
http://excel.fit.vutbr.cz

Attractive Effects for Video Processing
Martin Ivančo*

Abstract
The goal of this work was to make a server solution for processing video from IP cameras and a web
interface. Video processing in this work focuses on making the video more attractive to the viewer by
applying various effects to it. Web interface is an essential part of the work which makes the server
solution easily accessible. It enables the user to adjust settings and apply colorful filters, and then
share the processed stream via a permanent link. The prototype solution is currently limited to single
user use, but it can be relatively easily upscaled. As there is little or very incomplete information on
this specific problem, this work can be useful in solving similar problems.

Keywords: Real-Time Video Processing — Color Filter Application — Live Video Stream Enhance-
ment

Supplementary Material: Demonstration Video — Downloadable Code
*xivanc03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
IP cameras became a very cheap technology over the
years, which lead to a significant increase in the num-
ber of locations covered by camera surveillance. Ma-
jority of these cameras are used for security purposes,
but an increasing amount of cameras serve as a live pic-
ture of the location for potential visitors. IP cameras,
however, were not designed for this purpose. They
were designed for low bandwidth streaming later to
be used as evidence of a potential crime. As a result,
images served by these cameras often lack contrast or
saturation, and are not very visually pleasing overall.
This can discourage tourists from visiting a location
based on the underwhelming images served by the
camera.

This work addresses the problem of visually un-
pleasant images streamed by many IP cameras. The
core of the problem is the ability to adjust the video
stream in real time, and then stream it forth so that
it can be shown to a client. The video stream can be
a few seconds delayed when compared to real world

view, as the targeted application scenarios are dealing
with landscapes and cityscapes. On the other hand, the
solution must be able to give the user instant feedback
in the process of configuring the stream. Ideally, the
solution should be accessible via a web user interface
capable of displaying the processed stream as well as
giving the user an option to configure the settings used
to process the stream.

While there are solutions to parts of the problem,
none of them addresses the problem in its entirety. If
the only requirement would be to receive the stream
and process and display it just locally on the running
machine, existing libraries like OpenCV would be suf-
ficient to solve this problem. If, on the other hand,
processing of the stream was minimal and the solution
would require just to forward the video stream with
slight changes, tools like ffmpeg would allow to do
this in one command. The proposed problem, how-
ever, gets fairly complex when all the requirements are
considered.

The solution proposed in this paper uses available

http://excel.fit.vutbr.cz
https://youtu.be/h1IRlkQU7sY
https://github.com/photohunter9/LEV
mailto:xivanc03@stud.fit.vutbr.cz


tools to construct a pipeline capable of receiving, pro-
cessing and further streaming a live IP camera video.
This pipeline runs on a server which acts as a com-
munication middleman between the pipeline and the
web user interface. While the solution proposed in this
paper might not be as simple and as clean as I would
like, it is, to my best knowledge, currently the only
solution to this problem as stated.

2. Fundamental Live Video Streaming
Principles
The demand for video streaming has been here for
a long while and throughout that time it has evolved
a lot. Classic frame by frame MJPEG streaming is
no longer as popular as it used to be, because newer,
much more efficient protocols have taken its place. The
two most popular protocols are currently RTSP and
HLS [1]. In my project I chose the latter. Although
RTSP has much lower latency when compared to HLS,
it is much harder to implement, either on the side of
the server or the client.

HLS stands for HTTP Live Streaming [2] and as
the name suggests, its major advantage is that it works
on top of HTTP and does not need any special commu-
nication protocol. Figure 1 shows a diagram explaining
how this protocol works. In my project there is only
one media playlist reference in the master playlist, but
this is something that could be improved in the future.
The protocol works by segmenting the streamed video
into smaller chunks and references to them are con-
tinually updated in the media playlist. The client then
loads this playlist via a basic HTTP GET and there-
fore gains access to the video chunks which it can now
load and play in order.

There is one other rule that needs to be met when
working with HLS, that caused me problems while try-
ing to display the stream in the browser, as described in
Section 4.2. The master playlist referencing available
media playlists should also contain information about
them, especially the appropriate bandwidth size, codec,
resolution and frame rate of the video. Determining
the correct codec can be particularly challenging. The
video codec is generally avc1 but the corresponding
flags are not so obvious. For this I needed to look
at the standard ITU-T H.264 Recommendation [4].
I encoded the video according to HLS documenta-
tion [5] with a high profile at level 4.0 so that it is
compatible with most devices without compromising
the quality too much. As I learned from the H.264 Rec-
ommendation, the corresponding flags to this settings
are 640028. In it, the 64 is profile idc repre-
senting the high profile. The 00 is profile iop

Figure 1. HTTP Live Streaming Diagram [3]. The
masterplaylist.m3u8 contains references to
multiple media playlists for various use cases, such as
streaming video using cellular, wifi or for high quality
streaming for TV. Each of the media playlists then
contains references to video chunks with
corresponding quality.

which means no constraint flags are set. Finally, the
28 is level idc which represents the level 4.0 ac-
cording to H.264 Recommendation. All in all, my
media playlist reference looked like this:
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-STREAM-INF:BANDWIDTH=4000000,\
CODECS="avc1.640028",RESOLUTION=1280x720,\
FRAME-RATE=25
output.m3u8

3. Used Image Processing Methods
Being the essential part of the project, image process-
ing needed to have a solid starting ground. For this,
OpenCV [6] was chosen as the most widely used open
source library for image processing and computer vi-
sion. Thanks to its capability of loading almost any
type of video source, I was quickly able to display
frames processed by OpenCV locally. With its built
in functions I was able to easily adjust brightness and
saturation, or convert the frames to black and white.
Adjusting contrast, however, is not natively built into
OpenCV. As I planned to implement tone curve for the
final version of the project, I decided to base contrast
on that.

3.1 Implementation of Tone Curve
The tone curve represents a mapping function for bright-
ness values of pixels. The X coordinate represents the
input value and the Y coordinate represents the output



Input

O
ut

pu
t

[0,0]

[255, 255]

Figure 2. Tone curve example. Enhancing contrast in
midtones while reducing it in near black or near white
colors is appropriate for most images. Blue dots
represent tone curves control points.

value. Figure 2 shows an example of a curve that adds
contrast to the image.

Tone curve is defined by 4 control points called
shadows, darks, lights and highlights. It also has
two stable points at [0,0] and [256,256]. Using these
points, the curve is calculated as a Catmull-Rom
Spline [7]. For an input value x, the output y is cal-
culated using Equation (1). Plugging in t = t1 results
in C = P1 while plugging in t = t2 results in C = P2.
This means that in order to get points on the curve
segment we need to interpolate parameter t between t1
and t2. Parameters t0 till Unfortunately, this does not
allow to easily calculate output value for a given input
(in other words, get y for x). We can solve this prob-
lem by dividing the curve segment into several parts to
get a reasonable amount of reference points and then
using linear interpolation between two of them whose
x coordinates match the input value the closest. Figure
3 might explain this solution better.

Let Pi = [xi yi]
T denote a point. Curve segment

C can then be produced by:

C =
t2 − t
t2 − t1

B1 +
t − t1
t2 − t1

B2 (1)

where

B1 =
t2 − t
t2 − t0

A1 +
t − t0
t2 − t0

A2

B2 =
t3 − t
t3 − t1

A2 +
t − t1
t3 − t1

A3

A1 =
t1 − t
t1 − t0

P0 +
t − t0
t1 − t0

P1

A2 =
t2 − t
t2 − t1

P1 +
t − t1
t2 − t1

P2

A3 =
t3 − t
t3 − t2

P2 +
t − t2
t3 − t2

P3

(2)

x

y

x

y

Figure 3. The left part of the picture shows the ideal
curve defined by four control points, and highlighted
points that have been calculated using Equation (1).
The right picture shows how the curve looks when
missing points are calculated from the highlighted
points using linear interpolation.

and

ti+1 =

[√
(xi+1 − xi)2 +(yi+1 − yi)2

]α

+ ti (3)

where t0 = 0 and α = 0.5 as a Centripetal Catmull-
Rom Spline is wanted.

These calculations are not computationally trivial
and they introduced a significant slowdown to the pro-
gram. So far, each pixel had to be recalculated on its
own. This was very inefficient so I decided to calculate
the output value for every possible input value1 before-
hand and store these values into an array. The time
needed to process each frame decreased significantly.
This inspired me to think if it would be possible to
do something similar for other types of adjustments,
not just contrast and brightness, which led me to im-
plement RGB look up tables. Thanks to them the
program was processing frames much faster. Figure 4
shows how it works.

4. Completing the Chain
The processed video now needs to be streamed via a
streaming protocol and then received by the browser
client that needs to display it. The problematics of
these tasks are explained in this section.

4.1 Streaming Processed Video
Streaming the processed video turned out to be a diffi-
cult problem to overcome. OpenCV has great receiv-
ing capabilities, but it is not designed for streaming
the processed content. Therefore I needed to pass the
processed data to another library or tool. This was the
toughest part. I did a lot of research and I tried quite
a few approaches to this problem, but none of them

1The values range from 0 to 255 as we are dealing with a
classic 8-bit RGB color space.



Figure 4. The advantage of using look up tables instead of individual adjustments are obvious.

seemed to work properly. I tried libVLC, which is
very capable on its own, but I could not find a way
to correctly transfer the processed video to it. I also
looked into other technologies, such as WebRTC, but
none of them fit my needs completely.

After a lot of struggle, FFmpeg solved this prob-
lem, although with some caveats. FFmpeg is a widely
used command line tool to convert and transform video.
Although it is built on several libraries which can be
included and used freely in any program, the documen-
tation for them is poor. FFmpeg, however, is able to
receive data via standard input, which is exactly what
I used. This solution is not optimal, but it is a working
method. Using the official documentation I was able
to run the command below and pipe the processed
frames into it. In the future, I would like to find an
alternative and more efficient solution.
ffmpeg -f rawvideo -pixel_format bgr24
-video_size 640x360 -framerate 25 -i -
-f hls -c:v libx264 -pix_fmt yuv420p
-profile:v high -level 4.0 -flags +cgop -g 50
-hls_time 2 -hls_list_size 5 -hls_flags
delete_segments ../media/output.m3u8

4.2 Displaying Video in Browser
Displaying the streamed video in browser did not pro-
pose any major difficulties thanks to hls.js. This
javascript library enables loading and playing HLS
streams using an easy to use API.

5. Communication Protocols
Although we are now able to stream the processed
video in the browser, we still need to ensure some sort
of communication between the user and the image pro-
cessing program which can then execute users requests.
For this, we will need a middle man, a piece of soft-
ware that will listen to requests sent by client and then
process them by calling the image processing program.
This is implemented as a part of the web server, which

is written in Node.js. Thanks to Node.js we can
take advantage of the variety of different libraries and
frameworks available to communicate with either the
client or the image processing program.

5.1 RPC Protocols
RPC stands for Remote Procedure Call [8] and it does
just that. It is a way to call functions from a different
program. GRPC is a great RPC framework initially
developed and used by Google, which was later open-
sourced and is now available to the public. It supports
a wide variety of programming languages, including
Node.js (web server) and C++ (image processing
program) which is exactly what we need.

C++ Server

myMethod()

GRPC Server

Node Client

stub.myMethod()

Client
Stub

Figure 5. Diagram representing the use of GRPC to
communicate between the video processing server
written in C++ and the Node client.

Figure 5 shows the use of GRPC in this project. All
the complicated communication is handled by GRPC,
we simply need to implement the setting methods in
the image processing program according to GRPCs
API and then instantiate a stub in the Node.js web
server (which acts as a client in this scenario). After
that it is as simple as calling a method in Node.js.

5.2 Web Sockets
The last remaining part of connecting the web server
to the clients web user interface is done using web
sockets. This protocol enables bidirectional commu-
nication between the server and the clients browser.

https://www.videolan.org/vlc/libvlc.html
https://webrtc.org/
https://www.ffmpeg.org/
https://github.com/video-dev/hls.js/
https://nodejs.org/en/
https://grpc.io/


Figure 6. The final user interface capable of adjusting
the settings using sliders and buttons on the right side.
The adjustments are visible almost instantly.

A great framework implementing this protocol for
Node.js is Socket.IO. Thanks to Socket.IO,
we only need to include its javascript client library to
the web user interface and then send a message via
the socket every time the user changes a setting.
Node.js web server can then handle this message
properly.

Finally, after connecting all parts of this solution,
the user is able to view the processed stream right in
the browser, as well as adjust the settings. Figure 6
shows the final look of the user interface for adjusting
the settings.

6. Conclusions
This paper explained a video processing server solu-
tion implementation in detail. It explained the chosen
HLS protocol used for streaming the processed video
and then proceeded with explanation of implemented
image processing methods, such as tone curves and
look up tables. Finally it showed a way to bind all the
parts together using communication frameworks such
as GRPC and Socket.IO.

Resulting program is capable of loading a video
stream submitted by the user via a web user inter-
face, processing it and streaming the processed video
which shows up in the user interface. The program
allows user to set the adjustments made to the video
via the web interface, such as tweaking the brightness,
contrast, saturation, or changing the entire look of the
video by applying colorful filters.

In its current state, the program only supports one
user at a time, but this can be changed relatively eas-
ily. This is also one of the future improvements that I
would like to implement. However, I believe that even
now it can serve as something that can help other de-
velopers tackling a similar problem. As the pipeline of
receiving, processing, streaming and displaying a live
stream in the browser has been solved, other video
effects can easily be implemented too. Video process-

ing in real time is a difficult task, and therefore the
solution needs to run on a quite powerful machine to
run smoothly. The delay between submitting the video
stream url and displaying it in the browser is quite long
(usually around 10 to 15 seconds on my computer), but
again, the length of the delay depends on how powerful
the machine that the program runs on is.

Acknowledgements
I would like to thank my supervisor Adam Herout for
his help.

References
[1] Paul Berberian. How video streaming works on

the web: An introduction. Medium.com, January
2018.

[2] R. Pantos and W. May. Http live streaming. RFC
8216, RFC Editor, August 2017.

[3] Apple Inc. About http live streaming. [online],
October 2014. https://developer.
apple.com/library/content/
referencelibrary/GettingStarted/
AboutHTTPLiveStreaming/about/
about.html.

[4] ITU. Itu-t recommendation h.264 (04/2017). [on-
line PDF], April 2017. https://www.itu.
int/rec/T-REC-H.264-201704-I/en.

[5] Apple Inc. Using http live streaming. [on-
line], March 2016. https://developer.
apple.com/library/content/
documentation/NetworkingInternet/
Conceptual/StreamingMediaGuide/
UsingHTTPLiveStreaming/
UsingHTTPLiveStreaming.html.

[6] OpenCV Team. The OpenCV Reference Manual,
3.4.1 edition, February 2018.

[7] Raphael Rom Edwin Catmull. A class of local
interpolating splines. In Richard F. Reisenfeld
Robert E. Barnhill, editor, Computer Aided Ge-
ometric Design, pages 317–326. Elsevier, 1974.
ISBN 978-0-12-079050-0.

[8] Bradley Mitchell. Rpc - remote pro-
cedure call. [online], February 2018.
https://www.lifewire.com/
remote-procedure-call-816432.

https://socket.io/
https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html
https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html
https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html
https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html
https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html
https://www.itu.int/rec/T-REC-H.264-201704-I/en
https://www.itu.int/rec/T-REC-H.264-201704-I/en
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html
https://www.lifewire.com/remote-procedure-call-816432
https://www.lifewire.com/remote-procedure-call-816432

	Introduction
	Fundamental Live Video Streaming Principles
	Used Image Processing Methods
	Completing the Chain
	Communication Protocols
	Conclusions
	References

