
http://excel.fit.vutbr.cz

Library for OSM Rendering on Smartphones
David Vaďura

Abstract
The aim of this work was to create a mobile map rendering library, using GPU acceleration to render
vector map directly on end-user’s device. That includes ability to draw line and polygon features, add
POI icons and labels, while also enabling the user to change the appearance. The library must also
manage map data: acquire the tiles on-demand, cache them, and display them at the appropriate
time. The proposed architecture defines a generic data source to make tile loading possible from
various sources, both online and offline. A hybrid approach to map rendering was adopted. Base
features are rendered to a texture. Layers which contain text and icons are rendered online on top
of the base features, these can be rotated or scaled when the viewport changes. A C++ library
was created as the result of this work. It works on both iOS and Android, and it is possible to port
to other platforms (the largest requirement is the support of OpenGL ES). What makes my work
distinct from other map libraries are the clearly defined features (such as offline map rendering) that
no other library fully meets. This library will be easy to use for individuals/companies developing
mobile applications for multiple platforms.

Keywords: Map — Rendering — OpenGLES

Supplementary Material: N/A

*xvadur02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Maps are part of many mobile applications and making
them fast and beautiful takes a lot of effort. There are
many libraries that render maps, while only a few of
them are also multi-platform and work with vector data.
If we keep adding requirements like support for offline

rendering or commercial use, we quickly realize that
there is almost no choice of libraries with all these
features when developing mobile applications.

The goal of this work is to create a map rendering
library with the following requirements:

• Render vector map on mobile phones at a rea-

http://excel.fit.vutbr.cz
mailto:xvadur02@stud.fit.vutbr.cz

sonable speed to provide smooth controls to the
user.

• Work with both online and offline sources of
data.

• Provide complex styling options defined in a
style file. The appearance (color, ouline, line
width, etc.) of every feature can be modified.

Let us compare these requirements with existing
solutions on the market. Probably the most common
and quickest approach are the Google Maps [1] and
MapKit [2]. These are the libraries native to the two
target platforms: Android and iOS. They both come
with simple API, proprietary maps and great support.
They also support custom annotations on top of the
built-in map. The biggest issue with them is the online-
only map data, which is not suitable for many ap-
plications. If the corresponding application requires
internet connection to work, both of these would be
a good choices However, if the developer needs more
features, like custom maps or offline rendering, they
do not yet have these features in the year 2017.

At the time of writing of this paper, the greatest
alternative is, without doubt, Mapbox GL Native [3].
This is the native counterpart to the Mapbox GL JS -
Javascript library for the web. It supports both An-
droid and iOS, and the code itself is open-source as
well, which proves helpful to the development. The
default way to use it is together with Mapbox owned
map data. The company provides multiple plans for
both free and commercial apps, with limits on map
views/users and other features. Unfortunately, there is
very limited choice between the plans and the pricing
is quite expensive for medium sized applications.

The most interesting from the rest is tangram-
es [4], which is again, as with Mapbox, a port of
Javascript-first library from company Mapzen. The
library is still early in the development (at least on
mobile), so many of the required features (for example
offline mapping) are yet to be added. It might become
a good alternative to Mapbox in the future, but the
current feature set is more limited.

Another part in the research was spent to com-
pare the sources of map data for the developed library.
OpenStreetMap (OSM) stores its own data in the XML
format, and it also contains a huge amount of data
unnecessary for the rendering. For that reason it is not
used directly, but other providers compile and main-
tain copies of OSM specifically for the purpose of
vector map rendering. One of them is the aforemen-
tioned company Mapzen, which currently provides an
online data source free of charge. The other project,
which I used while working on my library, is Open-

MapTiles.org. It provides downloads of packages of
cities, countries, or the whole planet.

2. Tile Loading and Processing

The typical internal representation of computer map is
with tiles. A tile is a small slice of the resulting map,
often with the size of 256× 256 pixels. To optimise
loading and displaying of such map, its tiles are organ-
ised into zoom levels (going from 0 to 19 in the case
of OpenStreetMap). The number of tiles grows with
the zoom level. The consequence of this is that the
amount of details can change as the user zooms the
map.

There are many formats that are actively used to
store vector map data. As mentioned before, OSM
uses XML but that is for obvious reasons very ineffi-
cient for the mobile platform. Other text-based formats
like GeoJSON are also very popular, but I chose the
binary format Mapbox Vector Tile (MVT). It is gen-
erally smaller than text-based formats and there is no
problem with using a binary format on mobile (unlike
web, where GeoJSON is more appropriate). It is not
a format per se, but a specification of the data stored
inside protocol buffers [5]. To speed up the parsing
even more, I did not use the Google Protobuf library,
but a minimal implementation protozero [6]. One of
the features of the Protobuf library is automatic gen-
eration of classes in the target language based on a
definition file (.proto). The deserialization methods
in the generated code however proved too slow for
realtime applications, because they also do a lot of
unnecessary work (validation of each field for exam-
ple). For that reason I implemented the deserialization
manually using protozero.

TilePager TileWorker TileBuilder

Tile

DataSource

(0,0) (1,0)

(1,1)(0,1)

User interaction

1 2

3

4

5

Figure 1. This figure illustrates the process of loading
and processing data into Tiles. The step numbers
correspond to the list in this chapter.

The proposed architecture divides the processing
pipeline into a sequence of steps, as illustrated in Fig-

openmaptiles.org
openmaptiles.org

ure 1:

1. Every time the viewport changes (caused most
of the time by user interaction) TilePager is
given the bounds of the visible part of the screen
and the current scale. From these, TilePager
determines indices of tiles that should be visible.
After that follows an iteration over all these in-
dices and a check if they are already available in
the cache. In the case of a cache miss, the tiles
are queued up in the TileWorkerQueue.

2. TileWorkerQueue starts with a predefined num-
ber of background threads. These consume the
tasks from the queue and manage the loading
and processing of the tiles. After a thread ac-
quires a tile that needs to be processed, first of
all it requests data from its DataSource.

3. DataSource downloads/reads tile data. The
tiles are most often situated on online Web Map
Service (WMS), or inside an offline database.

4. Tile data is parsed with an appropriate parser.
The result of this process is an instance of Tile,
which is ready for rendering. The process of
parsing is tightly connected with the symboliz-
ing illustrated in Figure 4, which transforms the
OSM geometry to triangles that can be pushed
to the GPU.

5. Tile is moved to the GPUWorker thread, which
renders its static geometry to a texture. After
this step, the tile is ready to be displayed on the
screen.

Polygon
symbolizer

v0

v1

v2

v3

v4

v5
v6

v7

v8

v9

Line
symbolizer

v0

v1 v2

v3 v4

v5 v6

Figure 2. Lines and polygons from the OSM data go
through a process called symbolizing. The geometry
is tessellated there so that it can be rendered with
OpenGL.

To avoid loading the same tile multiple times when
user scrolls the map, they are stored in a cache. For
maps, a simple Least Recently Used (LRU) cache can
be enough. The key in my implementation is TileID,
which is composed of the x, y and zoom coordinates of
the tile.

3. Styling the Map
One of the advantages of vector maps is the oppor-
tunity to change the appearance on the fly, without
modifying the source data at all. By appearance I
mean even choosing which features to show and which
not, allowing the user to filter their visibility online.

Styling for the library is defined in a style file in
JSON format. It consists of multiple objects, the most
important being “layers” array containing description
of every single layer (Figure 3) which gets shown in
the resulting map.

Each layer must contain several required attributes
and any number of other optional ones. Required are:

• Source-layer is the name of the layer from OSM
data.

• Type describes types of geometry of this layer.
It can be one of the following: line, polygon,
icon, label. Based on this attribute an instance
of subclass of the base StyleLayer object is
created, e.g. LineLayer or PolygonLayer.

LayersStyle

Layer render
order

Figure 3. The style file contains an array of layers,
which are rendered in the order they appear in the file.
The only exception to this are icons and text, that are
always rendered above the other layers.

When building Tiles from the raw data, the Style
is used to filter features that should go into it. The re-
sult is saving time and memory by skipping all features
that will not appear on the screen. The rest goes into
the symbolizing step, where it is converted to OpenGL
geometry.

The other step where Style comes in is the render-
ing itself. To optimise the process, features belonging
to the same layer are all grouped into one “bucket”,
basically a list of features of the same type. When it
comes to rendering them, it happens by iterating over
the buckets and rendering all of their contents. This
means that the shader uniforms for each layer have to
be set only once before rendering the first feature from
the bucket and it results in fewer state changes.

4. Rendering Map Features with
OpenGL

The rendering happens in two phases:

1. The first phase is executed right after a tile is
done loading. Layers containing geometry other
than text and icons are rendered on a background
thread using a shared OpenGL ES context into
texture.

2. The second phase is the actual rendering to the
framebuffer. The pre-rendered textures are ren-
dered first and text and icons appear above them.
To reduce stress on the device, redraw only hap-
pens if the map has changed in some way (new
tiles are ready, user moves the map, etc.).

Moving polygon and line rendering to the background
removes the limit of 16 ms that are allocated for each
frame (if we want the map to update at 60 frames per
second). This removes a lot of the limitations on the
amount of details in the map. The elapsed time only
delays the moment the tile appears on the screen for
the first time.

The text and icons, on the other hand, must be
displayed in realtime, because (1) text could become
hard to read after scaling; (2) some labels and icons
must rotate to stay parallel with the bottom of the
screen. As a result of this approach, text and icons can
not appear under any other layer of the map. However,
I have not seen a map that would require this, yet.

Vector maps usually require only four types of ge-
ometry: lines, polygons, icons, and text. Each of them
obviously needs a different approach and algorithms.

4.1 Polygon Features
Polygon rendering is the pretty straightforward. OSM
can contain polygons with holes, so an algorithm sup-
porting hole removal is necessary. To tesselate the
polygons I used the earcut algorithm, more specifically
Mapbox developed library earcut [7].

4.2 POI
Even easier to render are the icons that are used for
Points of Interest (POI). All icons are packed into
one/few textures (depending on their size) to minimise
the number of state changes. To represent a POI on
the map, I used texture mapped quads.

4.3 Line Features
Drawing lines with OpenGL is most of the time much
more complicated then it appears to be. Even though
the OpenGL standard defines a geometry type
GL LINES, it is almost never the right way to render
lines. The biggest limitation is the line width, which is
not specified in the standard. As a result, the maximum
width is hardware-specific and often too small (around
10 pixels). Since the users of this library would expect

to be able to set any line width, we had to find another
way to draw lines.

To circumvent these limitations I render lines using
triangles. Although this is obviously more expensive
(another step of tessellating is needed and each line
segment results in at least two triangles), it gives me
more control over the result. Different line joins can
be chosen (miter, round, bevel), as well as caps (round,
square) if the tessellation supports it.

miter round bevel

Figure 4. This illustration shows three most used line
join types.

With the limited time I did not implement nei-
ther joins or caps. The minimal requirement for line
rendering was support of dash patterns, which was
implemented in a GLSL shader. The other way would
require to split lines into short segments in the sym-
bolizer, which would be slower as it would have to be
done on the CPU. The shader, on the other hand, is
pretty simple and it only requires one extra vertex at-
tribute – distance along the line. This is the sum of the
distances along the line up to the corresponding vertex.
The texture that is based on the pattern is illustrated in
Figure 5.

Dash-pattern
texture

Dash-pattern
definition

u

0 6

[3, 1, 1, 1]

Figure 5. Dash-pattern is defined as an array, each
element describing the length of the corresponding
section. The picture illustrates how the pattern is
converted into an OpenGL texture.

With the use of interpolation across vertices, this
value represents distance of each fragment from the
beginning of the linestring as shown in Figure 6. It is
used as the x coordinate to sample inside a 1D texture
that represents the required dash-pattern. Inside this
texture, white colour represents line, while black rep-
resents the gaps between. This texture is constructed
as a part of the style parsing process and passed as an
uniform every time the line is drawn.

0 10

distance along the line

(0.5, 0) (5.5, 0)

Figure 6. When a line should be drawn with a dash
pattern, alpha value of each pixel is sampled from the
pattern texture. The x position in the texture equals
the distance of the point from the line beginning.

4.4 Labels
Because maps usually contain a large amount of text,
high quality text rendering was required. The most
often used technique, which is fast but does not give
very satisfying results, is pre-rendering glyphs and
packing them into one texture. The drawback to this
approach is that the text gets blurry when up-scaled or
rotated. An example of such a library is FreeType [8].

Alternative approach that I used in my work is
rendering fonts using Signed Distance Fields (SDF)
developed by Valve [9]. I have written a GLSL shader,
also allowing to set outer halo of glyphs (used to better
distinguish letters from the layers below).

5. Conclusion
The goal of this work was to define and develop a multi-
platform map rendering library for smartphones with
multiple required features, namely vector data process-
ing and offline usage. In this paper we summarised
the used architecture. It defines the basic pipeline for
processing the map data and describes the required
algorithms for rendering different features that are part
of the OpenStreetMap.

The library is currently running on both platforms
it is targeting (Android and iOS). It can work with both
online and offline MVT tiles. The rendering and basic
styling is ready to be used and further expanded. The
performance is also excellent most of the time, hitting
60 fps on Galaxy S4. Despite that, the code is still
going through a lot of testing and debugging.

The library obviously needs many improvements
and new features that would be used by production
apps. Our future plans are to clean-up and optimise
the existing code before implementing new features. I
intend to keep working on this project and release a
working library within this year.

Acknowledgements
I would like to thank my supervisor Herout Adam,
prof. Ing., Ph.D., for his help.

I would also like to thank to Vladislav Skoumal,
Ing., with whom I consulted my work regularly.

References
[1] Google Inc. Google Maps. https:

//developers.google.com/maps/. Ac-
cessed April 23, 2017.

[2] Apple Inc. MapKit. https://developer.
apple.com/reference/mapkit. Ac-
cessed April 23, 2017.

[3] Mapbox. Mapbox GL Native.
https://github.com/mapbox/
mapbox-gl-native. Accessed April
23, 2017.

[4] Mapzen. Tangram-es. https://github.
com/tangrams/tangram-es. Accessed
April 23, 2017.

[5] Google Inc. Protocol Buffers. https:
//developers.google.com/
protocol-buffers/. Accessed April
23, 2017.

[6] Mapbox. protozero. https://github.
com/mapbox/protozero. Accessed April
23, 2017.

[7] Mapbox. earcut.hpp. https://github.
com/mapbox/earcut.hpp. Accessed April
23, 2017.

[8] David Turner, Robert Wilhelm, Werner Lemberg,
and contributors. FreeType. https://www.
freetype.org. Accessed April 23, 2017.

[9] Chris Green of Valve. Improved alpha-tested
magnification for vector textures and special
effects. 2007. SIGGRAPH Course on Advanced
Real-Time Rendering in 3D Graphics and Games.
http://www.valvesoftware.com/
publications/2007/SIGGRAPH2007_
AlphaTestedMagnification.pdf.

[10] James M. Van Verth and Lars M. Bishop. Es-
sential Mathematics for Games and Interactive
Applications. A K Peters/CRC Press, 3 edition,
2015. ISBN 1482250926.

[11] Kevin Brothaler. OpenGL ES 2 for Android:
A Quick-Start Guide (Pragmatic Programmers).
Pragmatic Bookshelf, 2013. ISBN 1937785343.

https://developers.google.com/maps/
https://developers.google.com/maps/
https://developer.apple.com/reference/mapkit
https://developer.apple.com/reference/mapkit
https://github.com/mapbox/mapbox-gl-native
https://github.com/mapbox/mapbox-gl-native
https://github.com/tangrams/tangram-es
https://github.com/tangrams/tangram-es
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/mapbox/protozero
https://github.com/mapbox/protozero
https://github.com/mapbox/earcut.hpp
https://github.com/mapbox/earcut.hpp
https://www.freetype.org
https://www.freetype.org
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_AlphaTestedMagnification.pdf

	Introduction
	Tile Loading and Processing
	Styling the Map
	Rendering Map Features with OpenGL
	Conclusion
	References

