.

Corollary 3.1. For all n≥ 1, nDPDA2 ⊂ n+1DPDA2.

Proof. This corollary follows from Theorem 3.1 in
this paper and Corollary 3.1. in [8].

Can we reformulate Theorem 3.1 and Corollary 3.1 in
terms of nDPDA1? The answer is no as we show next.

Lemma 3.2. Let M = (Q,Σ,Γ,R,s,S,F) be a Deep
PDA with Γ \Σ = {#}. Then, there is a right-linear
grammar G such that L(G) = L(M).

Proof. Let M = (Q,Σ,Γ,R,s,S,F) with Γ \Σ = {#}.
Thus, every rule in R is of the form 1q#→ px#, where
q, p ∈ Q, x ∈ Σ∗. Next, we construct a right-linear
grammar G = (Q,Σ,P,s) so L(M) = L(G). We con-
struct P as follows:

1. For every 1q#→ px# ∈ R, where p,q ∈ Q, x ∈
Σ∗, add q→ xp to P;

2. For every f ∈ F , add f → ε to P.

A rigorous proof that L(M) = L(G) is left to the reader.

Theorem 3.2. Reg = 1DPDA1 = nDPDA1, for any
n≥ 1.

Proof. Let n≥ 1. Reg⊆ 1DPDA1 = nDPDA1 is clear.
Recall that right-linear grammars characterize Reg,
so nDPDA1 ⊆ Reg follows from Lemma 3.2. Thus,
Reg = nDPDA1.

Corollary 3.2. Reg = 1DPDA1 = nDPDA1⊂ nDPDA2,
for all n≥ 2.

Proof. Let n≥ 1. As obvious, 1DPDA1 = nDPDA1 ⊆
nDPDA2. Observe that

{anbn | n≥ 1} ∈ nDPDA2 \ nDPDA1

Therefore, Corollary 3.2 holds.

4. Conclusions
In the present paper, we have reduced finitely expand-
able Deep PDAs with respect to the number of non-
input pushdown symbols.

Before closing this paper, we suggest some open
problem areas related to this subject for the future
investigation.

1. Can we reduce these automata with respect to
the number of states?

2. Can we simultaneously reduce them with re-
spect to the number of both states and non-input
pushdown symbols?

3. Can we achieve the reductions described above
in terms of general Deep PDAs, which are not
finitely expandable?

Acknowledgements
I would like to thank my supervisor prof. RNDr.
Alexander Meduna, CSc. for his help.

References
[1] Nidhi Kalra and Ajay Kumar. Fuzzy state gram-

mar and fuzzy deep pushdown automaton. Journal
of Intelligent and Fuzzy Systems, 31(1):249–258,
2016.

[2] Nidhi Kalra and Ajay Kumar. State grammar
and deep pushdown automata for biological se-
quences of nucleic acids. Current Bioinformatics,
11(4):470–479, 2016.

[3] Argimiro Arratia and Iain A. Stewart. Program
schemes with deep pushdown storage. In Proc. of
Logic and Theory of Algorithms, CiE 2008, vol-
ume 5028 of Lecture Notes in Computer Science,
pages 11–21. Springer, 2008.

[4] Alexander Meduna. Deep pushdown automata.
Acta Inf., 42(8-9):541–552, 2006.

[5] Michael A. Harrison. Introduction to Formal Lan-
guage Theory. Addison-Wesley, 1978.

[6] Alexander Meduna. Automata and Languages:
Theory and Applications. Springer, 2000.

[7] Alexander Meduna and Petr Zemek. Regulated
Grammars and Automata. Springer, 2014.

[8] Peter Leupold and Alexander Meduna. Finately
expandable deep PDAs. In Proc. of Automata,
Formal Languages and Algebraic Systems 2008,
pages 113–123. World Scientific, 2010.

	Introduction
	Preliminaries and Definitions
	Result
	Conclusions
	References

