
http://excel.fit.vutbr.cz

Route Planning in Air Transport
Marek Sychra*

Abstract
In this paper we present the problem of multicriteria route planning in air transport and show how
it can be handled. It is a problem related to the common problem of finding the shortest path in
a graph but with considering more criteria and most importantly, time. We focus on two state of
the art methods CSA and RAPTOR and implement them along with some optimisations. Then we
test the performance of these methods on real world data, which were supplied by Kiwi.com. We
prove the expected pros and cons of both methods by experiments and backed by these results we
propose a system for fast routing across the whole world.

Keywords: route planning – public transport – flight graph – CSA – RAPTOR

Supplementary Material: N/A

*xsychr05@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Since the dawn of transportation when people were
able to travel between places, they also needed to plan
their journeys, in order to spend their time effectively
or to even get to the desired place at all. First, it
started with a single point to point navigation, in static
environment (it didn’t matter whether you travel in the
morning or the next day in the evening, the roads were
always the same). But as time went by, public transport
started to emerge in a way it’s not even possible to
imagine life without it. People at first had timetables
for their planning but had to remember how exactly
should they travel and had to connect the connections
by themselves. In the past decades, with the growth of
internet possibilities, automatic route planners started
to appear. And soon, possibilities for having your
journey planned by an internet service were present.
While route planning in common means of transport
(buses, trains) is working quite fine, in air transport it’s
still in the beginning.

The aim of this project is to create a route plan-

ning service which can handle user requests for pairs
of destinations across the whole world in real time.
Kiwi.com, which backs up this project has its own solu-
tion, which relies heavily on preprocessing. The prob-
lem of preprocessing and air transport is that flights
and their fares can change quickly (unlike trains), so
an older result can become invalid in time. The main
objective of this service is to reduce the preprocessing
part as much as possible (into the units of minutes)
while wisely choosing the compromises which will
have to be made. It should be able to produce a valid
answer in at most a matter of seconds without an ex-
tensive preprocessing.

At the first sight, the problem seems like nothing
more than a shortest path problem. However, the ma-
jor difference is the time aspect of the problem, which
makes the connection graph dynamic. The input infor-
mation is not only a source destination, but also a time
range interval for when a person wants to start their
trip. Second difference is the fact that edges don’t have
a single value. People planning their trip might prefer

http://excel.fit.vutbr.cz
mailto:xsychr05@stud.fit.vutbr.cz

Data Solver Classifier

db preprocess

 & store

CSA

RAPTOR
choose core

dynamicstatic
{

 "dep_stops": ["PRG"],

 "arr_stops": ["JFK", "BOS"],

 "dep_date_range": [

 "2018-06-07",

 "2018-06-13"

],

 ...

}

{

 "journeys": [

 {

 "dep_stop": "PRG",

 "arr_stop": "JFK",

 "price": 218,

 "ids": ["BC789432", "KU395702"],

 ...

 },

 ...

]

}

data flow
JSON

load &
periodic update

Figure 1. The scheme of the proposed service.

shorter journeys to cheaper or vice versa. That’s why
it’s becoming a problem of multicriteria optimisation.
We dig deeper into current approaches for tackling this
problem in Section 2.

Our service starts with loading the data from a
given source, scans it, filters the flights for duplicates
and stores the flights in custom structs. Then the pre-
processing starts, which consists of building a static
graph which is used for A*-like cutoffs of distant des-
tinations. After analysis of the flight graph and current
user requests, we decided to try two algorithms for
the core of the service. Those being Connection Scan
Algorithm (CSA) and Round-bAsed Public Transit Op-
timized Router (RAPTOR). So when a user request
with various filters comes, the solver core is queried
with it and produces a JSON response with an array of
connected journeys within seconds. The whole process
can be seen in Figure 1.

We’ve performed a set of experiments to compare
these two methods and determine the effect of pro-
posed optimisations on the performance. The results
show that CSA is much less influenced by the complex-
ity of the request as opposed to RAPTOR. The latter
shows extremely fast responses with more straightfor-
ward (and also more common) requests, but is much
slower at handling more complicated ones. Our pro-
posed system utilizes these facts and after classifying
the request it chooses the right solver.

2. Related Work
The problem of route planning is commonly divided
into three variations: earliest arrival problem, range
problem and multicriteria problem. The first, given
a source and a timestamp, finds only the time of the
earliest possible arrival to the target node. The second
extends the input timestamp into a time interval (for
each timestamp from the interval it solves the first
problem). Finally, the last changes the single criterion

(earliest arrival to a destination) into a set of criteria.
Since the last is the most complicated, includes the
complexity of the previous and finally is the crux of
this work, we shall describe only those methods that
are able to handle this one.

The problem of route planning in dynamic net-
works is widely connected to the shortest path problem
in a static graph. This is backed by the fact that it
can be solved by a modified version of the generally
known Dijkstra’s algorithm for finding the shortest
path in a graph. But first, the dynamic graph has to
be transformed in order to be applicable for this static
algorithm.

There are two main approaches for modeling the
graph: time-expanded [1] and time-dependent [2]. The
first models each time event (arrival at stop, transfer)
as a node with a timestamp and connects those that
are chronological by an edge. The edge linking might
incorporate various constrains, such as minimal and
maximal transfer time. This, however, results in a large
graph. The second approach creates for each stop a set
of nodes representing the outbound routes. Then those
nodes that are reachable by at least a single connection
are connected by an edge. The cost of every edge is
determined by a travel-time function, which reflects
not only the travel time itself, but also the waiting time.

This modeling allows the use of several graph al-
gorithms. One being the modification of the algorithm
mentioned before, Layered Dijkstra [2], which can
only be used when the second criterion is discrete. At
each node instead of a single value, it stores a time
function which maps the departure times from source
node to the travel time to this node. Every time an
edge (u,v) is scanned, it first merges the time function
at u to the edge. Then it tries to merge the result to
the node v. Every time a better arrival time is added,
the node is to be scanned again. To incorporate the
second criterion, the graph is copied into K layers (K

being e.g. the maximum transfer count) and each edge
is rewired into the higher level.

The graph-based methods, however, were proven
not to fulfill the needs of larger networks [3, 4, 5]. The
first response to this need was RAPTOR [4], which
does not use an underlying graph, but rather just stores
whole routes by the stops through which they go. At
each stop it stores a set of non-dominating labels (con-
sisting of criteria) and each time a connection to this
node is scanned, it tries to merge the new label to the
set. The algorithm works in rounds - round k computes
journeys with k−1 transfers. At each round it scans
the active nodes that have improved in the previous
round (in the first round the only active is the source).

Another method is CSA [3], which is similar to
RAPTOR, but works with basic connections. It orders
the whole timetable by the departure time and for each
query it scans every connection at most once. This
results in excellent memory locality for the price of the
possibility of scanning unwanted connections. Same
as RAPTOR, it also stores labels at each stop so that it
can handle multiple criteria.

A very intriguing approach shows out to be Trans-
fer Patterns [6]. It is based on the idea that between
every two stops there are only certain possible ways.
This massively reduces the scanned space and elimi-
nates the problem of finding out the right transit stops.
However, the cost of the precomputation is extremely
high, making it unsuitable for our cause.

All authors of the methods mentioned above have
experimented on train or bus routes, but none have
tried it on a world flight network.

3. Air Transport Router
Our proposed service is able to respond to user re-
quests, which contain the following: departure airports,
arrival airports, departure dates, number of results, or-
dering and limits for price, transfer count, transfer
times and total duration. The result journeys can be
ordered by price, by duration or by quality (the quality
function was supplied by Kiwi.com).

The service can be divided into three main parts
(as seen in Figure 1):

Data Manager
The first part is about data loading from given source
and its preprocessing. It transforms the local times and
stop ids into more convenient form. During the load it
saves the data needed for building three static graphs.
The following procedure showed on price is analogous
also for segment count and duration. While loading
connections, it saves the cheapest price between every

two stops (if a connection exists) across the whole
time range. Then, it builds a static graph using these
values as edges. Next, it computes the shortest paths
between every two stops using plain Dijkstra and stores
it for further use (described in Section 3.1). The data
manager also handles the periodic update of the data
(as well as the static graphs) so that it’s as fresh as
possible.

Solver core
The solver contains the implementation of two algo-
rithms - CSA and RAPTOR. For the sake of brevity
we shall not describe the algorithms in detail, but we
encourage the reader to have a look at them (see [3, 4]).
Before the request runs one of the cores, it gets the
allowed routing stops from the preprocessed data. The
solver is not parallel (even though at least RAPTOR
could be), due to the fact that we want to serve many
requests at a time and parallelism would not, in fact,
help anything.

Both algorithms store a profile at each stop which
consists of bags of Pareto-optimal labels. The crite-
ria are price, transfer count and departure and arrival
times. One label can dominate other iff it is better in
all criteria (cheaper, fewer transfers, departs later and
arrives sooner). The profile is split into the bags by the
arrival time so that when a connection is scanned, it
finds the appropriate bag, extends all labels and tries
to merge the new labels (using domination) into the
corresponding bag at arrival stop’s profile.

Classifier
After the experiments showed that certain requests
suit one of the methods better, we decided we should
exploit this fact and create a new layer before the actual
solver - a classifier. Its purpose is to decide which
algorithm should be run, based on the information in
request. However, this part is not implemented yet, but
we plan to train a simple decision tree using real user
requests that we have at hand.

3.1 Optimisations
We incorporate an A*-like optimisation in order to de-
termine the space where it is still relevant to route. We
do so using two heuristic functions at two places. Ev-
ery time it’s used three times - for price, duration and
transfer count (again, it’s analogous, we’ll describe it
only once). The array of shortest paths (using the least
possible value across the whole time interval) between
every pair was built during the preprocessing phase.
First function is constant for every pair and returns
the limit for given metric (ineq. 1). This cuts off the
places from where it would be impossible to get to the

target destination. Second heuristic function returns
twice the lowest distance (ineq. 2). This tries to cut off
the parts that could produce results not appealing for
the user. The algorithm does not find the next connec-
tion for extension this way as this optimisation only
temporarily removes the distant nodes from the graph.
Possible space reduction can be seen in Figure 2.

dist(s,x)+dist(x, t)≤ limit (1)

dist(s,x)+dist(x, t)≤ 2∗dist(s, t) (2)

The first time the cutoffs are realized is once a
request comes. It takes the source node s and target
node t and then for all the remaining nodes x it tries
if the equations hold. All nodes have to satisfy all
six equations (for all metrics) in order to be routable
through. The second time it’s used is before a possible
label extension. The value of dist(s,x) is computed as
follows: it extends the current cost with the connec-
tion’s cost. The other value is computed as in the first
case (x is the connection’s destination node). If at least
one equation does not hold, label can’t be extended
with this connection.

Second optimisation is a simple target pruning.
However, the impact is affected by the limit parameter,
which decides the number of final journeys. At the
grouped arrival stops we keep a heap of Pareto-optimal
labels ordered by the input order parameter. Every
time a label is to be inserted into this heap, it must be
undominated and better than the last.

Figure 2. The impact of space reduction on route
Prague - Bangkok. Stops in the red area won’t be
taken into account at all.

4. Implementation Details
Our service was written in languages C++ and Python3.
The server, network communication and request distri-
bution were written in Python3 using library asyncio1,
which allows proper asynchronous code execution

1https://docs.python.org/3/library/asyncio.html

without having to use threads. The computantionally
intensive parts were written in C++ to ensure high per-
formance. We used lightweight library pybind112 as
the connection layer between these two languages.

5. Experiments on Flight Graph
We ran our experiments on Intel(R) Xeon(R) CPU
E5-1650 v3 @ 3.50GHz with 12 CPUs, 256GB RAM
running Ubuntu 16.04. The dataset we used contained
1.57 billion connections among 3100 airports in the
date interval 2018-04-01 – 2018-05-20. The data was
supplied by Kiwi.com.

The main point of the experimenting was to com-
pare the two methods and chose (if possible) the better
for production usage. However, results have shown
that neither of them is better than the other in all cases.
We took 1000 various real user requests, sent them to
both cores and tracked the response times. In Table 5
we can see the results. We can see that RAPTOR pre-
vails in the total number of faster requests, however, in
the cases RAPTOR is slower, the response times are
much higher. This shows CSA is much more suitable
for complicated requests, which take longer time in
general, whereas RAPTOR is perfect for the simple
(and also more common) ones.

% of faster
responses

Avg
abs. speedup

Avg
rel. speedup

CSA 33% 911ms 3x
RAPTOR 67% 82ms 19x

Table 1. Results showing comparison between CSA
and RAPTOR response times.

As we were proven that certain request suit one of
the cores better, we wanted to be able to decide this
fact before actually processing the request. This is
best done by some form of machine learning (decision
trees), but for the sake of illustration, we present an
experiment which shows how both algorithms react
to extension of the dep date range parameter. We ran
this experiment under similar conditions as the one
before, but scaled departure interval from one day up
to one week.

In Figure 3 we can see that CSA handles longer
departure interval much worse than RAPTOR, which
makes the latter a perfect choice for requests with
wider departure interval. This inequality is caused
by CSA not grouping connections. While RAPTOR
scans connections departing from only certain stops,
CSA scans everything. And if we assume the connec-
tion count grows linearly with time, the difference in
scanned connection count is increasing rapidly.

2https://github.com/pybind/pybind11

1 2 3 4 5 6 7
length of dep_date interval

0

5

10

15

20

25

30

35

40

tim
es

 sl
ow

er

CSA
RAPTOR

Figure 3. The impact dep date range extension on
performance. Values are relative to response time for
dep date range = 1.

As we stated, we also wanted to prove the optimi-
sations improve the overall performance. First experi-
ment was supposed to show how much does pruning
improve the response time and how is it affected by the
limit parameter of request. We took 100 real requests
and sent them to both algorithm cores each time with
changed limit parameter, which scaled from 21 to 211.
We ran the experiment 10 times in total, computed the
average values and plotted the increase of response
times. In Figure 4 we can see the result.

100 101 102 103

limit parameter

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

tim
es

 sl
ow

er

CSA
RAPTOR

Figure 4. The impact of limit parameter on
performance. Values are relative to response time for
limit = 1.

For small values of limit the increase is impercep-
tible, but for higher values the slowdown is significant.
We can think of disabled pruning as infinitely high
limit, which is, of course, undesirable.

6. Conclusions
We presented a complex system for planning routes
in air transport. For the solver core we chose two

algorithms, CSA and RAPTOR, which we compared
against each other using real world data and real user
requests. We also included two optimisations, target
pruning and A*-like space reduction.

Results have shown that common requests could
be divided into two groups by ratio 1:2 where one al-
gorithm outperforms the other in the same group. We
show that CSA is much better when handling complex
request and RAPTOR is extremely fast when answer-
ing simple ones.

However, there is no single criterion which would
divide the requests, so we propose a classifier that
would solve this task based on learned knowledge. The
classifier was not implemented yet, but during the next
weeks it will be, thus making the system complete.

Although a correct approach is crucial, precise
work with memory and correct choice of data structs
can improve the performance a lot when working with
big data. In the following months we’re going to focus
on this field in order to make the system competitive
among other proprietary systems.

Acknowledgements
I would like to thank my supervisor Ing. Zbyněk
Křivka, PhD. for guidance and Mgr. Jan Plhák for
an introduction to this topic.

References
[1] Stefano Pallottino and Maria Grazia Scutella.

Shortest path algorithms in transportation mod-
els: classical and innovative aspects. In Equi-
librium and advanced transportation modelling,
pages 245–281. Springer, 1998.

[2] Gerth Stølting Brodal and Riko Jacob. Time-
dependent networks as models to achieve fast ex-
act time-table queries. Electronic Notes in Theo-
retical Computer Science, 92:3–15, 2004.

[3] Julian Dibbelt, Thomas Pajor, Ben Strasser, and
Dorothea Wagner. Intriguingly simple and fast
transit routing. In International Symposium on
Experimental Algorithms, pages 43–54. Springer,
2013.

[4] Daniel Delling, Thomas Pajor, and Renato F Wer-
neck. Round-based public transit routing. Trans-
portation Science, 49(3):591–604, 2014.

[5] Hannah Bast, Daniel Delling, Andrew Goldberg,
Matthias Müller-Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F Werneck.
Route planning in transportation networks. In
Algorithm Engineering, pages 19–80. Springer,
2016.

[6] Hannah Bast, Erik Carlsson, Arno Eigenwillig,
Robert Geisberger, Chris Harrelson, Veselin Ray-
chev, and Fabien Viger. Fast routing in very large
public transportation networks using transfer pat-
terns. In European Symposium on Algorithms,
pages 290–301. Springer, 2010.

	Introduction
	Related Work
	Air Transport Router
	Implementation Details
	Experiments on Flight Graph
	Conclusions
	References

