BRNO FACULTY
UNIVERSITY OF INFORMATION

H#D2

OF TECHNOLOGY TECHNOLOGY

Network Traffic Capture with Application Tags

Jozet Zuzelka
Faculty of Information Technology, Brno University of Technology
xzuzelO0@stud.fit.vutbr.cz

Abstract Network traffic capture and analysis are useful in case we are looking for problems in our network, or when we want
to know more about applications and their network communication. This research aims on the process of network applications
identification that runs on the local host and their association with captured packets. Every identified application is stored in an
application cache with information about its socket to save time and not to search for already known applications. Operations
that can be done independently are parallelized to speed up packet processing and reduce packet loss.

T

D . .
Problem solution Experiments

e Network traffic capture using libpcap/npcap. Tests were made on Ubuntu 16.04 LTS with Broadcom 5701

ethernet card. Fig.4shows an amount of data which can be
processed in dependence on packet size. It is important to
note that it shows identification of just one communicating

e Uses PF_RING to speed up capture process.

e Captured traffic is continuously saved to the output file.

e Recognized applications are appended to the end of the

application.
output file as a separate pcap-ng block.
Ubuntu 16.04.2 LTS
PCAPNG file [0] 1000
BlockType 0x40000BAD
Blocks [O] TotalLength 0xBDC
Section Header Block [0] Body [0] '2\3‘ 800 == Generated traffic
Interface Description Block [0] Private Enterprise Number 0x1234 Q Libpcap
Enhanced Packet Block [0] App_record [0] firefox-esr E‘ i Hbpepp+piring
App_record [1] traceroute fo] 600
Enhanced Packet Block [0] 3 padding bytes 8
» Reserved2 Block [0] TotalLength2 0xBDC UQ)
o]
(]
& 400
App_record [1] traceroute 8
StringLength 19 StringLength 19 (@)
App name traceroute App name traceroute & 200
Records 10 Records 10
Value [0] Value [0]
Socketld [0]
Socketld [1] local IPv4 [0] OA 00 03 OF O
Socketld [2] IPVersion 4 64 128 256 512 1024 1280 1518
Socketld [3] in_addr 0A 00 03 OF
Socketld [4] LocalPort 8373 :
Socketld [5] Protocol UDP: 17 PaCket Size [B]
Socketld [6] StartTime 7202951251095453696
Socketld [7] EndTime 7202951251095453696
Socketld [8] Socketld [1]
Socketid (9 Socketid 2 Fig. 4: Determining applications on Linux

Fig. 1: Structure of extended pcap-ng file

Design

e [he application works in three threads. e An application cache is used to speed up network application

. identification.
e It also uses ring buffers between threads to handle sudden

peaks in network traffic. e The cache consists of three levels — local port level, local IP

address level and transport protocol level.

2
=]
Q
w
5 Thread #1 TEntry
(1)
PUSH = . . Local port - Last Update TTree TTree
Writing packets The output file level - Application name
Packet to - Inode / PID
Data pcap-ng file - Socket ID
Mainthread Y | e e e T T o e\
TCP UDPLite
| write*
Receiving
packets TEntry TEntry TEntry TEntry
Transport protocol - Last Update TTree - Last Update - Last Update - Last Update
%U- - level - Application name - Application name - Application name - Application name
@ Determine insert - Inode / PID - Inode / PID - Inode / PID - Inode / PID
o application - Socket ID - Socket ID - Socket ID - Socket ID
= Thread #2
[}
PUSH =1 tpop I 1 9~ TSN
Network Cache
Netflow Application 192.168.1.100/24 192.168.1.101/24
Information Identification
{pdate TEntry TEntry
Local IP - Last Update - Last Update
level - Application name - Application name
-Inode / PID - Inode / PID
*Recognized applications and their records are saved to the output pcap-ng file as a separate part right after network traffic capture is stopped. - Socket ID - Socket ID

Fig. 2: Threads and their roles Fig. 3: Example cache structure

Future work

e Support for other platforms (FreeBSD, MacOS)

e Exploring faster methods of determining applications in Linux

