
http://excel.fit.vutbr.cz

Configuration of Remote P4 Device
Jakub Neruda*

Abstract
Administration of a large network from a central node with a vendor independent API is quite impor-
tant issue these days. The SDN concept was truly helpful with realization of the solution, namely
in the form of the OpenFlow protocol. Nowadays, a P4 language is gaining momentum, primarily
thanks to its ability to describe whole packet processing pipeline and also for the P4 Runtime,
which provides a solution to the distributed network configuration. CESNET association is one of
the research groups starting to support P4 in their network cards of the Combo series. The aim of
this work was to make configuration of the Combo cards from the P4 Runtime compatible solutions
possible. An API was designed for these cards, aimed at the dynamic flow table configuration and
control. With this API, a support in the P4 Runtime was implemented and the card now can be
configured from the P4 ready SDN applications.

Keywords: P4 — SDN — P4 Runtime

Supplementary Material: GitHub Repository

*xnerud01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The complexity and size of networks is growing every
day, requiring more sophisticated solutions for their
configuration to be developed. The demand of the mar-
ket moved from the basic solution for setting up fire-
walls and QoSes to solutions that allow whole network
reconfiguration on the fly, as well as experimenting
with brand new network protocols. The first promising
technology was OpenFlow that not only implemented
standard SDN features but also allowed for a limited
network device programming through a standardized
set of known packet header fields[5].

Nowadays, the P4 language is getting a lot of atten-
tion as it is successor to OpenFlow, because program-
mers can describe the whole packet processing pipeline
in an abstract, platform independent language, signifi-
cantly reducing the amount of extra work coming from
working with devices from multiple manufacturers [4].

As the P4 as a language is pretty much established
concept by now, its incorporation into SDN ecosys-
tem had only just begun. And as more organisations
are looking into the development of P4 compatible de-
vices, the need for universal configuration mechanism
is greater than ever[2].

The same motivation applies for the CESNET
organisation that developed a network card Combo-
100G2Q. This card is programmable in the P4 lan-
guage, thanks to the reconfigurable FPGA chip it is
equipped with[3]. This paper describes the process
and the challenges of incorporating mentioned card
into what is known as the P4 Runtime ecosystem –
the SDN solution for P4 compatible devices.

2. Problem
At the time of writing, the mentioned card supports
only the P414, but the support for newer language re-

http://excel.fit.vutbr.cz
https://github.com/CESNET/nerudaj/PI
mailto:xnerud01@stud.fit.vutbr.cz


vision P416
1 is being developed. Supported features

are currently limited to the most important feature of
the P414 language – rule tables (the support of regis-
ters and counters is currently in testing phase). These
entities are defined in the P4 program, but their con-
tents are defined during the runtime by a user. Thanks
to this, the device can be dynamically adapted to fulfill
needs of the network administrator.

Initially, the Combo card had only very rudimen-
tary API for filling these tables with rules, written in
the C language. The biggest challenge in using this
API was in pushing the rules into the tables in the de-
vice itself. This was because all the rules had to be
stored in the continuous memory block and inserted
into the device at once, modifying all tables in a sin-
gle call, clearing anything that has been stored there
before.

This is sufficient for use cases where contents of
the tables are to be modified only a handful of times,
but quite impractical in any long running, persistent
application. In such cases, gradual updates of the ta-
bles are more common as the device is being trained
how to behave on the fly. So if the existing API has
only means of creating the rules and inserting them
into the tables all at once, a new solution has to be
developed to allow per-rule alteration like modifying
and deleting those rules.

This is also the most basic prerequisite for integrat-
ing the card into any SDN ecosystem since the SDN
apps work exactly in the way mentioned above.

2.1 Metodology
Currently, the ONOS2 is the only known implemen-
tation of SDN controller which is capable of working
with P4 Runtime. This project is based on specifi-
cations created by the P4 API Work Group led by
Antonin Bas from Barefoot Networks[1] and was al-
ready demonstrated at the SDN NFV World Congress
[6]. The specification of the P4 Runtime is developed
under the PI repository3 and contains example imple-
mentations of device support on the lowest level of
the SDN architecture.

As the P4 Runtime establishes a known, unified
interface, any P4 device must be able to understand this
interface to ensure the compatibility with any existing
or future SDN controller. Thanks to that, the interface
can be used as well to design new control API for
the Combo card. Please note that newly designed API

1https://p4.org/p4-spec/docs/P4-16-v1.0.0-
spec.html

2https://wiki.onosproject.org/display/
ONOS/P4+Runtime+support+in+ONOS

3https://github.com/p4lang/PI

Device

+initialize()

+deinitialize()

+reset()

+getTable()

+getTableList()

Table

+insertRule()

+insertDefaultRule()

+deleteRule()

+resetDefaultRule()

+modifyRule()

+findRule()

+getRule()

+getDefaultRule()

+clear()

+getSize()

+getCapacity()

+initialize()

+deinitialize()

Contains

Figure 1. UML for Combo card control API

still relies on the previously established methods for
rules creation, but it adds an abstraction over a device
we’re connecting to and also an abstraction over tables
inside the device. The UML diagram of the API is
shown in the Figure 1.

As you can see, after the connection is established
with a certain device (via initialize method),
a programmer can request the device for a table han-
dle which is then used for a manipulation with rules in
the associated table. All memory related operations are
hidden from the user and tables can be conveniently
modified on a per-rule basis. Also, thanks to slight
modifications in the old API, tables no longer have
to be updated all at once, but only all rules within a sin-
gle table have to be modified at once. This lessened
the runtime overhead and greatly reduced the complex-
ity of actual implementation.

Although persistent applications can now be eas-
ily implemented with this new API, there are few
downsides to it as well. The major issue comes from

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://wiki.onosproject.org/display/ONOS/P4+Runtime+support+in+ONOS
https://wiki.onosproject.org/display/ONOS/P4+Runtime+support+in+ONOS
https://github.com/p4lang/PI


the hardware implementation of P4 in the Combo card
which does not provide means to retrieve rules already
stored in the card at the time of establishing connection
to it. So even though any configuration application can
be persistent, any restart will also reset the state of
the tables within a device. Second downside comes
from the used language. Original API was written in
C, whilst the new one was written in C++, due to its
OOP design. Therefore, the user is currently forced
to use two APIs, one for creating the rules and second
for inserting them into the tables. However, this issue
is only temporary since plans for unifying both APIs
under C++ version are already in discussion.

3. P4 Runtime
With the Combo card API developed to match the re-
quirements of the P4 Runtime, the incorporation into
the P4 SDN ecosystem was yet to be implemented. As
was said earlier, the specification of the architecture is
called P4 Runtime. The main aim of P4 Runtime spec-
ification is to cover how the SDN controller should
communicate with the maintained devices. A simpli-
fied schema of the components involved in the whole
process is shown in the Figure 2. The figure also high-
lights the parts which are in the scope of this work.

Device

Driver

RPC methods

RPC Server

P4 Runtime

Controller

SDN App

Host machine

Aim

of

the

work

Figure 2. P4 Runtime communication pipeline

As you can see, the SDN app communicates with
the dedicated controller. Both components – the con-
troller as well as SDN app – are out of scope of the P4
Runtime specification and any developer can imple-
ment it in any way he sees fit. At the moment, there
is the only one publicly available project, the ONOS

project mentioned earlier.
Once the administrator enters a command in his

SDN App, this command is propagated into the con-
troller and then it is sent to managed devices using
a Remote procedure call (RPC). Data for RPC calls
are serialized using the Google’s protobuf4 technology
and a special metadata file called P4 Info. The P4
Info maps names defined in P4 program into unique
identifier numbers and also dictates bytewidth of each
element.

Command and its data are delivered to the machine
hosting the network device where a Google gRPC5

server is running. The appropriate user implemented
RPC code is then executed, deserializing the data and
calling some sort of driver layer between host machine
software and network device hardware, propagating
new data into the device. Appropriate response is
then returned through the gRPC into the controller and
the SDN app.

In this architecture, the RPC methods must be im-
plemented in such way that utilizes the driver layer
(new API in this case). When implementing the bodies
of RPC methods, the bmv2 target6 was used as a ref-
erence, due to lack of a proper documentation from
the authors of P4 Runtime. Simply put, an implemen-
tation of any RPC call can be divided into three major
steps which differ based on the requested action. First,
the programmer has to obtain a device handle and a P4
Info data. RPC call only provides IDs for those en-
tities, the programmer has to come up with his own
system for storing and retrieving them. Then, in case
of a write request, the incoming data have to be dese-
rialized using the P4 Info. When the data are parsed,
the programmer can call his driver layer to perform
the requested action. If the action was a read request,
the obtained data must be serialized, once again using
the P4 Info to perform the task.

With the methods implemented, one can compile
the project which will yield a dynamic library. This
library contains the implemented RPC methods and it
can be used to run a gRPC server on the card’s host
machine. After that point, any P4 Runtime conforming
controller can connect to it and manage card’s tables
(and more in the future). To demonstrate that ability,
a demo controller implementation from PI repository7

was modified and used. A Figure 3 shows a screenshot
of a very simple SDN App implemented as a web page

4https://github.com/google/protobuf
5https://github.com/grpc/grpc
6https://github.com/p4lang/PI/tree/master/

targets/bmv2
7https://github.com/nerudaj/PI/tree/

master/proto/demo grpc

https://github.com/google/protobuf
https://github.com/grpc/grpc
https://github.com/p4lang/PI/tree/master/targets/bmv2
https://github.com/p4lang/PI/tree/master/targets/bmv2
https://github.com/nerudaj/PI/tree/master/proto/demo_grpc
https://github.com/nerudaj/PI/tree/master/proto/demo_grpc


Figure 3. Screenshot of demo SDN application

and generated by the demo controller.
The original demo was capable of changing the P4

program in the device and reading a value of a counter
defined in the P4 program. Both of these actions are
not yet possible to do with the Combo card. The modi-
fied demo allows the user to access a table with keys
using the Longest Prefix Match (LPM) matching en-
gine and to insert or delete routing rules in that table.
The controller remembers the changes made to the ta-
ble in its own local memory block and displays the con-
tent of the LPM table to the user as well.

The demo is intended to be only a proof-of-work
as its capabilities are very limited. Also, the original
programmer had not built the demo built with future
improvements in mind and thus modifying it is not
trivial or viable. Fortunately, a user can use a CLI
application that is also present in the PI repository8.
The CLI works locally on the card’s host machine, uti-
lizing the same dynamic library with the RPC method
implementations. It provides access to full P4 Run-
time interface and for now it is the easiest way to test
the new features.

4. Conclusion
Even though the P4 Runtime specification is still un-
der heavy development and there is no comprehensive
documentation at the moment, the incorporation of
the Combo card family into P4 ecosystem was done
and now the card can be easily controlled from any P4
compatible controller. There is still room for improve-
ment in terms of API itself and number of features
the card should support and it will be the main focus
of the future development.

Although original API for controlling the Combo
cards is not available to general public, the new API
as well as an implementation of the RPC methods is

8https://github.com/p4lang/PI/tree/master/
CLI

released as open source software. Therefore, anyone
can use it as a reference while implementing similar
support for their own hardware9.

Acknowledgements
I would like to thank my supervisor Pavel Benáček,
Ph.D. for his support, guidance and valuable advice.

References
[1] Antonin Bas and Lorenzo Visicano. P4 api wg

charter. https://p4.org/p4-spec/docs/
P4 API WG charter.html.

[2] Antonin Bas and Lorenzo Visicano. An-
nouncing p4 runtime, 2017. https://
p4.org/api/announcing- p4runtime-
a - contribution - by - the - p4 - api -
working-group.html.

[3] Pavel Benáček. Generation of High-Speed Net-
work Device from High-Level Description. PhD
thesis, Faculy of Information Technology, CVUT,
Praha, 2016.

[4] Path Bosshart, Dan Daly, Glen Gibb, Martin Iz-
zard, Nich McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming
protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review,
3(44):87–95, 2014. ISSN: 0146-4833.

[5] Nick McKeown, Tom Anderson, Hari Balakrish-
nan, Guru Parulkar, Larry Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan Turner. Open-
flow: Enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Re-
view, 2(38):69–74, 2008.

[6] Nick McKeown, Timon Sloane, and Jim Wan-
derer. P4 runtime - putting the control plane in
charge of the forwarding plane, 2017. https:
//p4.org/api/p4-runtime-putting-
the-control-plane-in-charge-of-
the-forwarding-plane.html.

9https://github.com/nerudaj/PI/tree/devel/
targets/combo

https://github.com/p4lang/PI/tree/master/CLI
https://github.com/p4lang/PI/tree/master/CLI
https://p4.org/p4-spec/docs/P4_API_WG_charter.html
https://p4.org/p4-spec/docs/P4_API_WG_charter.html
https://p4.org/api/announcing-p4runtime-a-contribution-by-the-p4-api-working-group.html
https://p4.org/api/announcing-p4runtime-a-contribution-by-the-p4-api-working-group.html
https://p4.org/api/announcing-p4runtime-a-contribution-by-the-p4-api-working-group.html
https://p4.org/api/announcing-p4runtime-a-contribution-by-the-p4-api-working-group.html
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane.html
https://github.com/nerudaj/PI/tree/devel/targets/combo
https://github.com/nerudaj/PI/tree/devel/targets/combo

	Introduction
	Problem
	P4 Runtime
	Conclusion
	References

