
http://excel.fit.vutbr.cz

Reduction of Automata used in Network Traffic
Filtering
Jakub Semrič*

Abstract
The aim of this work is to propose flexible methods for reducing non-deterministic finite automata
used in network traffic filtering. We introduce several approaches, which are then combined into a
single algorithm with parameters. To achieve a substantial reduction of automata, we use language
non-preserving techniques with a primary focus on language over-approximation, since language
preserving methods may not be sufficient. We implemented the methods and computed the error
caused by the reduced automata on real traffic. Despite the fact that our approach does not
provide any formal guarantee wrt unseen input traffic, it can be smoothly used for non-deterministic
automata of any size, which is a significant problem for existing methods with very high time
complexity.

Keywords: Finite automata — Automata reduction — Deep packet inspection — Network intrusion
detection system

Supplementary Material: Downloadable Code, https://github.com/jsemri/ahofa

*xsemri00@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In the past years, there has been a considerable in-
crease in cybercrime, including intrusion into Internet
networks. This fact has aroused a need for using net-
work intrusion detection systems, which try to detect
and prevent such malicious activities. This detection is
carried out by deep packet inspection, which searches
for a particular pattern in the packet payload. The
patterns are usually described by regular expressions
(RE). Due to increasing speed of networks and the
need of real-time packet inspection, it is necessary to
implement these systems in hardware. In other words,
detection systems are required to analyze a packet and
invoke a corresponding reaction immediately after it
has been received. In general, REs are represented
in hardware as finite automata. There exist various
architectures for pattern matching primarily based on
FPGA technology. However, huge automata take a lot
of space on a chip. Hence, their hardware realization
would be very expensive or even not possible. More-
over, the hardware implementation of the automaton
has to be copied several times if we want to achieve

a higher speed of packet processing (for 400 GiB per
sec. it is approximately 63 times [1]). To tackle this
problem we propose reductions which try adjust the
size of automata with a reasonable trade-off between
the error and the number of states of the automaton.

If we limit ourselves to deterministic finite au-
tomata (DFA), one can use Hopcroft’s algorithm [2], to
obtain minimal DFA. Nevertheless, a problem appears
when one wants to use this technique on immense non-
deterministic automata (NFA), where state explosion
caused by converting NFA to DFA may occur. On
the other hand, there also exist algorithms of dimin-
ishing size of non-deterministic automaton directly,
without need of determinization. These approaches
are based on various simulation techniques discussed,
e.g., in [3, 4]. Although minimized automaton using
the mentioned techniques can be several times smaller
than original one, the reduction may still not be as
sufficient as it is desired (e.g. we want smaller NFA
that a minimal NFA).

There are not many language non-preserving re-
duction methods, but we can find one described in [5].

http://excel.fit.vutbr.cz
https://github.com/jsemri/ahofa
mailto:xsemri00@fit.vutbr.cz

This approach, driven by the probabilistic distance,
has quite favorable results. In addition, it provides a
formal guarantee wrt unseen data. However, the most
significant drawback is that it relies on general network
traffic model represented by a probabilistic automaton.
Acquiring of exact model is extremely difficult be-
cause of the diversity of traffic containing myriads of
protocols. The algorithms for learning probabilistic
automata are not suited for such samples including a
lot of noise represented by binary and tunneled data.

To significantly reduce the size of automata in
a fast and flexible way, we propose a different and
rather experimental approach based on language over-
approximation. Although the language of reduced
automaton is not the same as the language of the orig-
inal one, we can considerably decrease the number
of states and transitions. Note that there undoubtedly
will be some false positives. However, the language
over-approximation assures that filtering based on the
reduced automaton omits no malicious packets which
should be classified by the original automaton. In prac-
tice, the hardware devices serve as a traffic prefilter,
which sends suspicious packets for further inspection
to software. In other words, once a packet has been
classified, which might have been classified either cor-
rectly or incorrectly, it is subsequently validated in
software to achieve that all packets are handled fault-
lessly.

Our proposed methods modify the structure of an
input automaton in order to find sequences of states,
which principally contributes to the classification pro-
cess. These states are retained, and the rest is modified
based on algorithm’s parameters, including the reduc-
tion rate. To decide which states are more important,
packet frequency is used, which is basically computed
on some training samples.

The proposed methods were carried out and tested
on various automata. The vast majority of datasets
we used was supplied by ANT@FIT research group.
The rest of samples were acquired by Darpa traffic
dumps [6]. We achieved quite encouraging results,
which have shown a great potential of our approach.
Moreover, we also managed to reduce huge automata
in quite reasonable time.

2. Preliminaries
In this section, we provide a few definitions, which
are essential to comprehend concepts in the following
sections.

Definition 1. Formally, a finite automaton is defined
as a structure M = (Q,Σ,δ ,s,F) where

• Q is a finite set of states,
• Σ is an input alphabet,
• δ : Q×Σ→ 2Q is a transition function,
• s ∈ Q is an initial (start) state,
• F ⊆ Q is a set of final (accepting) states.

We say that the automaton M = (Q,Σ,δ ,s,F) ac-
cepts or recognizes a language L, we write L(M), when
∀w ∈ L holds δ̂ (s,w)⊆ F , where a function δ̂ maps a
state q ∈ Q and a string w to a new set of states [7].

We also recognize two types of a finite automaton,
a deterministic (DFA) and nondeterministic (NFA) one.
If a finite automaton is DFA, it holds that |δ (q,a)| ≤ 1,
for ∀q∈Q and a∈Σ (note that |S| denotes a cardinality
of the set S). In general, instead of having one initial
state a NFA can have a set of initial state, but this
fact does not change anything on automaton semantic.
However, a DFA can have only a single initial state.

For every regular languages there exists a minimal
deterministic automaton that accepts it. There are mini-
mal NFA whose size can be even exponentially smaller
than equivalent DFA accepting the same language.

Definition 2. We call M′ = (Q′,Σ,δ ′,s′,F ′) a subau-
tomaton of M = (Q,Σ,δ ,s,F) where

• Q′ ⊆ Q,
• δ ′ = δ restricted to Q′,
• s′ ∈ Q′,
• F ′ ⊆ F ∩Q′.

Generally speaking, a subautomaton is some inter-
connected subset of states of an automaton. Naturally,
a finite automaton can have several subautomata.

3. Automata Reduction
In this section, we describe our proposed methods for
the reduction of non-deterministic automata. Initially,
the basic concept of automata used in traffic filtering
will be discussed. After this, we propose a refinement
of this method, give some comparisons, and discuss ad-
vantages and disadvantages. At the end of the section,
we will describe our final approach, which combines
both previous methods by using particular parameters.

Automata used in Network Traffic Filtering
In packet pattern matching, each automaton contains
several smaller independent subautomata. The final
states of each subautomaton identify particular rules,
which are used for classification, e.g., recognizing a
type of attack or protocol. Because we search for
patterns in traffic, not a full match we only need to
know which finals states were reached by a packet
during its processing. Basically, after a packet has been

processed by some automaton, we obtain a bit vector
representing which subautomata or rule matched the
packet.

If we compare regular finite automaton and au-
tomaton for traffic filtering, the main difference is that
once a packet has reached the final state of particular
subautomaton, it is matched, and we turn the corre-
sponding bit on (from 0 to 1). However, concerning a
finite automaton, the packet is accepted until it is read
completely and we end in at least one final state. Ac-
cording to this features of our automata, we can spare
some useless transitions leading from final states.

State Pruning
The first method identifies less important states of an
automaton and removes them appropriately. The re-
moving of the states is quite straightforward. Once
the states have been marked as not important, we sim-
ply sever them from automaton, including transitions
which lead into them. Because we want to achieve
over-approximation of the input language, we mark
predecessors of removed states as final states. We may
also add a self-loop over the alphabet1 to them, how-
ever, as we are concerned only about classification we
may neglect this step. In other words, we focus only
on some parts of the target language, more precisely
on a prefixes of the strings in original languages. Fig-
ure 1 illustrates this approach, where we can see the
automaton before and after pruning.

In order to decide which state to prune we remove
states with the lowest packet frequency (or state fre-
quency). Its a non-negative number associated with
each state of NFA. This number denotes how many
packets from input traffic sample went through a par-
ticular state during the packets processing. One may
say that it is similar to symbol frequency mentioned
in [8] when building prefix tree acceptor or frequency
automaton. However, the main difference is that one
specific packet can be counted at most once. Figure 2
illustrates a packet (state) frequency heat map of some
automaton. The states in the close proximity of the
initial state have higher frequent (red color), while the
others are less visited (green and blue color).

If we remove a state by pruning, we can compute
the upper bound of an error (related to an input traffic
sample), which is equal to the sum of the frequencies
of the pruned states. It means that we will in the worst
case make a mistake on this number of packets wrt
input traffic sample. In addition, due to nondetermin-
ism, we have to mark all paths in the NFA that can be
touched by a packet. Algorithm 1 shows how packet

1A transition from a state over the alphabet to the state itself.

q0

q1

q2 q3

q4

q5

q6

q7

q8

q9

q10
b

a
a

b
a

b

a

b

b

a

b

b

(a)

q0

q1

q2 q3

q4

q5

q6
b

a
a

b
a

b

(b)

Figure 1. Pruning of the automaton (a) to (b). The
states q7,q8,q9 and q10 were severed and their
predecessors, states q5 and q6 became final states.
Note that previous transitions from q5 and q6 were
removed too. Since we care only about classification,
not string acceptance, the transitions are redundant.

frequency is used for deciding which states to remove.
At first, we sort the frequencies in ascending order. In
the next step we, mark states we want to prune until we
reach the desired number of states of output automa-
ton. Finally, we sever marked states and propagate
final states to their predecessor states.

Algorithm 1: State Pruning Reduction
Input: automaton M = (Q,Σ,δ ,s,F), state

frequencies mapping f req : Q→ N,
reduction ratio r

Output : reduced automaton Mr

1: s := sort(M, f req) /* sort according

to frequency */

2: cnt := 0
3: marked := /0
4: while r > cnt/|Q| do
5: marked := marked∪ s[cnt]
6: cnt := cnt +1
7: end
8: Mr := RemoveStates(M,marked)

/* remove marked states */

9: return Mr

Figure 2. The packet frequency heat map of the automaton (apparently without transition labels). The red states
are the most frequently visited, the green are medium frequent and the blue one are almost not visited at all.

State Merging Refinement
The state pruning approach is quite efficient when
packets visit only a small part of the automaton. In
such cases, we can cut off many states of the automa-
ton, while we obtain a relatively small error. The state
pruning is, however, not suitable for all regular expres-
sion, for instance, GET HTTP 1.1
\x0d\x0a\x0d. In this expression the prefix GET
HTTP 1.1 is very common in traffic, but the se-
quence of bytes \x0d\x0a\x0d is not. Therefore,
the reduction would not do much, because many states
would have high packet frequency.

To achieve a more significant reduction, we use
state merging. The fundamental idea is to maintain
only parts of automata which are very specific and
therefore would cause small error. It involves merging
of states which are usually visited by same set of pack-
ets. If the frequency of state is similar (with respect
to some threshold) to its predecessing state, the states
are then merged. This method extends the language in
a different way compared to pruning. It merely does
not only cut some prefixes but adds iterations of some
symbols to the language.

Note that after this method has been applied, the
state pruning is used. In the most cases, this refinement
led to better results. An example of state merging
(without pruning) is depicted in Figure 3, where we
reduce the automaton (a) in Figure 1.

Iterative Merging
We can extend state merging by repeating this proce-
dure several times on different samples, which involves
in general, different state frequencies. We call this ap-

q0

q2

q1

q3

q6 q8 q10

q9

a

a
a b

a,b

b

b

b

a b

Figure 3. The merging of automaton (a) in Figure 1.
Notice that states q5 and q7 were merged to state q3,
whilst q4 was merged to q1.

proach iterative merging. The point is to anticipate
how language was modified after merging reduction
(without pruning) and try to join more states together.
In other words, we want to merge more states since
pruning, which is applied after merging, can yield
higher errors.

We generalize all methods into one algorithm. The
algorithm has two parameters. The reduction ratio r
and the number of iterations i. The reduction ratio
specifies a proportional number of states of input au-
tomaton, which our reduced automaton will have. The
i = 0 corresponds to pruning, while i = 1 is one step
merging. For the i > 1, we use several merging steps
for reduction.

4. Experiments
The proposed reduction methods were implemented
and tested on real traffic. In this section, we provide a
brief report of obtained results.

Concerning the obtained reduced automata, we

were primarily interested in the two following statis-
tics:

• accuracy, which stands for the number of cor-
rect classifications divided by the total number
of packets with payload. The correct classifica-
tion means that we visited the same set of final
states for the reduced NFA and the original one.
Since we are over-approximating the target lan-
guage, we cannot activate less states than the
original NFA.
• precision, is the ratio of correctly predicted pos-

itive observations (same final states as the origi-
nal NFA visited) to the total predicted positive
observations (at least one final state visited)

The accuracy is the most interesting variable, provided
that there is subsequent processing in software after
a packet has been classified. However, if we do not
have this further processing, we might be then also
interested in precision. This tells us how many false
alarms we will encounter.

Here we present the results of our methods used on
two automata. The first one is called sprobe (approxi-
mately 160 states). Figure 4 shows results of the state
pruning reduction and relevant variables accuracy and
precision. Naturally, with increasing reduction ratio
accuracy and precision are also increasing. As regard
to merging (not displayed in the plot), it yielded only
negligibly better results.

Figure 4. The results of pruning reduction of the
automaton sprobe with different reduction ratios on
the x-axis.

The second automaton, which was acquired from
Snort [9], is named spyware-put.rules (around 12 500
states). Plot (a) in the Figure 5 highlights results of
accuracy for pruning and merging. We can see that
in the most cases merging considerably improved ac-
curacy. On the other hand, the second plot (b) shows
information about the same automata and reduction ra-
tio, but this time for precision. Again, we can observe
that merging has better results.

(a)

(b)

Figure 5. The iterative merging reduction of the
automaton spyware-put.rules. The graph (a) shows
accuracy, while the (b) highlights data about precision
with reduction ratio on x-axis.

As regard iterative merging, it may yield slightly
higher accuracy and precision. Nevertheless, the dif-
ference is not so significant as comparing merging and
pruning.

5. Conclusions
By way of conclusion, we proposed several methods
for automata reduction based on packet frequency. We
saw that even the simple pruning method could pro-
duce impressive results. Moreover, we refined pruning
with merging, which in some cases improved accuracy.

Although these methods do not provide any formal
guarantee wrt input traffic, the results are quite encour-
aging. Furthermore, we managed to reduce several
automata to around 20% of original size, with quite
reasonable accuracy. Due to the flexibility of our ap-
proach, it is also possible to reduce huge automata
with thousands of states, which could not be achieved
using previous methods.

The next step of this work will use reduced au-
tomata in real-time network traffic. A quite cheap

solution could be computing accuracy just in soft-
ware on sampled traffic. This approach will show us
whether packet frequency, on which basis reductions
were made, calculated on our datasets was sufficient.
Provided that it will be successful, automata can be
synthesized to FPGA and tested more rigorously.

Acknowledgements
I would like to thank profusely my supervisor Tomáš
Vojnar, and my advisers Vojtěch Havlena, Ondra Lengál
for their guidance and assistance.

References
[1] Denis Matoušek, Jan Kořenek, and Viktor Puš.

High-speed regular expression matching with
pipelined automata. 2016 International Confer-
ence on Field-Programmable Technology (FPT),
pages 93–100, 2016.

[2] John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion To Automata Theory, Languages, And Com-
putation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 1990.

[3] Lorenzo Clemente and Richard Mayr. Advanced
automata minimization. CoRR, abs/1210.6624,
2012.

[4] Lucian Ilie, Gonzalo Navarro, and Sheng Yu. On
NFA Reductions, pages 112–124. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[5] Milan Ceska, Vojtech Havlena, Lukás Holı́k, On-
drej Lengál, and Tomás Vojnar. Approximate re-
duction of finite automata for high-speed network
intrusion detection. CoRR, abs/1710.08647, 2017.

[6] Darpa intrusion detection evaluation.

[7] Dexter C. Kozen. Automata and Computability.
Springer Verlag, New York, Inc, Secaucus, NJ,
USA, 1997.

[8] Colin de la Higuera. Grammatical Inference:
Learning Automata and Grammars. Cambridge
University Press, New York, NY, USA, 2010.

[9] Jeffrey Carr. Snort: Open source network intrusion
prevention, 2007. [ONLINE 21.03.2018].

	Introduction
	Preliminaries
	Automata Reduction
	Experiments
	Conclusions
	References

