
http://excel.fit.vutbr.cz

Network Traffic Capture with Application Tags
Jozef Zuzelka*

Abstract
Network traffic capture and analysis are useful in case we are looking for problems in our network,
or when we want to know more about applications and their network communication. This paper
aims on the process of network applications identification that runs on the local host and associates
them with captured packets. The goal of this project is to design a multi-platform application that
captures network traffic and extends the capture file with application tags. Operations that can
be done independently are parallelized to speed up packet processing and reduce packet loss.
An application is being determined for every (both incoming and outgoing) packet. All identified
applications are stored in an application cache with information about its sockets to save time and
not to search for already known applications. It’s important to update the cache periodically because
an application in the cache may close a connection at any time. Finally, gathered information is
saved to the end of pcap-ng file in special structure as the separate pcap-ng block.

Keywords: Network Traffic Capture — Network sniffing — Network Application Identification

Supplementary Material: Example output file — Hexinator grammar

*xzuzel00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

An ordinary capture file usually contains a communi-
cation of multiple network applications. This project
started as a solution to a difficult analysis of network
communication of just one selected application. Stored
information about applications and their communica-
tion can help if we are interested just in single appli-
cation, so we do not have to process every packet in
the capture file. Another usage of this information is
to compute statistics which applications transferred
most of the data. Further, based on an application in-
formation and servers it communicates with, we can
specify only one application, we are interested in and
capture just its packets in real-time. This information
can also be used in firewalls, e.g. to deny a network
connection for a particular application, although this
is not the goal of this project. We can also identify

a malicious software which resides in our computer
using either its name or servers it communicates with.
Furthermore, the stored communication can be used in
network forensics analysis.

The main part of the tool is an identification of
application which captured packet was destined for
or which application generated it. The application is
identified using netflow information and information
provided by the operating system. The goal is to make
the application multi-platform and usable on 1 Gb/s
networks with minimal packet loss. In order to save
captured traffic and extend it with custom information
in the same file, pcap-ng file format is used. This
format is open-source, well documented and widely
supported.

Existing tools either are not multi-platform or they

http://excel.fit.vutbr.cz
https://mega.nz/#F!NNYWhBLA!2THIP34hXTx7GcjHtBDOVQ
https://mega.nz/#F!NNYWhBLA!2THIP34hXTx7GcjHtBDOVQ
mailto:xzuzel00@stud.fit.vutbr.cz


have just part of required functionality. Ntopng1 is a
network traffic probe that does high-speed web-based
traffic analysis and flow collection but doesn’t support
export of the captured traffic to a file. This product
is also licensed per system and distributed only in
binary[1].

Next tool, which shows applications and their con-
nections is lsof. It is a command-line utility on
unix-like systems which lists open files. It can print
open UDP and TCP sockets and applications which
opened them. But it prints this information just once
after its run and it doesn’t capture traffic.

Popular network sniffers like Wireshark2 and tcp-
dump3 offer network capture, but neither extends cap-
tured traffic with information about communicating
applications.

The most similar application with the functionality
we want is Microsoft Network Monitor. It shows cap-
tured traffic per application and it can save results for
later processing. Two main limitations of this tool are
its dependency on Windows platform and that it uses
its capture file format which is undocumented and not
so supported.

In our solution, after capture starts, network traffic
is saved continuously into the output pcap-ng file, and
when capture is stopped, this file is extended with a
custom block containing communicating applications
and identification of their sockets. Writing to the out-
put file can be done independently as we don’t need
the whole packet for later processing. Needed infor-
mation is saved in a structure which is later saved in
the cache and used to identify source application. To
handle sudden peaks in network traffic, the tool uses
ring buffers between the main thread and both thread
for writing to the output file and thread which searches
in the cache. When traffic capture is stopped, cache
records are appended to the output file.

The tool is aimed to be multi-platform and to be
able to process 1 Gbps links with minimal packet loss.
Thanks to the use of pcap-ng file format, applications
that support this format will be, after small modifica-
tion, able to process also our block.

2. Network traffic capture
The most common application programming interface
used for writing programs which use the Internet pro-
tocols are sockets (also called Berkeley sockets). The
socket is one endpoint in two-way communication link

1http://www.ntop.org/products/
traffic-analysis/ntop/

2https://www.wireshark.org
3http://www.tcpdump.org

between two programs on the network. Network traffic
can be captured using RAW sockets, which works on
the L3 layer of ISO/OSI model. This type of sockets
is not suitable for network sniffers as there is removed
ethernet header from the packet and on BSD, neither
TCP nor UDP packets are received using this socket
[2].

The second option is to capture on the link layer
of the ISO/OSI model. In this case, the whole packet
is passed to the application. Access to the link layer is
available with most current operating systems. This al-
lows programs such as tcpdump to be run on normal
computer systems and capture packets without special
hardware. In combination with an interface in promis-
cuous mode, this allows an application to capture all
the packets received on the local interface despite the
fact they weren’t destined for this host. Different plat-
forms use different methods how to access link layer,
which can be unified using a libpcap library. Using
this library, we can write portable code and use single
API on different platforms to capture on link layer.
Unfortunately, although the libpcap is quite efficient,
it is not fast enough for 1 Gbps links. The bottleneck
is kernel’s TCP/IP stack which can handle only about
1 million packets per second [3]. To achieve higher
throughput kernel bypass techniques, such as netmap4

and PF RING5 can be used.

2.1 Capture speed up
PF RING is a replacement for PF PACKET that not
only uses memory mapping instead of processing ex-
pensive buffer copies from kernel space to userspace,
but it also uses ring buffers. It comprises of a kernel
patch and a modified libpcap. This modified libpcap
provides exactly the same API to the user but under-
neath it is using the ring buffers provided by the kernel
patch to read packets. The patch copies the packet into
the ring straight from the driver. PF RING supports
up to 10 Gbps packet capture with Intel cards by using
a kernel module and modified NIC drivers [4]. Per-
formance impact to the capturing speed is shown in
Figure 7. Main disadvantage of PF RING is that it
supports only Linux.

2.2 Packet processing speed up
To be able to process more packets per second the
application works in three threads. Their functionality
is described in Figure 1. The main thread receives
a packet, pushes it into ring buffers of the other two

4http://info.iet.unipi.it/˜luigi/
netmap/

5http://www.ntop.org/products/
packet-capture/pf_ring/

http://www.ntop.org/products/traffic-analysis/ntop/
http://www.ntop.org/products/traffic-analysis/ntop/
https://www.wireshark.org
http://www.tcpdump.org
http://info.iet.unipi.it/~luigi/netmap/
http://info.iet.unipi.it/~luigi/netmap/
http://www.ntop.org/products/packet-capture/pf_ring/
http://www.ntop.org/products/packet-capture/pf_ring/


Figure 1. Threads and their roles

threads and notifies them about new packet in their
buffer. Then it can receive another packet.

The second thread writes all packets from the ring
buffer right into the output file in Enhanced Packet
Block6 format and then waits for notification about a
new packet.

The third thread determines source application for
every packet. It searches in the application cache
which is shown in Figure 2. If an application is al-
ready in the cache and the record is not expired (will
be explained later in this section), it updates time of
the last packet in packet’s netflow which belongs to
the application. Otherwise, it tries to find an applica-
tion, and in the case of success, the new application is
inserted into the cache. Records in the cache are valid
for a specific time period because an application can
terminate its connection at any time. When a packet
which belongs to an expired netflow is received, origi-
nal application is determined again. The time period of
records directly impacts effectivity of the application.
A lower value means that network applications are
identified with higher accuracy, but the application has
to be determined more often which can increase packet
loss. On the other hand, when records are valid for a
long time, we can handle more packets per second, but
cache can hold expired records.

6Type of PCAP-NG block that can be used to store a packet.

2.3 Application identification speed up
An application cache is used to speed up identification
of network applications. After an application is suc-
cessfully determined, it is inserted into the cache. As
the application can close its socket at any time, it is im-
portant to update the cache regularly. This is realized
using validity time, which is stored in every TEntry
cache record. The validity time and operations with
the cache are described in section 2.2.

When capture stops, the application fetches records
from the cache and writes them into the output pcap-ng
file. The cache improves the tool performance as the
source application does not have to be determined for
every packet when it is not needed.

The application cache consists of three levels –
local port level, local IP address level and transport
protocol level. Figure 2 shows an example of a cache
structure. Search in the first level is based on a local
port because it is least likely that two applications
will have got the same local port. If two applications
have the same local port, either a local IP address or a
transport layer protocol must differ [5].

Mostly just one network interface is used to com-
municate over a network, so the second level compares
transport layer protocol. Currently supported protocols
are TCP, UDP and UDPLite.

If both the local port and the transport layer proto-
col are same, the local IP address is compared. This
can occur if the host has more IP addresses set on one
network interface. It could also happen if the host had
more network interfaces but packets destined for other



Figure 2. Application cache structure example

interfaces are not captured because capturing is not
done in promiscuous mode.

3. Network applications identification

The aim of this project is to associate an application
with its network traffic. Unfortunately, there is not a
portable way how to implement it. Linux uses procfs
file system and all important information is stored in
this virtual file system. In Windows we can use IP
Helper API7 to retrieve information about connections
and their PIDs, and then get process’s command line
from Windows Management Instrumentation (WMI)8.
Following section describes in more detail just Linux
platform, as other platforms haven’t been fully ex-
plored yet.

3.1 GNU/Linux
Linux uses a virtual file-system called procfs. It is
usually mounted in /proc and allows the kernel to
export internal information to user-space in the form of
files. The files don’t actually exist on disk, but they can
be read like other normal files. The default kernel that
comes with most Linux distributions includes support
for procfs.

Most networking features register one or more files
in /proc. When a user reads the file, it causes the
kernel to indirectly run a set of kernel functions that
return some kind of output. The files registered by the
networking code are located in /proc/net [6].

7https://msdn.microsoft.com/en-us/
library/windows/desktop/aa366073(v=vs.
85).aspx

8https://msdn.microsoft.com/en-us/
library/aa384642(v=vs.85).aspx

3.1.1 List open sockets per PID
Information about sockets can be retrieved from
/proc/net directory. It contains various net pseudo-
files, all of which give the status of some part of the
networking layer. These files contain ASCII structures,
so they are easily readable. They contain information
about open sockets and also their inode numbers.
Once we have retrieved socket’s inode number, we
have to scan through all the processes to determine
which process has an open file descriptor that points
to the socket with this inode number. Open file de-
scriptors per PID are stored in /proc/[pid]/fd
folder.

3.1.2 Associate PID with the process name
The file /proc/[pid]/cmdline holds complete
command line for the process. The command line ar-
guments appear in this file as a set of strings separated
by null bytes. The first argument is always the name
of the application [7].

4. Output
Captured traffic is continuously saved into the pcap-ng
file. When traffic capture is stopped, a special custom
block is inserted to the end of the file as is shown in
Figure 3.

Figure 3. Structure of the pcap-ng file

A structure of the custom block with information

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366073(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366073(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366073(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx


about recognized application is in Figure 4. This block
contains application tags, which contain recognized
application and identification of packets which belongs
to the application.

Figure 4. Custom block structure

Specifically it consists of application records which
contain application name, number of records for this
application and records themselves (Figure 5).

Figure 5. Application record structure

Each record identifies a group of packets which
was sent using the same socket, thus from one applica-
tion. The record consists of local IP address, local port,
used transport protocol and time of the first and the
last packet in the group. Based on these values we can
uniquely identify socket in the capture file [5]. Exact
structure is shown in Figure 6.

Figure 6. Socket identification structure

Other applications can still work with the pcap-ng
file even if it contains our custom block. Applications
that don’t support our block will just ignore it [8].

Vendor of the custom block and its structure is
identified using Private Enterprise Number (PEN).
Applications can recognize various types of custom
blocks using this number. Section Header Block con-
tains a name of user application which created the
pcap-ng file and using this value, other applications
will know whether the pcap-ng file contains inserted
application records at the end of the file or not.

5. Tests
Implemented application was tested on MacBook Pro
13” (Early 2015) running Ubuntu 16.04 TLS. Fig-
ure 7 shows an amount of data which can be pro-
cessed in real-time using standard libpcap and us-
ing libpcap with PF RING. It is important to note
that in this test, only one network application commu-
nicated. With more communicating applications, the
tool has to actualize more cache records and it can
make big difference in its performance.

Figure 7. Network application identification on Linux

6. Conclusions
The paper describes the process of network applica-
tion identification on Linux and methods how to speed
up this process. Particular tasks which can be done
independently are executed in threads. Gathered in-
formation is stored in memory, and after capture is
stopped, it is appended to the end of the output pcap-
ng file. The tool uses a cache to store determined
network applications, so it has more time to identify
newly opened sockets. Final pcap-ng block with re-
sults contains applications and identification of a group
of packets which belongs to each application.

The only application with desired functionality is
Microsoft Network Monitor, but it is only for Windows
and uses undocumented Netmon capture file format.
Our solution uses widely supported and open-source
pcap-ng file format. It will be, unlike Microsoft Net-
work Monitor, multi-platform.



Currently the application works on Windows and
Linux for both IPv4 and IPv6 connections. Platform-
dependent code is located in separated files and the
right file is included during compilation, so it is easy to
implement functionality for new platforms. A current
limitation of the application is, it can handle traffic only
around 100 Mb/s for in case of 64B packets. Although
the main core of the application can process up to
800 Mb/s, searching in procfs on Linux takes too long.
The tool also faces the problem that sometimes when
it receives a packet and opens the procfs file to find
application’s socket, the socket is already closed, thus
the application can’t be determined.

In the future, the application will be implemented
on other platforms, and new ways how to speed up
application identification process on Linux will be
explored.

Acknowledgements

I would like to thank my supervisor Ing. Jan Pluskal
for many valuable suggestions and feedback.

References
[1] ntop. What is your software licens-

ing model? Web page, October 2012.
http://www.ntop.org/support/faq/

what-is-your-software-licensing-model/.

[2] ithilgore. SOCK RAW Demystified. http://

sock-raw.org/papers/sock_raw. [Online;
visited on 01/28/2017].

[3] Marek Majkowski. Kernel bypass. blogpost,
September 2015. https://blog.cloudflare.
com/kernel-bypass/.

[4] J. Gasparakis and J. Chapman. Improvement of
libpcap for lossless packet capturing in linux us-
ing pf ring kernel patch. Web page, October
2009. http://www.embedded.com/print/

4008809.

[5] Mecki (http://stackoverflow.com/users/15809/mecki).
Stackoverflow, January 2017. http:

//stackoverflow.com/a/14388707 (ver-
sion: 2017-04-09).

[6] C. Benvenuti. Understanding Linux Network In-
ternals: Guided Tour to Networking on Linux.
O’Reilly Media, 2005.

[7] proc(5) Linux Programmer’s Manual, September
2014.

[8] F. Risso, J. Bongertz, G. Combs,
and G. Harris. Pcap next generation

(pcapng) capture file format, April 2017.
http://xml2rfc.tools.ietf.org/

cgi-bin/xml2rfc.cgi?url=https://raw.

githubusercontent.com/pcapng/pcapng/

master/draft-tuexen-opsawg-pcapng.

xml&modeAsFormat=html/ascii&type=

ascii.

http://www.ntop.org/support/faq/what-is-your-software-licensing-model/
http://www.ntop.org/support/faq/what-is-your-software-licensing-model/
http://sock-raw.org/papers/sock_raw
http://sock-raw.org/papers/sock_raw
https://blog.cloudflare.com/kernel-bypass/
https://blog.cloudflare.com/kernel-bypass/
http://www.embedded.com/print/4008809
http://www.embedded.com/print/4008809
http://stackoverflow.com/a/14388707
http://stackoverflow.com/a/14388707
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii
http://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml&modeAsFormat=html/ascii&type=ascii

	Introduction
	Network traffic capture
	Network applications identification
	Output
	Tests
	Conclusions
	References

