
http://excel.fit.vutbr.cz

Mobile robot navigation and objects seeking
Tomáš Sýkora*

Abstract
The goal of this project was to create a software for an autonomous mobile robot capable of
navigation in indoor scenarios and of detection and recognition of the objects on its way. The most
important condition which had to be met in the final solution was to find the cheapest solution
possible. I achieved the given goal and its conditions using an open source software framework
Robotic Operating System (ROS) and its tools. It allowed me to replace often used but quite
expensive robot hardware parts with just one relatively cheap depth sensor. The final system is a
set of ROS modules communicating with each other, using a simple sensor as an input data stream
and a small motor which is able to send information about its velocity and rotations to the control
part of the system. This mobile robot can, without any significant problems, navigate through a
mapped area while it tries to find trained objects. Such a robot could be easily used to help retired
or disabled people, to cooperate with industry workers or in many other fields. Of course, the robot
would have to be equipped with specific mechanical parts, depending on the requirements of the
specific problem.

Keywords: Robot navigation — Objects detection — Objects recognition — Objects seeking

Supplementary Material: Demonstration Video — Downloadable Code
*xsykor25@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Autonomous and smart machines are an interesting
technology area which is being used more and more
in many fields. Its potential is undoubtedly huge and
we are still extremely far from using any significant
percentage of it. Getting these technologies closer to
the ordinary people or people in need is what I was
trying to achieve. The result is an open source soft-
ware which can, placed to some mobile robot platform,
autonomously seek known objects in a room. That can
be, with specific mechanical equipment, used to fulfill
many different tasks to make human life easier. The
important fact here is the amount of used resources.
While the common robots used by researchers can cost
thousands of dollars, the components needed by the

robot system described in this paper will not be more
expensive than several hundreds. Because of the sim-
pler equipment I had to choose such algorithms and
techniques which would not be very compute intensive.
With these basic capabilities such as the sense of di-
rection and vision and with its low-cost requirements,
many people could find this platform helpful in many
different areas.

The initial idea of this project was to bring up a
robot which knows where it is according to a saved
map and can move from this location to a given desti-
nation on the map. Interesting extensions were added
later to the original idea. That means abilities to ex-
plore indoor areas, detect objects on its way and recog-
nize the known (trained) ones. The best final solution

http://excel.fit.vutbr.cz
https://drive.google.com/file/d/0BxnzG9lVGsrNbzl0VXdia0tGZDA/view?usp=sharing
https://github.com/tomassykora/detector_pkg
mailto:xsykor25@stud.fit.vutbr.cz


should do this tasks as accurately as possible in the
shortest time possible.

2. Related work
There are lots of robots from different research groups
capable of vision and navigation. They use combi-
nations of several types of sensors, such as cameras,
depth sensors and lidar scanners. Various softwares
can be run on these platforms, including the one from
this paper. ROS1 offers great amount of packages/modu-
les solving specific partial tasks of the navigation and
vision problems from processing raw data to map-
ping and other more complex tasks. Some approaches
use SLAM (Simultaneous localization and mapping)
[1] techniques which are trying to solve computa-
tional problem of constructing or updating a map of an
unknown environment while simultaneously keeping
track of an agent’s location within it. Although this is
a widely used approach it is quite compute intensive.
It continuously computes a new map based on the dy-
namically changing surroundings. In our use case the
static map is sufficient enough. There are several ap-
proaches using static maps. The most widespread one
is AMCL which implements Monte Carlo localization
[2] using a particle filter to track the pose of a robot
against a known map. Although these techniques are
quite old, they are still widely used in the computer
vision and robotics areas. One navigation solution us-
ing these approaches is available in ROS and is called
Turtlebot. It even uses just a single sensor but it lacks
the object detection and recognition parts.

Objects detection problems using depth data can
be solved by great amount of different algorithms. All
of them are provided by Point Cloud Library (PCL)2.
Especially segmentation algorithms are important in
my approach to detection. Every one of them is more
or less effective in different situations and their combi-
nations can sum up to interesting results. The objects
recognition part of the system had one restrictive con-
dition. One particular objects recognition module had
to be used so there was no place for discussion or other
ideas. It is the part of my solution which could be
improved in the future.

For localization the solution from this paper uses a
fast particle filter implementation and sensor models
which always take into account the most recent state
of the world. This means that if the world representa-
tion improves while the robot is running, localization
becomes better. The localization module is more effi-
cient and accurate than the well-known AMCL. The

1http://www.ros.org/
2http://pointclouds.org/

objects finding part consist of two modules, detection
and recognition. Detection of the objects is done by re-
moving the segmented floor plane from the point cloud
and creating clusters for every remaining object. Im-
ages of the clustered objects are send to a recognition
module which is based on the TensorFlow3 library.

The result of this approach is an autonomous robot
platform which can be used as a base for other more
complex tasks such as a robot finding a specific object,
grabbing it and taking it to a given destination. One
can imagine many areas where this could be found
interesting. Definitely there are parts where several
major or minor improvements would be appreciated
but the system is fully usable as it is now.

3. System architecture and ROS

Robotic Operating System (ROS) is a collection of soft-
ware frameworks for robotic software development. It
consists of nodes (modules) communicating with each
other by sending messages of different types. A node
sending a message (e.g. input data from a sensor) is
a publisher. Another node can subscribe to this topic
and receive its data. ROS community offers lots of
packages and it is easy to create own ones. Beside
publisher-subscriber communication ROS also imple-
ments several server-client types of communication.
One of them is actionlib server and client. The ac-
tionlib server works on some computations or tasks.
Clients can send commands to the server which pro-
cess it according to the specific implementation.

Figure 1. This is the system architecture. Input data
coming from the sensor are processed by these nodes
in the order of the arrows.

3https://www.tensorflow.org/



The object finder system consists of several parts.
Every one of them is implemented by one or more ROS
nodes. Figure 1 demonstrates these nodes. Arrows
show the direction in which data go through them. The
first node takes point cloud data as an input. Laser scan
is created from them which is later used to build a map
and localize the robot within it. Actionlib server node
explores the given area, while object detection and
recognition nodes try to find known objects in front of
the robot. If they are successful they send a command
to stop exploration and move to the found object to the
actionlib server.

4. Creation of a map using SLAM
Creation of a static map is a prerequisite for later lo-
calization and navigation (figure 2).

Figure 2. An example of a static map created by
SLAM algorithms.

Although the navigation system uses the static map
approach, it has to use SLAM algorithms to create an
initial static map. It is not a problem here as it uses
SLAM just once (or more times if we want to create
a new map). In ROS, SLAM techniques provided by
a package called gmapping use laser scans to build
the map. Although the robot has just a depth sensor
and no lidar scanner, it is possible to create a fake
laser scan from the depth data. It can be done by se-
lecting a single point from every column of the depth
image. It is usually the whole middle row of the im-
age (or another one, depends on the configurations).
This functionality is implemented by a ROS package
named depth image to laserscan. Having a fake laser
scan, there is one last prerequisite before building the
map. It is the robot setup. That means configuring the
system to know what parts capable of publishing some
data is the robot equipped with and what their relative
position is. It is called transformations between co-
ordinate frames (figure 3). In our system it is setting
the distances between the motor and the depth sensor
frames.

These transformations are done by ROS nodes
which subscribe to certain nodes (motor and sensor in

Figure 3. Data published in a certain coordinate
frames such as motor and sensor frames must be
transformed so the ROS knows what is their relative
position to each other.

this case) publishing data with information containing
distances, transform them accordingly to configured
values and publish the transformed data. Now the sys-
tem knows the relationships between these coordinate
systems. Having the laser scan data and the transfor-
mations between the frames the gmapping package
can start building the map. The result is an image
with black and white pixels where black ones mean
occupied and white ones mean free space.

5. Localization and navigation using a
static map

Before the system is able to navigate itself to a given
destination using a map it has to determine, where it
is within the map. In other words the system has to
be able to localize itself within the map. The solu-
tion described in this paper uses a fast particle filter
implementation and sensor models from ROS for local-
ization. This technique gets laser scan data as an input
and tries to match them to the black pixels in the map.
It is important to have a good map prepared which
means clear stable objects such as walls or wardrobes
without any noisy black pixels. If the map from gmap-
ping was not so good, it can be easily repaired in any
editor by whitening the noisy black pixels.

Figure 4. Monte Carlo Localization is visualized here.
Amcl module tries to match laser scan data (red) to
the created static map (black).



If the map is good and the localization module runs
the laser scan data should match the map precisely if
displayed in rviz. This rviz output can be seen in the
figure 4.

Navigation techniques I used are based on dividing
the whole problem of getting to a given destination
into two parts. That means local and global planning
of the path. Global planning means planning the path
from the current position to the final destination avoid-
ing the obstacles on the saved map. Local planning
means creating a temporary map of near surroundings
with all obstacles near the robot, also those which are
not in the saved static map. The local planner has to
avoid these local map obstacles but also it has to keep
the robot as close to the original global path as possi-
ble. Starting navigation means bringing up the ROS
navigation stack nodes such as move base. There are
several configuration files describing how should the
system create these maps and how should it use them
and move within them. The basic principle of this is
that if the system determines that there is an obstacle in
front of the robot, it adds it to the map but not just the
obstacle. It adds black pixels also around this obstacle.
The amount of them is configured in the configuration
files. It is known as a costmap.

If the system can navigate through the known area,
it can start continuously explore these areas and find
objects within them. The core of exploration is another
ROS package frontier exploration. It can be config-
ured to keep going through given bordered area until it
”saw” every peace of it. The running exploration node
is controlled by an actionlib client, which is another
ROS node, which receives some data and according
to them sends tasks to an actionlib server, which is
the frontier exploration in this case. In my solution
the actionlib client tries to receives messages from the
objects detector module. The detector module sends
either a message whether it found some objects or not.
After receiving a message about finding no objects the
actionlib client sends a new goal to the server or just let
the server to continue exploring. After finding an ob-
ject, the client sends a stop command to the server, so
the recognition module can determine what are those
objects in front of the robot.

6. Objects detection and recognition

The last part of the system tries to detect objects in
front of the robot, sends the message with the result
so the actionlib client can make a decision whether to
explore or not and if there are some objects it tries do
classify them. If it finds a known one it can move to
it. The detector itself if implemented as a subscriber

to depth (point cloud) data. Handling point cloud data
received from the sensor in real time is a compute
intensive job. That is why the algorithms doing that
should be well optimized. The idea used here is to
segment the floor plane in the first received image.

Figure 5. An optimization made to make the object
detector module faster. The floor plane is segmented
in the first received point cloud. The angle between
the sensor and the floor is computed. Then every
received point cloud (the white one in this image) can
be just transformed by this angle, so one of the floor
coordinates is the same value everywhere (the red
point cloud). Every point with this coordinate value is
simply removed. Objects which remain in the point
cloud are detected objects or there is an empty point
cloud.

The plane is segmented with sample consensus
algorithm from PCL [3]. With the segmented floor it
is easy to get the angle between the floor and the plane.
Then we can just rotate every received point cloud
with this angle so the floor plane has one coordinate
with the same value everywhere. Now the floor plane
can be removed easily from every received point cloud
just by removing every point with certain value of
one particular coordinate and everything else what
remains in the point cloud is a detected object. This
process is visualized in the figure 5 The result is that
the robot has now detected objects in front of it. The
angle between the sensor and the floor is checked in
periodical intervals. In the next step every remaining
point of the point cloud has to be added to one cluster
(or doesn’t if it is considered to be some noise). I used
the region growing algorithm [4] here, but it doesn’t
really matter so much. What we want to do now is to
send object images to the recognition module so the
neural network can determine whether it is a known
object or not. Creation of the images to be send for
recognition is done by transforming 3D points of the
clusters to 2d pixel coordinates of a corresponding
image. That means the module has also subscribe to
an image topic. So the node receives a point cloud and
an image with the same timestamps, detects an object
in the point cloud, transform coordinates to 2D and
creates an image containing found object. This image



is send to the image recognition module. The module
is a neural network which can be trained to classify
objects in given images. The biggest probability of
returned probabilities should be the one of the object in
the image. If the probability is good enough, the node
sends a navigation goal for the robot. The coordinates
of the goal are easily computable, it is just the centroid
of the specific cluster.

7. Conclusions
This paper described software creation of an autonomous
mobile robot capable of navigating through indoor sce-
narios finding trained objects on its way. The solu-
tion had to be as cheap as possible, that means robot
equipped just with necessary hardware or other com-
ponents. The goal was accomplished by software tools
provided by Robotic Operating System, a single depth
sensor and a mobile robot base with a motor. Such a
solution can be used as a corner-stone of other specific
robots solving more complex tasks where finding ob-
jects is just a prerequisite. For example after adding a
mechanical arm and a human computer interaction in-
terface, it could help old or disabled people by bringing
them some objects. The robot could also help industry
workers or many other people in different fields.

Although this solution works well and solves the
initial problem there are parts which definitely need
some improvements. It is especially the recognition
part, which is quite slow. I am currently studying
machine learning problematics to learn more about
this area.

Acknowledgements

I would like to thank my supervisor Ing. Vı́tězslav
Beran, Ph.D. and Ing. Zdeněk Materna for their help.

References
[1] M. W. M. G. Dissanayake, P. Newman, S. Clark,

H. F. Durrant-Whyte, and M. Csorba. A solution
to the simultaneous localization and map building
(slam) problem. IEEE Transactions on Robotics
and Automation, 17(3):229–241, Jun 2001.

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun.
Monte carlo localization: Efficient position esti-
mation for mobile robots. AAAI-99 Proceedings,
1999.

[3] R. B. Rusu and S. Cousins. 3d is here: Point
cloud library (pcl). In 2011 IEEE International
Conference on Robotics and Automation, pages
1–4, May 2011.

[4] Dirk Holz and Sven Behnke. Fast Range Im-
age Segmentation and Smoothing Using Approxi-
mate Surface Reconstruction and Region Growing,
pages 61–73. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.


	Introduction
	Related work
	System architecture and ROS
	Creation of a map using SLAM
	Localization and navigation using a static map
	Objects detection and recognition
	Conclusions
	References

