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Abstract
Current tools for project performance analysis focus mostly on detecting selected performance
bugs in the source code. Although being useful, results of such tools cannot provide evaluation of
project’s overall performance which is often crucial for development of large applications. Building
on our previous works, we aim to provide a solution to a long term monitoring of performance
changes using the tool chain of performance data collection, regression analysis, and subsequent
automated detection of performance changes performed. We evaluated our solution on series
of artificial examples and we were able to detect about 85% of performance changes across
different performance models and errors, and estimate their severity (e.g. constant, linear, etc).
The proposed solution allows user to deploy new method of code review — possibly integrated into
continuous integration — and reveal performance changes introduced by new versions of code in
early development.
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1. Introduction

Although a light-weight performance analysis can of-
ten be useful in determining the current performance of
a program, the bigger picture of the performance evo-
lution during the development can still remain hidden.
We simply need more thorough approaches both for
the collection and for the interpretation of the profiling
data. Such methods were introduced in our previous
works [2, 3, 4] and, moreover, were integrated in the
existing performance management system [1] And in-
deed, we achieved effective control over the project
performance.

However, performance degradation in a long term
is often subtle. It can span across many versions or
iterations of the code, and it can be especially tricky to
discover. Since even with our already well-established
methods of performance interpretation and its link to
the corresponding code versions, the actual evaluation
of performance changes across different code versions
still has to be done manually by the user. And man-
ually comparing the performance of different project

versions is especially tedious, inaccurate and error-
prone process. So in the end it will most likely be
skipped by the user.

The automation of such process is a challenging
task as it requires the analyzer to obtain information
about project history, provide tools that are able to
estimate dynamic time behavior of code fragments and
lastly their comparison and evaluation across different
versions — preferably with indicators that are easy to
grasp and accurate. These tools have to co-operate and
the whole process has to be fully automated.

Hence we exploited our previous results and pro-
posed a framework for automated detection of per-
formance changes based on models of performance
behavior as obtained by the regression analysis [3]. To
achieve a more precise results, we also remodeled the
profiling data acquisition and updated post-processing
methods. This way we can provide estimates of per-
formance changes — be it degradation or optimiza-
tion — during the code development for a broad range
of programs. Moreover, our solution not only provides
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Figure 1. Overview of the automatic detection method of performance changes over project repository. This
paper focuses mainly on the degradation detection, collection and partly postprocessing methods [1]

the indication whether any performance change was
detected, but also rough estimates the severity of these
changes in form of a mathematical function describ-
ing the measured difference between two performance
profiles and computes the confidence of the detection
and classification process.

By integrating our method to the existing perfor-
mance management system, we obtain a powerful dif-
ference analysis. Now, whenever we release a new
version of our project, we can compare the newly com-
puted regression models (so called target) with stored
best models of previous stable version (so called base-
line) and report a list of performance changes. And
by providing three crucial aspects for each detected
change — precise location, severity and confidence —
we can achieve a high ratio of performance fixes. The
main advantage of this approach is that it can be easily
integrated into any development workflow (e.g. into
continuous integration) serving as an additional code
reviewer before any release is made and helping catch-
ing performance bugs early in the development.

Most of the current works in the code performance
analysis field focuses on tools that are capable of de-
tecting and locating performance-suspicious code frag-
ments or hotspots. Many of these tools leverage static
code analysis along with the artificial intelligence and
machine learning techniques [5], detection of similar
memory-access patterns in code [6] or rule-based de-
tection which utilizes efficiency-rules extracted from
performance bug trackers [7]. However, these tools
operate predominantly on the source code (hence the
static analysis) and thus can not provide the user with
enough information about the actual impact of detected
performance bugs in the production.

Others [8, 9] introduce test-like environments where
performance bugs are discovered similarly to func-
tional bugs — by running predefined set of tests on
different volumes of data. This method is easily adopt-

able by users as it resembles familiar functional testing
and can be in fact integrated into project’s current test
suite. On the other hand, the results may be too general
(e.g. test finished under specified time threshold) and
pinpointing the actual source of the problem must be
done by the user.

In the end, none of the mentioned tools addresses
the long term gradual development process of a pro-
gram where code is being constantly written, changed
or removed. Our proposed method and its integration
in the Perun tool fills in the missing piece and provides
a way to continuously monitor project’s performance
status by executing automated performance degrada-
tion analysis based on a collected performance profiles
from various project versions. This helps user in iden-
tifying code changes that could introduce performance
problems into the project’s codebase or checking dif-
ferent code versions for subtle, long term performance
degradation scenarios.

2. Automatic Detection of Degradation

We will first outline our framework of automated de-
tection of performance changes on git repositories1

as pictured on Figure 1. Note that this was proposed
and developed together with the main coordinator of
the Perun project [1]. Whenever the developer wants
to release the new version of the project the follow-
ing steps are executed in order to automatically detect
performance changes:

1. User creates a set of changes, and checks them
out in the project repository. A new commit of
the project is thus created.

2. The commit triggers new build and we use our
trace collector (see Sec. 3) over this newly build

1Note however, that our method is not dependent on the under-
lying version control system



binary and collect the raw performance data, in
particular the time consumption of functions.

3. These raw data are first clusterized (see Sec. 4.1)
and so for each resource, we have its time con-
sumption and classified cluster. For these re-
sources, we find a regression performance model
(see Sec. 4.2), which predicts the values of run-
time for different values of clusters. We call
these resulting profiles target profiles.

4. We retrieve the profiles of the parent versions
from the persistent storage of Perun. These pro-
files serve as a baseline profiles and provide the
performance status estimates of the previous ver-
sions and will be compared against.

5. For each pair of target and baseline profiles,
with the compatible configurations (i.e. profiles
which were collected for the same execution of
the binary), we perform the actual performance
degradation detection method as described in 5.

6. The method returns set of located performance
changes. For each such change we report its
severity (i.e. how good or bad the change is), its
location (i.e. where the change has happened)
and our confidence (i.e. whether the change is
most likely real).

3. Collecting the performance data

After the user commits new version of the project we
first collect the performance data from the newly build
project binary (or any other command or script). These
performance data are acquired using the trace collec-
tor — binary profiler based on our last year’s work [3]
and authored by Jiřı́ Pavela.

The previous version of our collector used code in-
jections during the program compilation to gather the
time and size related information about the function
execution. However, this approach is inconvenient as
it requires access to the project source files and mod-
ification of compilation process — requirements not
satisfiable in many scenarios. Thus in order to elimi-
nate both dependencies and allow the user to perform
profiling on more broader range of executable files, we
released an enhanced version of this profiler.

We decided to build the new collector on well-
established existing solution that would support trac-
ing/probing and dynamic code injection in executable
files. These requirements were satisfied by Perf and
SystemTap tools.

Perf [10] is a Linux utility program for instrumen-
tation, tracing and probing of kernel and user pro-
cesses. The probing is realized using the kprobes and

uprobes [11] modules which gather timestamps when-
ever specified location is reached during program exe-
cution. Although Perf is available on the most of the
Linux distributions and does not have external depen-
dencies, its tracing capabilities are inferior to those of
SystemTap.

SystemTap [12] is an infrastructure for detailed anal-
ysis of running programs with capabilities similar to
those of Perf. Moreover, SystemTap offers advanced
methods for the configuration of the probes and their
behavior on firing, even though it uses the same kprobes
/ uprobes kernel modules as Perf does. SystemTap trac-
ing and probing is controlled by developer-defined
scripts which are subsequently translated into new ker-
nel modules and then dynamically loaded into the ker-
nel. The drawback is that SystemTap is a third-party
software (although it is well-supported by the Linux
systems) and requires the dbgsym version of kernel to
operate.

Still, we choose to build our solution over System-
Tap mainly for its flexibility with probes specification
and scripting-like nature which allows precise control
of the collection process.

The actual profiling data collection is realized by
injecting probes at specified code locations (currently
we support only function entries and exits). When the
location is reached during the program execution, the
probe fires and logs timestamp record stored into the
kernel buffer and later saved to the output file.

Our collector then work in the following three step
process described below and visualized in Figure 2:

1. The collector first loads the collection configura-
tion, where user specifies which functions will
be probed in the input binary. According to this
configuration, we generate the SystemTap script
with all required probes included.

2. The script is translated, loaded into the kernel
and the probed binary is executed. The probed
profiling data are stored in the output trace log.

3. After the successful collection, the trace log
is loaded and each recorded timestamp is con-
verted into the actual time spent in each traced
function call.

The collector does not provide estimation of some
independent variable required for degradation detec-
tion. The previous solution using user-defined code an-
notations was insufficient and thus we propose a heuris-
tic called clusterization (see Section 4.1) to estimate
this independent variable (preferably the input data
size) and hence we only log the time consumption of
the functions and the call order.



Figure 2. Schema of performance data collection
process using the trace collector. Collection process
requires executable file, collector configuration and
provides output performance profile with records of
time consumption of functions in the code.

4. Postprocessing the data

The raw performance data obtained from the previous
collection phase must be further processed to provide
data suitable for difference analysis and degradation
detection. We postprocess profiles first by Clusteriza-
tion and then by Regression analysis yielding a set of
performance models for each function in the code.

Figure 3 shows an example of the resources post-
processed by clusterizer and regression analysis. The
actual resources were collected by memory collec-
tor [4], which logs amounts of allocated memory and
were clustered w.r.t sort order of the allocated sizes.
The bottom figure shows the allocations interpolated
by selected models, with linear models being the best.

4.1 Clusterization
The clusterization postprocessing module is authored
by the Perun’s maintainer Tomáš Fiedor [1]. We in-
clude a brief description of this unit, since it is an
essential part of the postprocessing chain.

The clusterizer is a simple heuristic and is used to
classify the gathered resources to clusters by similarity
of their values. We employ two simple strategies to
cluster the resources — by sliding window or by sort

Figure 3. Result of clusterization method on data
obtained from memory collector. Second image
shows the usefulness of clusterization in conjunction
with regression analysis — specifically the ability to
infer the independent variable from collected data [1].

order of values. The sliding window iterates the sorted
values and performs aggregation of similar values into
the standalone clusters according to the window dimen-
sions. The other techniques works in straightforward
way. Both techniques are especially useful in conjunc-
tion with regression analysis as they allow us to derive
the independent variable data (see 4.2) for the collected
resources and hence allow us to model performance.

The trace collector cannot reliably collect the work-
load size (or any other independent variable) for each
function call — information necessary to estimate the
complexity. However, we assume that analyzed pro-
grams are deterministic and hence function’s behavior
and running time will be deterministic as well. With
this assumption in mind, it is safe to perform the clus-
terization according to the running time of the function
calls and estimate the runtime complexity.

4.2 Regression Analysis
Regression analysis (authored by Jiřı́ Pavela) is a method
used in statistics to deduce the relationship between
dependent (e.g. function runtime) and independent
variables (e.g. size of the underlying structures). This
relationship is expressed as a regression function and
can be used to predict the dependent variable values
for every value of independent variable. In order to
evaluate the goodness-of-fit of this function, i.e. how



well does the model explain the relationship between
regressed variables, we use the coefficient of determi-
nation (R2). The higher values of R2 signifies a better
model of resources.

In our scenario we use the workload size (esti-
mated by clusterizer) as the independent variable and
the function time consumption as the dependent vari-
able. The regression analysis then produces set of
mathematical functions that describe the behavior of
code functions in the program, i.e. consumed time in
relation to the input data size.

The implementation of the regression analysis is al-
ready covered to great extent in our previous works [2,
3]. It is worth noting though that we made several
changes since the release of the first version. In partic-
ular, we enhanced the following:

• We updated and optimized the computation pro-
cess of regression models. Most models are
now computed using general formulae 1 and 2
for coefficients β̂0, β̂1 of function model f (z) =
β̂0 + β̂1z. Currently only quadratic model uses
the custom computation as it requires more coef-
ficients. Also several fixes were made to correct
computation errors.

β̂0 =
∑yi− β̂1 ∑ f (xi)

n
(1)

β̂1 =
n∑ f (xi)yi−∑ f (xi)∑yi

n∑( f (xi))2− (∑ f (xi))2 (2)

• We introduced a new class of derived complex-
ity models. These derived models are computed
from the results of different, already computed
models. The example of such model is the con-
stant model, since R2 can not be computed using
standard formulae. Instead, as a heuristic we
use the parameters of linear model to infer the
goodness-of-fit for the constant model.

5. Detection of Changes

The last step in the whole process is the actual de-
tection of performance changes (authored by Šimon
Stupinský) according to the obtained regression mod-
els. The input of our method of detection is the pair
of profiles, where the first is called the target profile
and represents the performance of our new released
version of project, while the latter is called the baseline
profile and represents the stable base against which we
will compare the target.

In addition to the actual detection of performance
change, we will try to classify the severity of these
changes. We represent the severity of performance

1 Method check(Mb,Mt)
2 foreach (mb, mt), (mn

b, mn
t ) ∈Mb,Mt do

3 M= {mb,mt ,mn
b,m

n
t }

4 d pt−b = mt −mb
5 d pn

t−b = mn
b−mn

t
6 εrel = ∑d pt−b / |d pt−b|
7 M.add(FindPoly(d pt−b), 1)
8 for deg = 0 to MAX DEG do
9 ρ = FindPoly(d pn

t−b, deg)
10 if ρ[residual]≤ ξ then
11 break
12 M.add(ρ)
13 Classify(M, εrel)

Algorithm 1: Algorithm of detection and classifi-
cation performance changes based on input base-
line (Mb) and target (Mt) models and threshold
ξ . We denote models by m, data points by d p and
relative error by εrel .

changes by individual kind (such as linear) and by er-
ror rate, which denotes how big a change has occurred
in comparison with the baseline. Moreover, we give
a confidence rate to help developers decide whether
the performance change really has occurred. In our
methods we represent confidence by the minimum of
coefficients of determination (R2) of the best-fit mod-
els, which were used during the detection. This way
we provide the user with the most accurate information
about individual performance changes.

5.1 Algorithm of Detection
The base algorithm for detection of performance changes
is depicted in Algorithm 1. We propose two vari-
ants which mainly differ in the actual classification
of changes according to the computed data. These
variants will be discussed in the corresponding sub-
sections. Note, however, that for simplification we
abstracted the algorithm, and in the implementation,
some of the models are not computed for both meth-
ods.

The inputs of the main algorithm are sets of re-
gression models of baseline and target profiles, which
are denoted asMb andMt respectively. From both
of these sets for each function we select its models
with the highest value of R2 (denoted as as mb and mt

respectively)as well as its corresponding linear models
(denoted as as mn

b and mn
t respectively).

For both pairs of best models (mb and mt) and
linear models (mn

b and mn
t ) we compute a set of data

points (denoted as d pt−b and d pn
t−b respectively) by

simple subtraction of these models (i.e. for each value
of independent variable x we compute mt(x)−mb(x)).
The intuition is that if error was injected to the baseline



by the target version, then its model can be expressed
as mt(x)=mb(x)+me(x), where me denotes the model
of the error. Hence we are trying to find such me.

Then we use regression analysis (see Section 4.2)
to obtain a set of models for these subtracted data
points. Moreover, for the first set of data points, corre-
sponding to best-fit models, we compute the relative
error, which serves as a pretty accurate check of perfor-
mance change. We do not compute this relative error
for linear models, since their R2 can be quite low and
hence the relative error can be too big.

We use the numpy2 package to subsequently try
to interleave the received data points using polyno-
mials of various degrees (up to some MAX DEGREE).
numpy in this case returns a so called residuals, which
signifies, whether increasing the degree of polynomial
adds anything to the fitness of the data. Hence when
the value of these residua are lesser than given thresh-
old ξ , we break from the loop and stop.

All of these regressed models are then given to the
concrete classify functions, which gradually returns
detected degradations. Each method however uses
different kinds of models.

5.2 Rate detection using coefficients
The first variant is a simple heuristic based on the
results of linear regression, which models the relation-
ship between independent variables x and dependent
variables y as function y = b0 +b1 · x.

In this variant we analyze only the linear models
of target, baseline, and their subtraction. We compare
the coefficients of linear model corresponding to the
subtraction of the linear models with the coefficients of
linear models of both original models. However, this
check is executed only in the case of sufficiently high
value of R2. The observed properties of coefficients
are depending on different possible changes between
profiles. So to detect the constant change we compare
intercepts (i.e. the coefficient b0) of the linear models,
and to detect linear change we compare slopes of the
linear models (i.e. the coefficient b1).

In the case we could not detect any change using
linear models only, we use and analyze the subtraction
of the best models.

5.3 Rate detection using polynomials
In the second variant we use polynomial regression
to quantify the rate of the change, i.e. we represent
the change in a form of nth degree polynomial func-
tion. The actual detection of the change is, however,

2https://docs.scipy.org/doc/numpy/
reference/generated/numpy.polyfit.html

detected according to the absolute and relative error
of the best models of baseline and target profiles. We
argue, that using using linear models can provide quite
a fast classification rate, while having a worse detec-
tion rate. However, we compensate this by using it in
combination with errors of subtraction of best models.

We think that well-fit interleaving of the data by
polynomials of the certain degrees can pretty accu-
rately classify how big change has occurred between
profiles. In the main method we iteratively find such
polynomial of smallest degree, that can interleave the
data precisely.

6. Experimental Evaluation
We tested both methods on set of artificial examples
consisting of profiles with selected types of models
(constant, linear, logarithmic, quadratic, exponential
and power) and profiles with injected errors, in particu-
lar profiles injected with constant, linear and quadratic
changes. Moreover, we tested each type of the mod-
els to both favourable (optimization) and unfavourable
(degradation) changes. In overall we tested six types
of changes of 36 different pairs of profiles, and report
the rate of detecting the change and also the rate of
severity classification of the change.

Table 2 shows the results of our experimental eval-
uation. We denote with colours whether we correctly
detected and classified the performance change. In
case we misclassified the error, we report the result, i.e.
that the performance change was more or less severe
then in reality. Table 1 summarizes the detection and
classification rate of both methods.

±c ±n ±n2 overall time [s]

#1 dr 80% 80% 100% 86,67% 5.26cr 25% 55% 65% 48,33%

#2 dr 80% 100% 100% 93,33% 4.32cr 80% 80% 0% 53,33%
Table 1. Comparison of runtime, detection (dr) and
classification rate (cr) of both methods for constant
(c), linear (n) and quadratic (n2) changes.

Constant Changes. We claim that detecting and
classifying constant changes precisely is crucial for
method evaluation, since these kinds of performance
bugs are the most common and most likely to be over-
looked. Detecting constant changes between versions
were mostly successful with the exception of the log-
arithmic model. We believe this is caused by a small
constant value in comparison with the big coefficients
of logarithmic model. Hence, the shift of this type of
model is not as obvious and detectable as opposed to
the rest of models.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html


The second method based on polynomials was in
this case more successful and has proven all degrada-
tion marks with precise classification of the changes.

Non-constant changes. For non-constant changes,
the results are quite diverse. The linear changes, where
the absolute value of change increases with the value
of independent variable, had similar results, with only
problem recorded for power models. The quadratic
error was correctly detected by all errors, however, it
showed the highest misclassification rate.

#2
#1 +c -c +n -n +n2 −n2

cst
OK

OK
OK

n
c

n2
c

OK
n

OK
c

n

lin
OK

OK
OK

n
OK

c
OK

OK
n

OK
n

n

log
NO

NO
NO

NO
OK

OK
OK

OK
n

OK
n

OK

quad
OK

OK
OK

n
OK

n2
OK

OK
n

OK
n

n

exp
OK

n
OK

n
OK

OK
OK

OK
n

OK
n

n

pow
OK

n
OK

n
OK

NO
OK

NO
n

OK
n

OK

Table 2. Comparison of two variants of performance
change check for every model (rows) and change
(columns). We denote with green if we correctly
detected and classified the change, with yellow if we
successfully detected but misclassified the change and
with red if the check failed. If we misclassified the
error, we report the actual classification result.

Overall the second method based on polynomials
is better — it is slightly faster and with better detection
and classification rate.

7. Conclusion
In this paper, we introduced a framework for long term
and continuous performance change monitoring during
the project development. We use the version difference
analysis (integrated into performance profiling plat-
form Perun [1]) to search for potential performance
changes — along with their estimated classification,
severity and certainty — against previous project ver-
sions. Using our methods, we were able to achieve
approximately 90% of correct detection and 50% clas-
sification correctness on our set of examples.

Our future work will focus mainly on increasing
the accuracy of our methods, improving the perfor-
mance data collector and precision of pinpointing the
actual problem source to prepare solution that could
be effectively used in broad range of projects. Fur-
thermore, we plan to evaluate our solution on existing
projects and potentially detect real performance bugs.
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