
http://excel.fit.vutbr.cz

Brittle Body Simulation on GPU
Tomáš Chlubna*

Abstract
While rigid body simulations are common topic of many papers and tutorials, brittle body simulation
techniques are not that well described. One reason is that the brittle body simulation extends
the former one and is more complex. This situation is even more visible in the world of GPGPU
programming. The role of GPU is getting more and more significant even for non-rendering
computations such as physics. The main feature of brittle body is the ability to shatter into pieces
due to physical interactions with the scene. The main topic discussed here is the way to compute a
Voronoi diagram and to use it in order to simulate the object shattering, all on GPU. This paper also
mentions some additional techniques related to scene representation on GPU. The goal was to
utilize the GPU parallelism as much as possible to make the simulation run in real-time. The object
shattering should be accurate and the number of fragments is limited by the GPU architecture such
as maximal workgroup count or local memory size. The simulation runs in real-time when dealing
with a normal game-like 3D model with up to 100 fragments even in this alpha version. This article
describes an efficient way to build a brittle body simulation engine, mainly on GPU and focuses on
the Voronoi computation, offering a highly parallel way to build the diagram and split the 3D model
into fragments.

Keywords: Brittle body — physics — voronoi — GPU

Supplementary Material: N/A

*xchlub00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The GPGPU calculations are nowadays an important
part of physical, game and other simulation based en-
gines. GPU usually has to hold the simulation objects’
surface representations in its memory in order to ren-
der them while CPU uses the same data for the physics
calculations. CPU then has to update the scene rep-
resentation on GPU according to the simulation step
results. However, this GPU-CPU communication is the
bottleneck of the whole process. In order to minimize
this communication, most of the simulation calcula-
tions are moved to GPU. To be able to do that, some
algorithms have to be redesigned from the CPU ver-

sions (mostly sequential running on a fast processor) to
GPU versions (highly parallel running on many slower
processors).

The topic of this work is a brittle body simulation.
There are many problems that need to be solved in or-
der to efficiently implement such simulation on GPU.
This article describes a basic structure of such applica-
tion, focusing on the problem of 3D model shattering
based on Voronoi diagram. Some other related prob-
lems and their solutions are mentioned here as well
such as the whole GPU scene representation, collision
detection and optimization techniques.

Rigid body simulations are already being imple-

http://excel.fit.vutbr.cz
mailto:xchlub00@stud.fit.vutbr.cz

mented on GPU be it partially or fully. Some well-
known libraries such as Bullet Physics [1], implement
many calculations on GPU. Many games also used the
PhysX system by Nvidia to accelerate their physical
calculations. There are also ways to simulate some
physical phenomenons such as fluids, but also brittle
bodies by particles [2]. The commonly used approach
to construct a Voronoi diagram is by extracting it from
Delaunay triangulation, which can be parallelized to
efficiently run on the GPU [3]. Some other algorithms
such as Lloyd’s can be implemented on GPU as well
[4].

My work presents efficient, highly parallel set of
algorithms for GPU brittle body simulations, optimiz-
ing the CPU-GPU communication to minimum, thus
leaving the CPU almost free for additional computa-
tions such as AI in games (application structure in Fig.
1). Aside from this general concept, this paper also
presents a new way of Voronoi diagram construction
in 3D called Box Cutting Algorithm. While Delaunay
approaches are originally incremental and the paral-
lelization brings many problems, this algorithm dis-
tributes the work on GPU efficiently right from the
beginning and it constructs Voronoi diagram directly
without the need of Delaunay-Voronoi duality prop-
erty. The Voronoi diagram cells are then used to split
original geometry using the Box Cutting Algorithm
principles. The communication with the GPU is im-
plemented using OpenGL 4.6 compute shaders.

2. Scene representation on GPU
As mentioned above, the whole scene needs to be
stored in the GPU’s memory. Most of the data is stored
in global memory since this memory is available to all
the workgroups in a coherent way and is big enough.

Here is the layout of global memory for a simple
scene (note that all the buffers below need to have some
additional free space to be able to add new objects in
runtime):

• Vertex buffer {position: 3xfloat32,
normal: 3xfloat32, texture coordinates: 2xfloat32}
- vertices of all scene models
• Element buffer {1xuint32} - indices for all scene

models (indexed rendering)
• Draw commands {5xuint32} - draw command

for each model (indirect rendering, ideally with
one API function call from CPU per frame)
• Object information {21xfloat32, 3xuint32 (might

differ according to the desired attributes)} - holds
each object’s attributes (position, velocity, mass...)
• Model matrices {4x4xfloat32} - used in vertex

shader, one matrix per object

SCENE INIT

CPU GPU

INPUTS

UPDATE
Position, rotation,
bounding box...

COLLISION DETECTION
& RESPONSE BVH BUILDING

SHATTERING
RANDOM POINTS

GENERATION

OPTIMIZATION
SPHERE TREE

BUILDING

VORONOI
BUILDING

MODEL
PARTITIONING

SAVING
NEW OBJECTS

NEXT FRAME/STEP

Figure 1. The whole scene is loaded and initialized
on CPU, then transferred to the GPU’s global memory
along with an additional free space forward
allocations. After that, CPU only controls the main
rendering loop and handles the user inputs. Object
informations on GPU contain some basic physical
attributes such as velocity, position, mass etc. They
get updated in each frame solely on GPU. This update
also involves a bounding box calculations and BVH
construction [5]. When needed, a special kernel
generates random future fragments’ centers
(according to a collision contact point and strength),
then it generates the actual 3D Voronoi diagram cells
using the Box Cutting Algorithm discussed below and
it divides the original geometry into pieces which are
then included in the simulation as new objects (which
can be shattered again).

• Bounding boxes {3x2xfloat32 (xyz bounds)} -
for collision detection etc., one box per object
• General buffer - Free space that can be reused

by multiple compute shaders and holds all the
additional structures (in our case it might con-
tain Voronoi cell centers, tree structures, morton
codes...)

3. Voronoi diagram with Box Cutting Al-
gorithm kernel

Voronoi diagram simulates the shattering and other
physical phenomena pretty well which is why it’s used
for this type of problems. It partitions the space into
cells where each point of the space gets assigned to
its closest cell center, also called Voronoi site. Here
follows the formal definition:

V (si) = {x ∈ Rn : |si− x| ≤ |sl− x|∀sl ∈ S} (1)

where

• V (si) is the Voronoi cell (part of the space aka
set of points) assigned to the site si

• S is set of the Voronoi sites (cell centers)
• Rn is set of n-dimensional space points

Voronoi construction is a crucial part of the whole
shattering process. When the object gets into a col-
lision that is powerful enough to make it break into
pieces a set of voronoi sites is generated. In order to
avoid certain degeneracies later (Fig. 10), it’s neces-
sary to generate the sites inside the model geometry. 2
Uniform distribution pseudo-random generator is us-
ing the sinus error sampling method described in code
1.

A = 1 2 . 9 8 9 8 ;
B = 7 8 . 2 3 3 ;
C = 4 3 7 5 8 . 5 4 5 3 ;
f r a c t (s i n (d o t (coord . xy , vec2 (A, B))) ∗ C) ;

Listing 1. Pseudo-random number generator for GPU
[6]

s

r1
a

b

c

r2

r3

Figure 2. To generate a random point inside model,
one random triangle is chosen. Line segment ab is
sampled for a random point r1, lying on it. The same
is done to cr1 segment and subsequently to sr2
(where s is bounding box center), resulting in point r3
which is the result. In order to generate non-uniform
set of points (sites are closer to the collision point),
utilizing the GPU parallelism, it’s possible to generate
8 candidates per site and choose the closest one to the
wanted position with a probability derived from the
collision strength. (having 256 threads per workgroup,
resulting in 32 points (256/8) which can be chosen
from the candidates in one warp)

Each workgroup computes the shape of one Voronoi
cell which is a list of edges, associated with connected
planes (each edge has exactly two adjacent planes). So
first thread loads it’s previously generated center. After
that the cell shape is initialized as the model bounding
box. From now on, the algorithm works with cell-

space coordinates (Fig. 3). The cutting planes can be
stored in local memory as 3D vectors as:

~p = {x,y,z}, plane = {~p, ~p
|~p|
} (2)

where

• plane is represented as position of one of its
points and normal, pointing outside the cell

A nearest neighbouring point from the generated
Voronoi sites is loaded and the plane between the cell
center and this point is initialized (lies in the middle
between them with normal having the same direction
as the vector defined by those two points like in Fig.
3). This plane is then used to cut the cell (initially the
bounding box) (Fig. 4).

y

 x

s

s1

s2

s3

c

p1

p3

p2

Figure 3. An object (thick polygon) in its bounding
box (dashed rectangle). The figure shows the planes
of the Voronoi cell (gray area), represented as vectors
pn. The plane cuts in half the line connecting current
Voronoi site s with the neighbouring site sn. All
coordinates are in cell-space with origin in s, while
the model-space has it’s origin usually in the middle
of the geometry c. The dotted lines, perpendicular to
the plane vectors are the actual planes, defining the
cell shape.

The algorithm 1 doesn’t have to go through the
whole set of Voronoi sites. It keeps a track of the so
called maximal distance which is the distance from the
cell center to the furthest cell vertex. This distance can
be calculated exploiting the parallel reduction pattern.
If the new plane lies outside the maximal distance
radius, the plane is too far to cut anything and no other
points can give us such plane. The maximal distance
is recalculated after each cut and might decrease as in
Fig. 5.

Figure 4. Three iterations of Box Cutting Algorithm.
Starting from the model bounding box it iteratively
creates the Voronoi cell, cutting the shape by the plane
separating the current site and its nth nearest
neighbour in the middle between them.

Figure 5. Maximal cell distance shrinking when the
cell gets smaller due to a cut in 2D

The actual cutting is performed in parallel where
each thread handles one cell edge. All the cell vertices
are checked in parallel testing on which side of the
plane they lie. For each edge the thread decides if both
it’s vertices lie outside the new cutting plane which
would mark the edge as eliminated. If both edge ver-
tices are on the other side of the plane (aka inside the
cell), the edge is kept and if one of them is outside,
then the splitting is performed. Both operations are
implemented in listing 2.

/ / i n p u t : v e r t e x v , p l a n e p
boo l o r i e n t P o s i t i v e (vec3 v , vec3 p)
{ r e t u r n d o t (n o r m a l i z e (p) , v−p) > 0 . 0 ; }

/ / i n p u t : edge p o i n t s a , b , p l a n e p
vec3 s p l i t P o i n t (vec3 a , vec3 b , vec3 p)
{

vec3 n = n o r m a l i z e (p) ;
f l o a t u = d o t (n , p−a) / d o t (n , b−a) ;
r e t u r n a + u ∗ (b−a) ;

Algorithm 1: BCA pseudocode to create the
Voronoi cell

Data: set of generated Voronoi sites, model
bounding box

Result: one Voronoi cell represented as list of
edges, vertices and planes

site = getCellCenter(WorkGroupId);
initBoundingBoxCell();
avaliablePlanes = true;
while avaliablePlanes do

maxDist = cellFurthestPoint();
neighbor = nextNeighbour(site,maxDist);
if neighbor != null then

plane = (neighbor-site)/2.0;
checkCellVerticesParallel(plane);
splitEdgesParallel();
createHullEdgesParallel();

else
avaliablePlanes = false;

end
end

}

Listing 2. Vertex-plane orientation predicate and edge
splitting function returning the split point

In the split case, a new vertex is calculated. All
new vertices are stored and when all edges are checked,
the newly created vertices need to be connected by
new edges. In other words, a convex hull is created of
those new vertices. Please note that there is no need
to utilize any convex hull algorithms working with the
coordinates since it’s possible to connect the vertices
with a common plane according to the edges (Fig. 6).
A synchronization is necessary after the cut in a form
of shared (local) memory barrier. In order to prevent
a memory overflow, cleaning of the eliminated edges
and vertices is performed in parallel after the cut by
reinserting the active ones in the array getting their
new indices by incrementing an atomic counter.

first point second point first plane second plane

bit: 0 16 32 48 64

Figure 6. The edge representation stored in local
memory as one uvec2 (2x32 unsigned int). Each 16bit
short value is an index to the vertex/plane array.

4. Nearest neighbour search

When searching for the next neighbour (Algorithm 1)
the algorithm starts looking for a point from the input
sites that is further from the current cell center than

the last one and in the radius defined by the maximal
cell distance. When the number of sites is sufficiently
small, optimal way is to load them in local memory and
go through them in a linear way. This however can’t
be used for hundreds of points in order to keep the
simulation run in real time. Thus a spatial partitioning-
like structure is needed. K-d tree or octree construction
might be too complex and just the construction might
slow the process down a lot. A fast alternative is a
lightweight sphere tree [7] that is not as accurate as
the former mentioned ones but might cull large parts
of the searched space.

Here is the construction algorithm (Fig. 7):

1. Choose two random points which create a root
2. For each point in parallel save the root into it’s

path buffer
3. Do until there are points left:

(a) For each point in parallel take the node in
the path buffer

(b) Decide which of the two node’s points is
closer to the current point

(c) Now every point is assigned to a node and
to one of its points, if there are multiple
points choose one for each side (by mini-
mal ID for deterministic way or random)

(d) Save each point’s assignment to the path
buffer (to avoid traversal from the root in
the next iteration)

(e) The maximal number of new nodes is nth
power of two where n is the number of
current tree level. The assigned points are
inserted into the nodes resulting in one or
two new child nodes per parent.

(f) The internal points of the new nodes are
always the initial one from the parent and
the inserted one.

4. Calculate the distance from the initial point of
each node to it’s furthest child’s point

When searching for the next neighbour only the
parts of the tree intersecting a search sphere with radius
of the maximal cell distance are being searched while
this radius is shrinking when a closer point is found.
The algorithm stops when it reaches the inner limit
sphere with radius of the distance from the cell center
to the previously found point. When the searching
stops, the last but one point that caused search sphere
shrinking is returned.

5. Model geometry splitting
The naive way of creating one fragment would be to
load all the model’s vertices and iterate over cell planes.

A

B

C

D

E
1

2

3

4 BC

AB

CD

AE

F
5

EF

Figure 7. 2D visualization of the point sphere tree,
Voronoi on the left and corresponding tree on the right
(the numbers describe the order of insertions)

Each plane would split the model in two halves (check-
ing on which side of the plane does each triangle lie).
The triangles intersecting the plane would be simply
cut resulting in one or two new triangles. This ap-
proach would not be efficient on GPU because of the
need to transfer a lot of data from the global memory
when copying the model geometry (when dealing with
a dense triangulations it would also be impossible to
use the local memory). It would also be necessary to
triangulate the hole after each cut so the resulting tri-
angulation might not be optimal either due to multiple
cuts in the already triangulated segments.

The parallel approach discussed here is based on
a bit map stored in a local memory, where each bit
represents one triangle. In this way, it’s possible to
make each thread check one triangle (when the number
of triangles is higher than workgroup size, it’s neces-
sary to do this in multiple iterations) and decide if it’s
outside or inside the cell, iterating over all cell planes.
When the triangle is marked as outside, there is no
need to keep iterating over the rest of the planes since
this triangle is excluded. Inside triangles are copied to
the cell geometry and intersecting ones are being cut
and retriangulated like in Fig. 8.

All that is left is to modify the cell shape in order to
prevent it to overlap the model surface. In other words,
to cut the cell by the planes defined by the triangles
that were split in the previous phase. This is now fairly
straightforward since all that is needed is to insert those
additional planes in the Box Cutting Algorithm (while
marking them as invalid to prevent their triangulation).
The following equation shows how to get the needed
cell-space triangle plane:

~n = (b−a)× (c−a), n̂ =
~n
|~n|

,~p = |−a · n̂|n̂ (3)

where

Figure 8. When the triangle intersects the plane it’s
necessary to decide the resulting shape of the polygon
that will come out of this triangle due to possible
multiple plane cuts. A way to achieve that is similar to
the BCA where a set of edges is being kept (three at
first for the original triangle) and each plane
intersection might split those edges, resulting in one
new edge (can be imagined as a 2D polygon-line
intersection). At the end a triangulation of this
resulting polygon is needed. This figure shows three
plane intersections and the final triangulation.
(floating point precision errors might be avoided by
using the EPS tollerance)

• a,b,c are triangle vertices in cell-space (current
site coordinates are subtracted from the model-
space vertex coordinates)
• n̂ is normalized triangle normal~n
• ~p is the resulting plane

The whole process is illustrated in Fig. 9. Then
the valid cell faces are being triangulated. A simple
way to triangulate a convex polygon is to chose one of
its vertices and connect it with all the other edges in
the polygon that are not containing this vertex.

DEGENERACY

Figure 9. Integrating the model surface in the
Voronoi cell (2D view): thick lines define the original
model surface, thin lines are the Voronoi cell faces,
dashed lines are the split triangle planes

In the figure 9 there is one cell face still valid but

apparently outside the model surface. This might hap-
pen only if some sites are generated outside the model
geometry. Such sites can cause degeneracies (Fig. 10)
which can be fixed locally but also avoided by their
proper generation (Fig 2). The initial bounding box
faces are already marked to avoid their triangulation.

s2

s1

s3

Figure 10. Degeneracies caused by sites outside the
model. The solid line represents the model geometry,
dashed thin line represents the bounding box and
dashed thick line is the boundary between the Voronoi
cells. s1 is a valid site but the whole cell defined by s2
is outside the model so a test would be needed to
eliminate this cell. While cell defined by s3 is
penetrating the surface, the site itself is outside the
geometry which would invert the results of the surface
triangles’ tests due to the cell-space conversion.

It also would be possible to avoid the triangle copy-
ing by insertion of all the surface triangles into the Box
Cutting algorithm which would inherently integrate
the mode surface in the cell. This might be good for
simple models but when dealing with a bit higher reso-
lution models, this might get slow because of the need
to basically triangulate the surface triangles again and
also the cell internal representation might get too big
to fit the local memory.

Creating the new object in the global memory rep-
resenting one fragment of the original model can be
summed up in the following steps:

1. Each thread checks one triangle, stores the result
in a bitmap

2. If needed the triangle splitting is performed, stor-
ing the new triangles in a temporary array

3. The split triangles’ planes are inserted in BCA
to modify the cell shape

4. The appropriate cell faces are triangulated and
counted

5. A part of global memory is reserved in vertex
and element buffer (Fig. 11)

6. Triangles are copied in the global memory in
parallel

7. A new object info and draw command is created
(incrementing draw and object counters)

Original model
triangles

Split triangles

Voronoi cell
faces

triangles

Fragment object
address

FOA + triangles to copy

FOA + TTC + split triangles

Figure 11. Memory layout in vertex and element
buffer for one fragment of the original model

6. Physics
This is just a brief overview of the additional tech-
niques implementing physics which is not the main
topic of this paper. Please read the referenced material
for more detailed explanation.

The broad-phase of collision detection decides
what objects might collide using bounding volume
hierarchy. An effective way to build a BVH on GPU is
well described in many papers [5]. Here is a possible
approach (Fig. 12):

1. Calculate the bounding box center for each ob-
ject in parallel

2. Transform the center position into Morton code
by bitwise interleaving of the xyz coordinates

3. Sort the codes using a parallel radix sort (neigh-
bouring codes represent objects that are also
near each other in 3D space)

4. Build binary radix tree, in parallel for N-1 nodes
(where N is the number of objects):

(a) Take the initial code on index n (the index
corresponds to the node index)

(b) Define the direction of the node by the
neighbouring code with greater common
prefix

(c) Get the length of the node, aka find the
code that has smaller common prefix with
the initial code than the lower bound (the
code excluded during the direction test)

(d) Find the split point of the node (furthest
code from the initial one having greater
mutual common prefix than with the end
of the sequence)

(e) The indices of the children are the indices
of the two codes at the split point

0

34

0 1 2 3 4 5 6 7
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1

1

2

56

Figure 12. BVH constructed over an ordered list of
Morton codes, each node is defined by the beginning
code with the same index as the node, sequence
direction and split point with children

In the narrow-phase it’s possible to use the sepa-
rating axis theorem [8] in parallel over both objects’
normals or over predefined number of axes. The ap-
proach is quickly described here:

1. Project the models on each axis in parallel (dot
product of each model vertex position and axis
vector, gives us a range)

2. Find an axis where the projections don’t overlap

(a) If the axis is found, finish with no collision
(b) If it’s not found, return the minimal trans-

lation vector (minimal amount of overlap
and corresponding collision normal)

n

n'
Figure 13. Separating axis theorem - situation where
the axis of separation was found and no collision
happens

This can be used also for moving objects to predict
the collision. The time interval of collision can be
calculated on each axis and collision only happens
when there is a non empty time interval intersection
on all axes. Rotations might however cause errors.
When the objects are already overlapping, it’s possible
to push them away from the collision using the MTV,
mentioned above.

As for physics and collision response, the equa-
tions derivation would exceed the nature of this paper.

It is possible to use a combination of the basic physics
formulas for elastic/inelastic collisions and angular
velocity or the all-in-one impulse based approach [9].

7. Conclusions
This paper has introduced a possible set of algorithms
that can be used to efficiently implement a brittle body
simulation. The main focus was on the parallel way to
construct Voronoi diagram and to use the result to par-
tition the model into fragments. During my research I
have found only Delaunay based, discrete voxel based
algorithms or possibly inaccurate approximations so
this might be a nice new alternative for GPU applica-
tions or highly parallel environments.

There are many optimizations that can be addition-
ally done including some implementation details that
are out of the scope of this paper. I’d love to keep
working on this project and present an updated and
improved approach. Because of the complexity of this
thesis, I am presenting only the early alpha version
here with a basic performance measurement (Fig. 14)
and performance distribution (Fig. 15).

0 50 100 150 200
0

50
100
150
200
250
300
350
400
450
500

Number of Voronoi sites

Ti
m

e
[m

s]

without optimization
using sphere tree

Figure 14. Measuring the performance with a simple
3D model (icosphere with 42 vertices). Please note
that this is an early version and many optimizations,
which might bring a significant speedup (hopefully),
are yet to be done. The sites were generated in
uniform distribution. When concentrating more sites
around a contact point, the times are increasing and
the tree optimization impact is also more significant.
Measured using GeForce GTX 550 Ti

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Milet
for his help and literally hours of consultations.

Ran
do

m
pts

Sph
ere

tre
e

Voro
no

i

M
od

el
sp

lit

0

20

40

60

0.15
7

39.42

53.43

W
or

kl
oa

d
[%

]

Figure 15. Distribution of the workload between the
parts of the whole calculation. The model split part
includes also storing of the new objects in the
memory.

References
[1] Erwin Coumans. Gpu rigid body simulation. In

Game Developer Conference, volume 2, 2013.

[2] Jiangfan Ning, Huaxun Xu, Liang Zeng, and Sikun
Li. Particle-based fracture simulation on the gpu.
In Transactions on edutainment VI, pages 193–
205. Springer, 2011.

[3] Ashwin Nanjappa. Delaunay Triangulation in R3
on the GPU. PhD thesis, 2012.

[4] Cristina N Vasconcelos, Asla Sá, Paulo Cezar Car-
valho, and Marcelo Gattass. Lloyd’s algorithm
on gpu. In International Symposium on Visual
Computing, pages 953–964. Springer, 2008.

[5] Pedro Lousada, Vasco Costa, and João M Pereira.
Bandwidth and memory efficiency in real-time ray
tracing. 2017.

[6] Pierre L’Ecuyer and Richard Simard. A software
library in ansi c for empirical testing of random
number generators. Technical report, Technical re-
port, Département d’Informatique et de Recherche
Opérationnelle Université de Montréal, 2002.

[7] Blackpawn. Making cellular textures. Avail-
able at http://blackpawn.com/texts/
cellular/default.html.

[8] David Eberly. Intersection of convex objects: The
method of separating axes. Geometric Tools, LLC
http://www. geometrictools. com,(1998- 2008),
2001.

http://blackpawn.com/texts/cellular/default.html
http://blackpawn.com/texts/cellular/default.html

[9] Chris Hecker. Physics, part 4: The third dimension.
Game Developer, pages 15–26, 1997.

	Introduction
	Scene representation on GPU
	Voronoi diagram with Box Cutting Algorithm kernel
	Nearest neighbour search
	Model geometry splitting
	Physics
	Conclusions
	References

