
http://excel.fit.vutbr.cz

UXgraph - Vue.js library with predefined D3 graphs
Olena Pastushenko*

Abstract
The goal of this project is to create a new JavaScript library, which would contain reusable compo-
nents for graphs creation. The main challenge is not only to visualize the data on a graph, but also
to increase UX of interaction with a final product. And on the other hand - to allow programmers to
add new widgets quickly and with minimum input needed. The theoretical part of the project is about
defining correct data visualization principles, based on how human brain perceives information.
Such principles are fundamental and do not rely on some web development trends, that’s why they
should be always followed. Most of the existing tools for manipulating with graphs or dashboards
offer too many options, and so it is difficult to achieve the best possible representation. UXgraph is
a Vue.js library which solves the problem by creating a set of predefined components, which already
have default settings. So a programmer needs to connect a dataset, and specify properties only
when relevant. At the current stage, several graphs are implemented as independent components
and published on a GitHub as an open-source project. More graphs will be added at the next stage.
This paper also describes a real life usage example of the library, as the part of the web application
for dashboards construction.

Keywords: UX graphs — Data visualization — Vue.js / D3.js library — Informational Dashboards

Supplementary Material: GitHub repository — Live demo

*xpastu01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The focus of this work is to create reusable Vue.js com-
ponents based on D3.js SVG graphs. The main value is
that those graphs are designed in accordance with the
best UX (User Experience) principles. Those princi-
ples are mainly based on the work of Stephen Few [1]
and are covered in Section 2. UX defines what impres-
sion (experience) users have from using an interface,
and how easily they reach thier goals. Components
created during this project are gathered into Vue li-
brary, which is hosted on GitHub as an open-source
tool1 under MIT License. Beta-version is already pub-

1see Supplementary Materials

lished as npm (Node Project Manager) library so it
is available for all Node.js based projects. There are
several angles in which practical utility of this project
may be proven. First of all, D3 helps to create a huge
variety of different data visualization types [2]. But,
the question is how usable and understandable they
are. Since D3 offers a lot of possibilities, a program-
mer may be focused more on finding an appropriate
coding solution, then on designing an understandable
graph. So, UXgraph solves this problem by providing
already predefined and easy to use components. The
user just needs to connect a dataset and select a color
(though default color scheme is provided too). Vue
was selected as a base library for this project because it

http://excel.fit.vutbr.cz
https://github.com/lirael/vuejs-d3-uxgraph
https://lirael.github.io/vuejs-d3-uxgraph-demo/
mailto:xpastu01@stud.fit.vutbr.cz


is fast, reactive, and provides an opportunity to create
new reusable components which can be imported and
used as a new custom HTML tag throughout the web
page.

Currently, there already exist several Vue.js / D3.js
open-source components available on the internet. But
firstly, they do not represent even minimum set of
needed graph types and allow you to create only one
or two types. For example, in Tyrone Tudenhope
GitHub project2 provides only sparklines and line
charts. There are a lot of different D3 examples created
by Mike Bostock3, but they do not offer a possibility
to quickly set custom settings. The other problem of
their components (and the main problem solved in this
project) is that they do not fulfill design requirements
specified by different graphic visualization experts,
Stephen Few [1] in particular. Not following these re-
quirements makes these graphs difficult to understand,
and as a result - less effective.

At the current stage, UXgraph also contains only
several types of graphs, but they all already follow
required design principles and allow easy definition
of custom properties, so the first part of the challenge
was solved. At the next stage, during the work on my
Thesis, all other needed graphs would be added.

Another benefit of this solution is that it already
has practical usage example - the web application for
Information Dashboard design (Sec. 4). The main mo-
tivation for developing that application is to create not
just another tool for working with dashboards but to
provide a user with a predefined set of widgets, which
already satisfy all UX requirements. So, UXgraph
helps to achieve that.

2. Ergonomics of the interaction
The big mistake of any software development process
is to focus only on the features development, not car-
rying in mind the general application architecture and
vision. At the same time, it is important not to end up
developing a business software product which is more
entartaining then useful. Cooper calls such effect danc-
ing bearware [3]. To build complete and high usability
dashboard, it is also important to take into account
how people perceive and think. Science that deals with
designing things so that they fit the people who use
them is called Ergonomics. Main ergonomics princi-
ples which are relevant to graphs are going to be used
for this project and are listed in this Section. Some of
them are combined in so-called Gestalt psychology [4],

2https://github.com/johnnynotsolucky/
samples/tree/master/vuejs-d3

3https://bl.ocks.org/mbostock

which explain rules of clustering perceived items into
groups. (Figure 1).

Figure 1. Pie charts are used quite commonly, but
they are less effective than the bar charts. Whereas a
bar chart uses the line length to encode the quantitive
information, pie charts use two-dimensional areas of
the slices and their angles, and our visual perception
experience troubles comparing angles and 2-D areas.

Besides pre-attentive and attentive attributes shown
in the Gestalt Psychology, there are other factors which
may influence user’s interaction with a software: their
experience, goals, and context. Another measure which
can be applied to a graph is a concept of data-ink ratio,
introduced by Edward R. Tufte [5]. Due to this con-
cept, data-information is when the ink, used to print a
quantitive data, is changing as the data change. Since
this project is about software, ink may be replaced by
pixels, but the formula would be the same, and the aim
is to make this ratio equal 1:

data pixels ratio =
total pixels used f or the graph

data pixels
(1)

So, a very first step in designing correct graphs
set was the analysis of possible ways how to improve
this ratio. To do this one should firstly reduce non-data
pixels, and then enhance the data ones. Figure 2 shows
how grid lines in a graph may be eliminated without
any information loss.

Figure 2. Effect of grid lines elimination.

3. Library implementation
UXgraph requires having a running Vue application or
vue.js script connected to any other codebase. Vue.js
is a progressive framework for building user interfaces.
It is focused on the View Layer, and provides reactive
and composable view components. Vue advantage is

https://github.com/johnnynotsolucky/samples/tree/master/vuejs-d3
https://github.com/johnnynotsolucky/samples/tree/master/vuejs-d3
https://bl.ocks.org/mbostock


that even though it is a JavaScript framework, it still
supports HTML and CSS right in the single file com-
ponents (on the contrary of React, where everything is
just JS). Before selecting D3.js there was performed
an analysis of existing JS tools for graphs creation.
Following criteria were applied: price, availability of
all needed elements, adaptivity. D3 was selected as
the only one satisfying all requirements. Another its
advantage is that it is highly scalable, so other graphs
types may be added to the library in the future.

UXgraph supports latest versions of Vue and D3,
and this feature is quite important since with the last
version change there were some core updates in both
of them4 5.

3.1 Display media chosen for the library
It is important to use an appropriate and well-designed
display media to reach the full potential of data visu-
alization. Selection of the graph types for this project
was based on the following criteria:

• It must be able to efficiently show information
when displayed on a small screen.

• It must be the beast mean to display the most
commonly used in the dashboards information.

• It must allow creating new graphs with mini-
mum efforts.

According to the main design principles (Sec. 2),
the best way to provide information is to display quan-
titive data in the form of a 2-D graph with X and Y
axes. For this project, seven types of graphs were se-
lected, based on their usability. They were preferred
because they can provide information more effectively
[1] and at the same time - are quite easy to use compar-
ing to the others, which is an important feature both
while development and future usage.

Following list shows selected graphs: bullet graphs,
developed by Stephen Few specifically for dashboards
following the purpose to replace gauges and meters[1];
bar graphs (horizontal and vertical), used to display
multiple instances of one or more key measures; stacked
bar graphs (horizontal and vertical), which should be
used when you need to show several instances of a
whole, but with the emphasis on a whole itself; line
graphs, which are the best ones in showing the shape
of data movement and the dynamic and sparklines,
which were invented by Edward R. Tufte [5] and pro-
vide condensed forms of data display.

4Vue2.x migration guide
5D3v.4 changes description

3.2 Vue reusable components
Components in Vue can help to extend basic HTML el-
ements to encapsulate reusable code. To make it work,
Vue’s compiler attaches special behavior to these cus-
tom elements. To register a global UXgraph compo-
nent following steps are needed:

Vue.component(’my-component’, {
// options

})

After that, the component may be used in the web page
template as a custom element:

<my-component></my-component>

Every graph type component is located in its own sin-
gle file template, which contains HTML, scripts for
declaring properties and behavior and styling. That
makes it possible to use them all independently. Fol-
lowing components are already implemented and can
be imported: Sparklines, Linecharts, Barcharts, Hori-
zontalBarcharts. StackedBarcharts and BulletGraphs
components would be added during the next stage.

Figure 3. Integration of UXgraph into a Web project

General D3 methods are connected to .vue com-
ponents by installing d3 via npm, and then importing
d3 as a global variable. But to make application reac-
tive, it is not enough to create D3 SVG elements as
usual. That’s why UXgraph uses Vue mounted event
to call a method for creating a graph after a component
instance was rendered. When calling the method it
is also needed to specify its parameters, which rep-
resent customizable graph settings. For example, for
sparklines it would be:

mounted () {
this.createSparkline
(’#id’, this.data, this.label,
this.circle, this.color)

},
methods: {

createSparkline(id, data, label,
circle, color) {}

}

As a result, variables represented by these parameters
may be used anywhere during the SVG construction.

https://vuejs.org/v2/guide/migration.html
https://github.com/d3/d3/blob/master/CHANGES.md


3.3 Passing data between components
Another Vue feature which is used in UXgraph is a
possibility to pass data to a component with properties.
Since components are reusable and can be inserted in
basically any place of a web page, it is important to
keep them in their own isolated scope, and so - not to
directly reference parent data from a child component.
That’s why all data in this library are passed to child
components using props. Firstly, in all child compo-
nents (which contain graph templates) properties are
defined using the props option:

Vue.component(’sparkline’, {
// props declaration
props: [’data’, ’color’,
’circle’, ’label’]

})

After this within a component every property can
be reffered as this.propertyName. Then they can be
passed from the parent template like following:

<sparkline
color="#4682B4"
label="Daily defects"
circle=true>

</sparkline>

Result is shown on Figure 4.

Figure 4. Example of generated sparkline component,
with custom parameters

For all UXgraph components default properties
are specified, in order to make including of a new
component easy. Users need to specify a property only
if they want to use custom values.

Figure 5. Example of a bar chart component included
without any parameters

4. Usage example
A real life example of the UXgraph usage is my Thesis
project. The main goal was to create a web application
which would allow researchers to easily and quickly
create dashboards, all components of which fulfill best

UX requirements. App is build using Quasar Frame-
work, which can be later on with the help of Cordova
wrapper converted to a hybrid mobile app.

4.1 Primary persona
While working on any application which aims to in-
crease UX, it is important for a programmer to keep in
mind the principle ”you are not the user”. To achieve
this, one of the possible ways is to create a primary
persona: an archetypal user of a future application. By
definition, each primary persona requires a different
interface [6]. Since the primary goal of my Thesis is to
create an application for internal usage of the research
group, there is no need in trying to satisfy the needs
of common users. Based on selected target group of
users this primary persona was developed: active Ph.D.
student who needs to get routine tasks done quickly.
Since there is only one primary persona for this project
- only one interface is needed.

4.2 Technology stack
The technology stack is a combination of software
and programming languages used to create the web
or mobile app. There are front-end (client side) and
back-end (server side) stacks (Figure 6).

Figure 6. Illustration of technologies used for server
and client sides of the application, and explanation
how hybrid mobile application may be generated in
the next stage.

The base for a front-end of this application is Vue,
with connected UXgraph components. Graphs are
generated fully on a client side since dataset and other
parameters are set as Vue properties. Project uses
Single-Page Application (SPA) architecture. It loads
a single HTML page and dynamically updates it as a
user interacts with the app. So, View Layer is handled
by Vue, with routing managed by vue-router. Server
communication works with the help of vue-resource,
plugin for interfacing with a RESTful backend. And
everything is built with Webpack build tool.

4.3 RESTful API for handling dashboards op-
erations

An important feature is that all back-end logic is made
and hosted as a separate Node.js project, which may



be accessed through API. Since front-end and back-
end are not closely integrated together, it is possible to
add or modify backend operations, without influencing
front-end and vice verse.

MongoDB is selected since it works with objects
saved as JSON, what makes it easy to export them
later on [7]. Plus, it is possible to save objects from
gridstack.js (used to enable drag-n-drop for widgets
construction pane) directly as Mongo JSON objects.
All collaboration with MongoDB is managed with
the help of Mongoose. This is a MongoDB object
modeling tool designed to work in an asynchronous
environment.

4.4 Dynamic props
One of the tasks was to update graphs dynamically,
whenever their settings are changed. For this, another
Vue function is used: v-bind. It allows to dynamically
bind props to certain data on a parent. So, when the
user selects a new color for a graph, this parameter
dynamically flows down to the child and it is updated
on the graph without page reload. Example usage is:

<input v-model="parentColor">
<sparkline

data="[3,2,1,4]"
v-bind:color="parentColor">

</sparkline>

To redraw graphs when a property is changed with-
out page reload, there were developed custom watch
functions. Every watcher is triggered when a specific
property is changed, and then it calls a method which
is responsible for drawing the SVG.

5. Conclusions
This paper describes a basic implementation of a new
Vue extension, which uses D3 to create reusable com-
ponents for data visualization. The main advantage of
UXgraph is that it provides a user with a set of prede-
fined graphs, which can be then easily integrated into
any Vue or other web development project.

As the first step of a project, the theoretical analy-
sis was made in order to define exact design require-
ments and minimum needed set of graphs. Several
graphs (sparklines, line charts and bar charts) are al-
ready implemented as single file library components.
Other types of graphs (stacked bar charts and bullet
graphs) would be added during the next stage, in terms
of my Thesis project.

The main challenge was not to provide a user with
as many options as possible, but give them an instru-
ment for creating an efficient and easy to work with
graph or dashboard.

Library is already published as npm module. And
even since it currently has only several types of graphs,
and functionality is limited (it is still in beta-version),
it already had more then 850 downloads during 1 week
only. This shows high demand on such a library.

This paper shows one example of UXgraph usage -
a web application for dashboards construction. But an
advantage of having each graph as a separate indepen-
dent component in a library is that it may be used not
only for complicated dashboards but on any web page.

Since it is open-source and available on GitHub,
any developer can contribute or include it in their
project. Further library development and support are
planned.

Acknowledgements
I would like to express my gratitude to my supervisor
Jiri Hynek for his collaboration, useful comments, re-
marks, borrowing books and engagement during this
project. And also for always having time for a con-
sultation and discussion. Furthermore, I would like to
thank Vero Vanden Abeele, Groep T, KU Leuven for
introducing me to the topic of Human-Computer Inter-
action (HCI) as well for the book’s recommendations.

References
[1] Stephen Few. Information Dashboard Design:

The Effective Visual Communication of Data.
O’Reilly Media, 2006. ISBN: 0596100167.

[2] Malcolm Maclean. D3 tips and tricks v4.x.
leanpub.com, Dec 2016. https://leanpub.
com/d3-t-and-t-v4.

[3] Cooper. The Inmates Are Running the Asylum.
Indianapolis, 1999.

[4] Jeff Johnson. Designing with the Mind in Mind,
Second Edition: Simple Guide to Understanding
User Interface Design Guidelines. Morgan Kauf-
mann, 2014. ISBN: 0124079148.

[5] Edward R. Tufte. The Visual Display of Quanti-
tative Information. Graphics Press, 2001. ISBN:
1616890584.

[6] Jesse James Garrett. The Elements of User Ex-
perience: User-Centered Design for the Web and
Beyond. New Riders, 2010. ISBN: 0321683684.

[7] Simon Holmes. Getting MEAN with Mongo, Ex-
press, Angular, and Node. Manning Publications,
2015. ISBN: 1617292036.

https://leanpub.com/d3-t-and-t-v4
https://leanpub.com/d3-t-and-t-v4

	Introduction
	Ergonomics of the interaction
	Library implementation
	Usage example
	Conclusions
	References

