
http://excel.fit.vutbr.cz

Evolution of programs controlling simple robot
model
Jakub Fajkus*

Abstract
The aim of this work is to utilize Evolutionary Algorithms for finding computer programs in order
to control simple robot models. A model is placed in the physical simulation where it is supposed
to move along given specified reference points. The evolution is given a task to evolve a program
that will result in a robot moving along a specified trajectory. The program that controls the model
consists of application specific instructions and its design is inspired by Linear Genetic Programming.
The program has an information about a direction to the next reference point.

Keywords: Evolutionary computation — Linear Genetic Programming — Robotics

Supplementary Material: N/A
*xfajku06@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In the area of robotics, it is very important to be able
to create prototypes quickly and cheaply. For this
purpose, it is beneficial to use computer models and
simulation when designing the structure of the robot.
There are many ways to control the robot depending
on the given requirements. It can be, for example, con-
trolled by instructions of an imperative language [1],
finite state machines [2], classical control theory [3] or
artificial neural networks [4] [5]. For a fast prototyp-
ing, we can use Evolutionary Algorithms to evolve the
robot control.

The problem to solve in this work is defined as fol-
lows. We have a model of a simple robot and we want
to evolve a program that is based on instructions of an
imperative language. The robot is supposed to move
in a simulated environment and visit the predefined
reference points. The reference points, specified by the
designer, define a trajectory the robot should follow.
The program that controls the model is being evolved

using Evolutionary Algorithms and then evaluated in
the Mujoco simulator [6].

There is a number of works using Evolutionary
Algorithms to evolve controllers based on artificial
neural networks [7] [8]. There are also works that
are using Genetic Programming [9]. The most similar
work to this one is the work of Wolff and Wahde [1].
They are using Linear Genetic Programming to evolve
a bipedal locomotion of a humanoid model.

The research conducted in this paper is primarily
motivated by [1] where a successful evolution of con-
trol algorithms was proposed for a specific humanoid
model. In this paper, we present an extended concept
which allows evolutionary design of controllers for var-
ious creatures with a different number of legs. The goal
is to evolve a program using a very reduced introduc-
tion. set in which several sub-programs can be evolved
automatically and simultaneously in order to perform
specific motions of the model. Our approach will be
evaluated using several trajectories the model should

http://excel.fit.vutbr.cz
mailto:xfajku06@stud.fit.vutbr.cz


follow in a simulated environment. The detail of the
proposed system will be described in Section 3.2.

Here, we will describe the robot’s model struc-
ture (Figure 1).

A following robot model will be considered in the
work. The robot model has three legs (brown), all
connected via joints with the core (blue). The joints
are located under the purple spheres. All of the joints
are actuated and their range is limited within 50◦. The
core of the robot contains a head (red), that is used
for calculating the distance between the robot and the
reference points. The purple spheres are used for col-
lision detection – if they collide with the ground, the
simulation is terminated.

Figure 1. Detail of the three leg robot.

2. Linear Genetic Programming
Here we will discuss a brief introduction to Linear
Genetic Programming (LGP), based on [10]. LGP is a
special variant of the Genetic Programming [11].

Genetic Programming (GP) solves a modelling
problem. That means we know a set of inputs to a
system and the outputs it should produce. But we do
not have the system that will compute the inputs and
tell us the output. When solving a control problem, we
are looking for such a function, that will lead to the
desired behavior.

In GP we are evolving computer program P that
represents a function: f : In→ Om, where In denotes
the n-dimensional input data and Om denotes the m-
dimensional output data.

The genotype space G in GP includes all programs
that can be composed of elements of a given program-
ming language L. The programming language L is
defined by an instruction set and a terminal set. An in-
terpreter translates the genotype representation into the

phenotype, i.e. the behavior of the robot. The pheno-
type is then executed and its fitness is evaluated using
a software physical simulator.

The original GP uses trees that correspond to ex-
pressions from a functional programming language.
The nodes of the tree represent functions, while leaves
represent input values or constants.

The Linear Genetic Programming is a variant where
the programs are composed of a sequence of instruc-
tions from an imperative language or a machine code.
Each program has available a predefined set of regis-
ters that can hold constants as well as results of instruc-
tions. Those registers are often divided into groups:
input registers, output registers, and calculation regis-
ters. The instructions are composed of an operation
and one or more operands. The operands may be reg-
isters or constants. As the program is being executed
it modifies the values of the registers, reads the inputs
and writes the outputs.

3. Evolution of Robot Controller using
LGP

In order to evolve a robot controller, the LGP con-
cept was combined with an evolutionary algorithm
and the Mujoco simulator [6] was used to evaluate
the candidate programs using a built-in interpreter. A
scene is prepared in the simulator consisting of a set
of reference points defining a spiral (Figure 2). The
robot model is given a task (using the evolved LGP
programs) to move from point to point at given order
and to get as close as possible to each of them. This
way the robot moves on a predefined trajectory.

Figure 2. Top view at the scene in the simulator. We
can see a spiral on which are placed the reference
points (yellow circles).



3.1 LGP-Based Robot Controller
The programs (which are the subject of evolution using
LGP) are composed of an application-specific instruc-
tion of the form COPY ARG1 ARG2, where COPY
is the instruction name, ARG1 is source register and
ARG2 is the destination register. Each register has its
unique identification called index which is used in an
instruction’s argument. As the program is being exe-
cuted, it copies values from input or constant registers
into the output registers.

The interpreter has 11 constant registers (indices
0–10) holding integer values from -5 to 5, 2 input
registers (indices 11–12) and 3 output registers (indices
13–15). The values of the input registers depend on
the direction to the next reference point as follows.

The space around the robot is divided into circular
sectors (Figure 3). The borders between the sectors are
defined by an angle from the robot’s heading vector.
Each sector has a value of integer between -5 and
5. The value of the input registers depends on the
value of the sector in which the next reference point is
located. At the Figure 3 we can see a situation, where
the robot (at the bottom) is heading to the top and the
next reference (blue) is located in the sector with a
value of 2. This number is inserted into the first input
register. Next, the second register is filled with a value,
that has an inverted sign (-2 in this case).

Figure 3. Calculation of the input register values.

Each output register is connected with exactly one
robot’s joint and its value is converted into a force that
is applied in the joint.

For the purposes of this work, a concept of subpro-
grams has been introduced which works as follows.

The individual’s genotype (representing the whole
program) is split into 3 smaller subprograms - init,
event and main.

The main subprogram is being run in an endless
loop during the simulation. Only one instruction is
executed at a time. Period of 0.3 seconds between
instructions is used.

The init subprogram is executed at the start of the
simulation and its purpose is to set the initial rotation
of all robot’s joints. All instructions of the init program
are executed in a single time. After that, the main sub-
program is paused for one second to give the robot’s
joints time to finish the rotation.

The event subprogram is run each time the robot
gets close enough to some of the reference points (but
only once for each point). Its purpose is to change
the robot’s joints rotation as a preparation to move
to the next reference point. The event subprogram is
executed in a single time and the main subprogram is
paused as well as in the init subprogram.

A schema of the interpreter is in Figure 4. Each
0.3 seconds an instruction from the main subprogram
is executed. The first argument is an input or constant
register index, the other one is the output register index.
A value from constant or input register is then copied
into the output register.

Each of the interpreter’s output registers is mapped
to exactly one robot’s joint. Each time an instruction
is executed, the values from the output registers are
read. The values are then used as a control signal to the
simulator for each joint in the model. A value (control
signal) holds two pieces of information. The sign of
the value is used to determine the direction of the force
applied (clockwise, counterclockwise). The absolute
value of the number is used to determine the magnitude
of the force. Based on those signals and the model
parameters the simulator calculates a force that will be
applied in the joint.

Figure 4. Schematic view of the interpreter. The
situation depicted here is as follows. The instruction
to be executed has arguments with values of 11 and
14. A value from the input register with index 11 is
copied into the output register with index 14.

3.2 Evolution of robot controllers
In order to design the LGP-based programs to con-
trol the robot, a simple steady-state Genetic Algo-
rithm (GA) was implemented – see Figure 5. The
parameters of the GA are as follows.

• Population size is set to 1000.



• A steady-state population model is used (the
better half of the population is kept, the other
one is replaced).
• The genotype length is fixed to 36 instructions.
• A custom genetic crossover based on the uni-

form crossover is used (Figure 7).
• The probability of crossover is 80%.
• The mutation is set with 100% probability and

changes only one gene.
• Parent selection is implemented by a tournament

of size 2.
• The evolution is terminated after 300 genera-

tions.

Figure 5. Steady-state algorithm

Each chromosome in the GA represents a single
program (a candidate controller for the robot). The
structure of the chromosome is illustrated in Figure 6.
The chromosome has fixed length (36 genes). It is split
into three smaller subprograms (init, event, main) that
have fixed lengths, too. Each gene represents a single
instruction. The instruction is a triplet and consists of
the instruction name and two numbers.

Figure 6. The structure of the genotype.

The GA applies both the crossover and mutation
operators which work as follows.

The crossover operates on the level of subpro-
grams. It is based on the uniform crossover with
p = 0.5 but instead of swapping the genes, it swaps
the whole subprograms (Figure 7).

The mutation operates on the level of genes (in-
structions). There is an 80% chance of mutating the
instruction values. There is a 20% chance of replac-
ing the instruction with a new, randomly generated
one. When mutating the instruction values, there is an
equal chance to mutate the first or the second argument.

When a value is mutated, it is replaced by a new value
from the specified range of values.

The fitness evaluation of the candidate programs
is performed as follows. For each program, a new sim-
ulation is run. During the simulation, the program is
being executed and it controls the robot’s model (as ex-
plained in the previous section) as well as the minimal
distance Di between each of the reference points and
the robot is being recorded. Di = minF(R,Pi), where
F denotes the distance function, R is the robot position,
Pi is a reference point position and i = 1, · · ·N, where
N is the number of reference points.

When the simulation run is finished, the fitness
value is calculated. For each reference point a score is
calculated as follows:

Si =

{
t−Di if Di ≤ t

0 else

The parameter t is a threshold – value that de-
termines the minimal distance, at which the score is
calculated. The fitness f is then calculated as a sum of
scores for all reference points:

f =
N

∑
i=1

Si

The threshold parameter was set to 40, based on the
dimensions of the simulation and the robot itself. The
maximum fitness in the simulation can be calculated
as follows:

fmax = t ·N

Given 9 reference points on the spiral and the threshold
parameter set to 40, the maximum fitness is equal to
360. This way, the evolution maximizes the score and
thus minimizes the distance between the robot and
each of the reference points.

Figure 7. Here, the crossover of parents A and B
resulted in offspring C and D. In this case, only the
init subprograms were swapped.

4. Results
The evolution was run 20 times. The typical progress
of fitness values can be seen in Figure 9.



The maximum fitness possible in the simulation
was set to 360, although the simulation time (600s)
was not enough to gain the maximum fitness value.
The fitness of the best solution the GA was able to find
was equal to 255.9. After all the evolutionary runs,
the best solution was evaluated over longer simulation
time and its fitness was equal to 330.9, which is 92%
of the maximum fitness value possible.

The trajectory of the best solution can be seen in
Figure 9.

Figure 8. Trajectory of the best solution

Figure 9. A typical progress of fitness values in an
evolutionary run.

5. Conclusions
This work showed an usage of Evolutionary Algo-
rithms for finding a program for a robot control.

The results show that the evolution successfully
found a relatively good solution to the problem. The
simulation time was limited and the robot could not
finish it in given amount of time. Despite that, when
given enough time, the best solution was able to finish

the simulation successfully. That is, in other words,
the robot continued following the part of the spiral
trajectory that it never saw before.

The future work will aim to evolve programs with
an emphasis on the ability to follow before unseen
trajectories.

Acknowledgements
I would like to thank my supervisor Michal Bidlo for
his time and valuable advices.

References
[1] K. Wolff and M. Wahde. Evolution of biped

locomotion using linear genetic programming,
10 2007.

[2] J. K. Hodgins. Three-dimensional human run-
ning. In Proceedings of IEEE International Con-
ference on Robotics and Automation, volume 4,
pages 3271–3276 vol.4, Apr 1996.

[3] T. Mita, T. Yamaguchi, T. Kashiwase, and
T. Kawase. Realization of a high speed biped
using modern control theory. International Jour-
nal of Control, 40(1):107–119, 1984.

[4] T. Reil and P. Husbands. Evolution of central
pattern generators for bipedal walking in a real-
time physics environment. IEEE Transactions on
Evolutionary Computation, 6(2):159–168, Apr
2002.

[5] F. L. Lewis, A. Yesildirek, and K. Liu. Multilayer
neural-net robot controller with guaranteed track-
ing performance. IEEE Transactions on Neural
Networks, 7(2):388–399, March 1996.

[6] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A
physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 5026–5033, Oct
2012.

[7] R. D. Beer and J. C. Gallagher. Evolving dy-
namical neural networks for adaptive behavior.
Adaptive Behavior, 1(1):91–122, 1992.

[8] S. S. Farooq and K. J. Kim. Evolution of neu-
ral controllers for simulated and real quadruped
robots. In 2013 Second International Conference
on Robot, Vision and Signal Processing, pages
295–298, Dec 2013.

[9] J. Macedo, L. Marques, and E. Costa. Robotic
odour search: Evolving a robot’s brain with
genetic programming. In 2017 IEEE Interna-
tional Conference on Autonomous Robot Systems



and Competitions (ICARSC), pages 91–97, April
2017.

[10] M. F. Brameier and W. Banzhaf. Linear Genetic
Programming. Springer Publishing Company,
Incorporated, 1st edition, 2010.

[11] J. R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA,
1992.


	Introduction
	Linear Genetic Programming
	Evolution of Robot Controller using LGP
	Results
	Conclusions
	References

