
http://excel.fit.vutbr.cz

High-speed DMA packet transfer in system DPDK
Jan Kubálek

Abstract
Devices in computer networks, which are used for network management, require a high-speed
processing of large amounts of data for analysis. For a device to enable the monitoring of a network
with high data traffic, its network interface card needs to be capable of transferring received data
to RAM at sufficient speed. My project deals with the design, implementation, and testing of
a new module for an FPGA chip on a network interface card, which will carry out these transfers.
The design aims to achieve a high throughput of up to 200 Gb/s for the transfer of packets from
the FPGA chip to a computer memory via a PCI-Express bus. For faster packet processing, in
software system DPDK is used for data transfer control. This paper contains a short introduction
to technologies used in the project and the summary of the resulting module design. Performance
testing has shown that the module can achieve the target throughput of 200 Gb/s, but also revealed
possible ways for further improvements.

Keywords: DMA — DPDK — FPGA — PCI-Express

Supplementary Material: N/A

*xkubal11@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The Internet requires the maintenance of large num-
ber of servers and hubs that allow the connection of
computers throughout the world. For correct network
load control and failure detection, special devices are
needed, that constantly monitor the subsections of
the Internet network. Such devices are required to cal-
culate statistics about transferring hundreds of gigabits
of data per second. Network interface cards (NICs)
used in common personal computers are not capable
of receiving such huge amounts of data.

One of possible existing solutions is CESNET’s
system SZE2 (Straight ZEro copy) for NIC-to-RAM
data transfers. This system involves support in soft-
ware provided by NIC drivers and support in hardware
provided by CESNET’s NetCOPE platform. Together,
the system enables receiving network packets at high

speed to be processed by a software application. In
SZE2, data packets are delivered one after another
into a single block of memory space. This, however,
makes reading the received packets slow from the side
of the software. Open source system DPDK (Data
Plane Developement Kit) takes a different approach
to these transfers. Each packet is stored in separated
space making the much easier to process afterwards.
The NetCOPE platform does not yet support system
DPDK, as this system requires specialized module in
hardware design.

The project aims to design a module as part of
an architecture for an FPGA (Field Programmable
Gateway Array) chip placed on a NIC, that will con-
trol DMA (Direct Memory Access) transfers of data in
system DPDK from the FPGA to the computer’s RAM.
This DMA module will communicate with a software

http://excel.fit.vutbr.cz
mailto:xkubal11@stud.fit.vutbr.cz

application, which will allow programs running on
the computer to receive data from the network. The im-
plemented DMA module has to be able to manage
all of the required functions at the speed of 100 Gb/s
and more while being limited by resources availble on
the FPGA chip.

The the target of the implementation is the Vir-
tex UltraScale+ VU7P FPGA from Xilinx. Located on
the NFB-200G2QL NIC by Netcope Technologies, this
FPGA controls all major operations done by the card.
The card itself is fitted with interfaces connecting it
to the host computer and to the network. These inter-
faces allow transferring data at the theoretical speed
of up to 200 Gb/s, making it the target throughput for
the DMA module.

The implemented DMA module is able to man-
age DMA transfers of packets with data throughput
reaching to 200 Gb/s. Thanks to the support of system
DPDK, a software application working with the trans-
ferred data can carry out complex operations over
the data without the risk of lowering the throughput.

2. DMA
For network data inside a network interface card to be
received by a software application running on a com-
puter’s CPU, it has to be stored in the computer’s RAM.
This is done by transferring the data from the NIC,
which is connected as a peripheral device of the com-
puter, to the RAM using DMA. With the DMA tech-
nology large amounts of data can be moved between
any peripheral device and a memory without the need
for intervention from a CPU. An application that seeks
to receive the data only has to reserve a sufficient area
in a memory space and tell the NIC to transfer the data
to this area. When the transmission is completed,
the application is informed and can use the received
data.

In this project, the NIC, RAM and CPU are con-
nected via a data bus PCI-Express Gen3 x16 (PCIe,
Peripheral Component Interconnect Express), which is
capable of transmitting data at the speed of 100 Gb/s.
The NFB-200G2QL NIC is fitted with two PCIe ports
of this kind, permitting the throughput of up to 200 Gb/s.

3. DPDK
Even though the technology of DMA transfers allows
the NIC to write the received data to the RAM au-
tonomously, the transfer still needs to be in the control
of a software application. The DMA module needs
to know where in the memory it can write the re-
ceived packet data and, in return, the application needs
to be informed when new packets have been received.

The system of packet transfer control chosen for this
project is system DPDK. While other possible ap-
proaches exist — most notably SZE2 — DPDK allows
to partially accelerate packet processing in hardware
by storing each packet into separate space in a memory,
which makes them easy (and fast) to read by software.
Also, as opposed to the SZE2, system DPDK is widely
used open source technology.

For a software application that works with network
data, DPDK comes with a set of open source libraries.
These libraries allow the DPDK application to receive
and send data by communicating with the NIC’s driver.
For more information on integration of DPDK in soft-
ware applications see [1].

The sequence of actions needed for receiving new
data in system DPDK is as follows:

1. The application reserves several separate areas
within memory, to which packets will be re-
ceived. Each of these areas is described by
a “descriptor” containing its address and size
in RAM.

2. The application writes the descriptors to a re-
served place in the memory, which is refered
to as a “descriptor buffer”.

3. The application starts the DMA module and in-
forms it where is the descriptor buffer and how
many descriptors are currently in it.

4. The DMA module reads multiple avalible de-
scriptors from the buffer and waits for incoming
data.

5. Upon receiving new packets on its data input,
the DMA module starts sending them one by
one to the memory space described by the de-
scriptors.

6. After a certain timeout, the DMA module in-
forms the application about the number of de-
scriptors that have been used.

7. The application reads the received packets and al-
lows the DMA module to reuse the correspond-
ing descriptors.

In DPDK, descriptors must be used in the same
order in which they are written in the descriptor buffer.
Each area of a descriptor can contain the data of only
one packet (hence packet separation). If a packet does
not fit in one descriptor’s area, it can use multiple
consecutive descriptors. The DPDK application can
determine how many descriptors have been used for
a packet by reading its length, which is stored at its
beginning. The descriptor buffer in DPDK works as
a ring buffer and the usage of descriptors stored in it is
controlled by a pair of pointers: a write pointer from
the software and a read pointer from the hardware.

Figure 1. The diagram of the designed DMA module.

4. DMA channels
The DPDK transfer can be divided into multiple par-
allel transfers, which are controlled from parallel pro-
cesses of an application to ease the workload per CPU
core. The separation of packets to individual chan-
nels is defined by a distribution module placed in
the receiving part of the FPGA architecture before
the DMA module. Because of this division, the DMA
module is required to keep track of multiple DPDK
transfers. Each of them has its own descriptor buffer,
SW pointer and HW pointer and each channel can
be started and stopped separately by the application.
Packets belonging to a stopped channel are discarded
by the DMA module and not sent to the RAM.

For the DMA module design, this separation can
possibly mean difficulties, since some parts of the ar-
chitecture grow in complexity with higher number of
supported DMA channels. The DMA module should
support at least 128 DMA channels.

5. DMA module design
A high bit width of data processed in the FPGA archi-
tecture implies high resource requirements even for
operations as simple as moving the data from one place
to another. Therefore, the key idea behind the DMA
module’s design is to reduce the operations performed
on the large data to the minimum and to make all com-
plex decisions based on the provided meta-data only.
While the data itself is being stored in one place in
the module.

Figure 1 shows a simplified diagram of the de-
signed DMA module. When receiving network data
from the previous component in the FPGA architec-
ture, the DMA module also acquires information de-
scribing the individual data packets. For the DMA

module, the most important information are the length
of the packet and the assigned DMA channel. These
are used to determine whether the packet can be sent
to the RAM and what descriptors will be used to store
it. All of this is done in the “Data transform sched-
uler”, which prepares a set of instructions for the “Data
transformer”. Based on the instructions, the Data trans-
former converts the input data to a form, in which it
will be sent to PCIe as individual data transactions. Af-
ter that, the data are organized into PCIe write requests
and sent towards the PCIe bus by the “PCIe merger”.

Apart from sending data, the DMA module also
needs to be capable of communicating with the CPU
and reading descriptors from the RAM. These func-
tions are implemented by the “DMA controller”. From
the perspective of the DMA module, the PCIe bus inter-
face is divided into two parts. One is devoted to com-
munication with the RAM and the other (“PCIe control”
in Figure 1) connects the module to the CPU. When
being controlled from the software, the DMA con-
troller receives write and read requests from the PCIe
control interface. For reading new descriptors from
the memory, the DMA controller uses the PCIe data in-
terface and sends read descriptors directly to the Data
transform scheduler. As the DMA module contains
one PCIe data interface only, read transactions from
the DMA controller have to be merged with data trans-
actions in the PCIe merger.

The most complicated operations are implemented
in the Data transform scheduler and the DMA con-
troller. The other two components consist mostly of
data buffers and queues.

6. DMA module implementation
The DMA module is primarily aimed to be used in
the FPGA placed on the NIC model NFB-200G2QL
vended by Netcope Technologies (Figure 2). The spe-
cific FPGA utilized on this NIC is Virtex UltraScale+
VU7P from Xlilinx. The resources and advanced tech-
nology of the chip enable the implementation of large
and complex designs running at high clock frequency.
For more information on Virtex UltraScale+ design
see the FPGA documentation [2, 3, 4].

Figure 2. Network interface card NFB-200G2QL
Source: [5]

DMA
channels

LUT ([%]) BRAM
([%])

Frequency
[MHz]

8 10 524 (1) 57.5 (4) 329
16 12 029 (2) 73.5 (5) 329
32 15 188 (2) 105.5 (7) 336
64 20 644 (3) 169.5 (12) 329

128 33 463 (4) 297.5 (21) 333
256 59 930 (8) 553.5 (38) 326

Table 1. Resources utilized by the DMA module for
a various number of channels. The numbers are
reported after synthesis for FPGA Virtex UltraScale+
VU7P

As the target platform is an FPGA chip, the imple-
mentation language chosen for this project is VHLD.
VHDL is a standardized [6] language for hardware
design description, which is supported by all hardware
simulation and synthesis tools.

Target frequency for the DMA module is 200 MHz
and the width of the data input is 512 b. This way
the DMA module is able to receive 102.4 Gb of data
every second. To enable transmissions at the speed
of up to 200 Gb/s, as allowed by the NIC’s interfaces,
the FPGA architecture can be fitted with two DMA
modules, each operating independently and utilizing

one PCIe bus.
Another possible way of reaching 200 Gb/s would

be increasing the input data width to 1024 b. How-
ever, this would greatly increase the module complex-
ity, making it harder to reach the desired frequency.
This option may be considered later, when designing
the module for 400 Gb/s speed.

Table 1 presents resources utilization by the DMA
module after synthesis for Virtex UltraScale+ VU7P,
as well as achieved frequency, for a various number
of supported DMA channels. The resources are repre-
sented by the number of used LUTs (Look-Up Tables)
and the number of used BRAMs (Block RAMs). The ta-
ble also contains relative resource utilization of the se-
lected FPGA (in percents) and lastly the maximum
possible operating frequency for each of the configura-
tions.

As can be seen from the table, the module can op-
erate on the target frequency of 200 MHz on any of
the tested configurations. BRAM usage can, however,
be critical, when using two DMA modules combined
together with the rest of the NIC architecture, if sup-
porting 256 DMA channels.

7. Throughput measurement

To acquire relevant information on the throughput of
the DMA module, a complete architecture for NIC’s
FPGA have been implemented and the NIC has been
connected to receive artificially generated packets. Only
one DMA module, one Ethernet port, and one PCIe bus
port were used for testing, making 100 Gb/s the maxi-
mum achievable throughput.

A DPDK application, that provided the DMA mod-
ule enough descriptors to write data to was running on
the host computer. For the transfer not to be slowed
down by the software, the application was running
on 16 DMA channels and the data load was evenly
distributed among them.

To calculate actual throughput, there were coun-
ters of arriving packets, received packets and discarded
packets placed on the very input to the FPGA. Once
the DMA module would not be able to accept incoming
data every clock cycle, the input interface would start
discarding. Another set of counters for discarded pack-
ets was placed in the DMA module, since the DMA
module can discard packets as well. All of these coun-
ters could be read from software to acquire values
needed for determining achieved throughput.

T = S∗ (PIarr −PIdis −PDMAdis)

PIarr
(1)

Throughput T over a specific time period was com-

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 1280 1526

T
h
ro

u
g

h
p

u
t

[G
b

/s
]

Packet size [B]

DMA module throughput

100 Gb/s max Measured throughput

Figure 3. Graph of measured throughput of DMA module on packet lengths 64 to 1526 B

puted using Equation 1. Here PIarr is the number of
packets arriving to the input, PIdis is the number of
packets discarded on the input and PDMAdis is the num-
ber of packets discarded in the DMA module. Con-
stant S is a data load incoming from the Ethernet in-
terface and as such it is the reference maximum speed
(100 Gb/s in this case).

The throughput of the DMA module was measured
for each packet size from 64 B to 1526 B. The results of
this measurement are shown in Figure 3 in comparison
to the maximum throughput of 100 Gb/s.

You can see that the DMA module’s throughput ap-
proximates the maximum value with periodical drops
every 64 B, the first of them being at the length 117 B.
After arriving from the Ethernet port, every packet is
stripped of 4 bytes of CRC and extended by 16 bytes
of a header added by the distribution architecture. This
way, the packet is 12 B larger on the DMA module’s
input, turning a 117-byte packet to 129-byte one. Be-
cause the DMA module sends data to the RAM over
PCIe in one or more write transactions and each trans-
action has the size of 64 B, the last transaction of every
packet contains less than 64 B (unless the packet’s
size is aligned to this size). This causes the reduction
of throughput, as the DMA module is currently able
to send only one transaction per clock cycle. Con-
sidering 117-byte packets, every third data transac-
tion sent on the PCIe bus contains only 1 B of data
(117+12= 129= 64+64+1). This lowers the actual

throughput to mere 68.8 Gb/s. The best way to elimi-
nate these drops would be to modify the DMA module
to produce more smaller transactions in one clock cy-
cle.

With these results, it can be said that the designed
DMA module is able to achieve the maximum through-
put of 100 Gb/s on some specific packet lengths. After
some modifications for improving its effectiveness, it
should be able to reach the throughput of 200 Gb/s by
using two DMA modules at once.

8. Conclusions
The subject of this paper are the technologies used for
managing DMA transfers of received network data in
system DPDK, the description of the design of a new
DMA module, which can carry out these transfers,
the summary of resources used by the implemented
DMA module, and, the presentation of data through-
put results achieved by this DMA module. Thanks
to DPDK support, a software application can achieve
much higher speed when processing the reveived pack-
ets as opposed to previously used system SZE2.

This new DMA module was designed to operate
on a high number of parallel DMA channels, allowing
the division of the data load among up to 256 CPU
cores while utilizing less then 10% of resources on
the used FPGA Virtex UltraScale+ VU7P.

The implemented module was able to reach the de-
sired throughput on only some of the selected packet

lengths. However, after implementing already pre-
pared adjustments its performance should improve,
which will allow it to transfer all received network
packets to a DPDK application at the maximum speed
of 200 Gb/s. The DMA module was designed with
regards to flexibility and will be further developed
to reach data transfers on 400 Gb/s.

Acknowledgements
I would like to thank my supervisors Ing. Jan Kořenek,
Ph.D., and Ing. Jiřı́ Matoušek for their help with work-
ing on this project and preparing this paper. I would
also like to thank my colleagues from CESNET Ing.
Martin Špinler, Ing. Václav Hummel, and Ing. Viktor
Puš, Ph.D., for their assistance with the DMA module
design and implementation. This research has been
supported by the Technology Agency of the Czech
Republic from project TH02010214.

References
[1] Data plane development kit documentation, 2017.

https://dpdk.org/doc.

[2] Ultrascale architecture memory resources, 2017.
https://www.xilinx.com/support/
documentation/user_guides/ug573-
ultrascale-memory-resources.pdf.

[3] Ultrascale architecture configurable logic
block, 2017. https://www.xilinx.
com/support/documentation/user_
guides/ug574-ultrascale-clb.pdf.

[4] Ultrascale plus fpga product tables and prod-
uct selection guide, 2017. https://www.
xilinx.com/support/documentation/
selection-guides/ultrascale-plus-
fpga-product-selection-guide.pdf.

[5] Meet nfb-200g2ql, new 200g programmable
smart nic, 2017. www.netcope.com/
en/company/press-center/press-
releases/meet-nfb-200g2ql,-new-
200g-programmable-smart-nic.

[6] Ieee standard vhdl language reference manual.
IEEE Std 1076-2008 (Revision of IEEE Std 1076-
2002), pages c1–626, Jan 2009.

https://dpdk.org/doc
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
www.netcope.com/en/company/press-center/press-releases/meet-nfb-200g2ql,-new-200g-programmable-smart-nic
www.netcope.com/en/company/press-center/press-releases/meet-nfb-200g2ql,-new-200g-programmable-smart-nic
www.netcope.com/en/company/press-center/press-releases/meet-nfb-200g2ql,-new-200g-programmable-smart-nic
www.netcope.com/en/company/press-center/press-releases/meet-nfb-200g2ql,-new-200g-programmable-smart-nic

	Introduction
	DMA
	DPDK
	DMA channels
	DMA module design
	DMA module implementation
	Throughput measurement
	Conclusions
	References

