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Abstract
This paper introduces an idea for a mobile application, that challenges users to take a picture
containing given items. The application is designed to have a functionality, which automatically and
instantly evaluates the taken pictures. This is addressed as an image recognition problem, and
is solved using multi-label classification. The other option of using object detection is also being
discussed and compared. Additional features such as animated avatars, time constrains or sharing
the image on social media are added to the application, in order to promote playfulness and user
interest. The application as a whole is implemented using a client-server model.
The application is able to classify 29 classes of objects in the image , in a multi-label setting. The
model has been evaluated using Precision-Recall and other custom metrics. The evaluated average
precision equals to 0.68. At the confidence threshold, which has been set to 0.25, in 54% of cases
there are not any false positives, and in 58% of cases there are not any false negatives.
The application is currently being user tested, and the possible issues are being addressed. After
the end of the testing phase, this project will provide a unique mobile application, which will be
publicly available. Its usage may also create a multi-label image dataset, which with the approval of
the users, can be published for the community.
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1. Introduction

We live in an era, where visual content is the main
source of information exchange. Since a camera has
become an inseparable part of a mobile phone and
therefore always accessible, its usage for capturing
everyday moments, usually followed by a share on
a social media, has grown up enormously. From the
observation of such pictures, it is possible to see that
their content often includes quite ordinary things, for
example a lunch or a dog.
This is where the mobile application developed in this

project comes in. It aims to create a playful scenario,
where the users are intentionally asked to take a picture
containing certain items. Progressively, the needed
items get more difficult to find, which requires some
degree of interaction in the real life.
The reasoning behind why such an application could
potentially be successful and could find its place on
the mobile application market, can be seen by com-
paring it to the other state of the art applications. One
of them is Pokémon Go [14], which might have some
similarities in gameplay. Mainly the usage of camera
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and the real life scene, where users are meant to catch
the pokémon, instead of finding items in this case. In
2016, Pokémon Go received The Game Award for Best
Mobile/Handheld Game.
As mentioned, the goal is to create a mobile applica-
tion, which challenges users to take a picture contain-
ing certain items. In order to achieve that, there needs
to be a functionality which evaluates the taken picture
- determines whether it contains all the given items.
Technically, it can be formulated as a classification or
object detection problem. A proper solution should
ideally have an accuracy close to human-like level. It
should be computationally feasible, and work under
different constrains such as time or operation cost, so
it can be integrated with the rest of the application.
The application needs to also implement other features,
that further promote playfulness and motivate users to
take the pictures. Additionally, it needs to be wrapped
in an intuitive and user-friendly interface. These parts
might be considered as a bonus part, and can get eval-
uated by user testing and user feedback.
Currently, it seems that there is not any known mobile
application on Google Play [12] nor The App Store
[13], that would have the same format. However, there
are applications that use camera and image recognition,
or could be considered similar in some other ways. An
example is the application Not Hotdog [15], which
is able to classify a one object in the picture. There
exist some photo-challenge applications, for example
lifeshot [16], which challenges users to take a picture
at the same time and share it, however, none of them
use image recognition of any kind. Some similarities
can be found with the application Pokémon Go, which
has been already mentioned earlier.
Considering the state of the art of image recognition,
the most common approach for the stated problem are
convolutional neural networks. This part is closely de-
scribed in Section 3 Image Recognition Background.
The approach that has been used to implement the mo-
bile application as a whole, is using a client-server
model, where the single roles are strictly divided be-
tween client and server. The image recognition part
uses convolutional neural networks, and addresses both
possible problem formulations - classification, as well
as, object detection. The relevant methods for both
formulations were implemented, and the more suitable
one has been chosen, which according to different re-
quirements ends up being multi-label classification,
trained on COCO dataset.
The final result will create a playful and hopefully an
interesting mobile application, which will be publicly
available. Over time, the performance of quest evalu-

ation - image recognition can improve, by using the
taken pictures as an input to further train the model.
With the approval of users, these images can be pro-
vided as an open source multi-label image dataset.

2. Building The Mobile Application
This section describes the design and all the parts, that
are necessary in order to build the desired applica-
tion. Overall, it can be divided into 4 basic functional
roles, which are quest assignment, taking picture, im-
age recognition and storage.

• Quest assignment is responsible for generating
and assigning users a list of items, at certain
moments in the game. The items are divided
into difficulty categories, as well as context cat-
egories, needed to have a more diverse quests.

• The application needs to use a camera, which is
the only way to complete a quest. The picture
has to be taken directly from the application -
it cannot be uploaded externally from a gallery.
The reasoning behind this is to have a full con-
trol over user experience, as well as making sure
that the picture is taken by the actual user.

• The image recognition part decides whether the
assigned objects are in the picture. The solution
for this part is further discussed in Section 4.
Suitable Image Classifier.

• Storage is needed in order to store data such
as user information, pictures, actual progress
or user settings. While some of them might be
stored on the device itself, using a database will
have several advantages, for example, a user can
log in and access the same state from any device.

The additional features that have been added to the
application are time constrains on completing quests,
placing user’s animated avatar into the picture or the
ability to share the pictures on other social media.
Time constrains were introduced in order to add dy-
namics to the game. When the time runs out, a new set
of items at the same difficulty level is generated. This
behaviour might also be desirable, in case the user is
not able to find the objects. The usage of animated
avatars and their placement into the picture is meant to
promote personalization and customization, and there-
fore improve the user experience. After the quest is
completed, the users might be interested in sharing
their final picture containing the placed avatar.
The user interface is designed in a way to quickly un-
derstand the idea and functionality of the application,
without need to include any additional tutorials. The
main part of the application is composed of 2 basic



tab views, which are Gallery and Quest. Gallery view
contains the pictures of all completed quests, as well
as the basic information about the current progress.
On click, the pictures can be viewed in detail and
shared. Quest view guides the user through the whole
process of completing quests. After it’s acceptance,
a camera and the list of items appears. Whenever a
picture is taken, the items get evaluated, showing a
check or cross sign for every item in the list. If all the
items checks the quest is completed, and an avatar can
be chosen, moved around and placed into the picture,
which is the last part of the view. On top of both views,
there is a drawer navigation, where sections such as
About or Settings could be placed.

2.1 Client-Server Model
As mentioned in the Introduction, the approach that
has been used to implement the application as a whole,
is based on a client-server model.
The client, in this case is the application running on
a mobile device, is responsible mainly for taking a
picture, communication with the server, and user inter-
action through the user interface, together with presen-
tation of received data. The image recognition, as well
as the functionality that generates and assigns quests
to the users, are handled by the server. Another part of
the server is the database.
There would be an option to have all the functionality
contained directly in the mobile application, which is
technically feasible. However, the choice of the client-
server model has been made based on the advantages
it brings, which are

• Flexibility - the game logic can be easily modi-
fied and deployed during production. The changes
on the server are instantly distributed to the
clients, without any need to update the appli-
cation. This offers an opportunity to quickly
create new quests, for example during seasonal
events such as Christmas or Easter. Another ad-
vantage is that the object detection can gradually
improve and change without user’s notice.

• Performance - all the computation is done on the
server, and therefore, the client’s device needs
to use very little computational power. This
results in longer battery life, because, mainly
the image recognition part could drain a lot of
battery. The system requirements for the device
are also lower.

• Feedback - the information about the actions and
state of the users is available, and can be used
to get an idea about their behavior in the game.
The images sent to the server can be analyzed

and used as a new input to further improve the
image recognition model.

• Platform independence - the same server can be
used for all the different mobile platforms.

These disadvantages have been also considered

• Network dependence - the internet connection is
needed in order to communicate with the server.
This could be problematic if the quest items are
set somewhere outside, and it would be solved
if the game logic was present in the device itself
and the application could run offline. Nowadays,
however, most of the users have a data connec-
tion from their telecommunication provider. An-
other possibility would be to allow users taking
a picture offline, and submitting it for the evalu-
ation later on, when the connection is available.

• Operation cost - running the computations on
the server can get costly, especially if a GPU is
used, which would be an ideal scenario for the
inference of image recognition.

• Maintenance and scaling - the game logic of all
the clients is centralized. The number of clients
can grow over time, and the server has to be able
to handle multiple incoming requests at once, be
safe, reliable and always accessible.

3. Image Recognition Background
This section is devoted to the core part of the appli-
cation - Image Recognition, with the main focus on
convolutional neural networks, whose state of the art
is further discussed.
A convolutional neural network (CNN, or ConvNet) is
a class of deep, feed-forward artificial neural networks
that has successfully been applied to analysing visual
imagery. The popular tasks it has been applied to in-
clude identifying faces, objects or traffic signs, as well
as powering vision in robots and self-driving cars. [8]
In general, the architecture of a CNN might be divided
into two parts - feature extraction from image and clas-
sification. The feature extraction part usually consists
of convolutions, rectified linear units (ReLU) and pool-
ing layers. The classification part consists of fully
connected layers, corresponding to the architecture of
the regular neural networks.
The tasks solved by CNNs are most often formulated
as a classification problem, but it is also capable of
solving prediction, regression, or most recently image
generation problems. In our case, the main focus is
put on image classification.
An image classifier takes an image and outputs a set of
scores, from which according to the representation, a



given class can be determined. There could be for ex-
ample a dog-cat classifier, that takes an image and clas-
sifies it as a dog or a cat. However, in a scenario where
both dog and cat are present in the image, the com-
mon approach fails. There needs to be a multi-label
classifier, which has a different architecture. In case of
CNNs, the difference is mainly in the final layer, where
the activation function needs to be changed, usually
from softmax [18] to sigmoid [17] function.
Along with the class of the object, there are ways of
finding its location in the image. This is known as
an object detection, or multi-class object detection, in
case multiple kinds of objects are detected in a single
image. The location of the object is represented as a
rectangle called bounding box. Object detection can
be formulated as a classification problem where the
windows of fixed sizes are taken from an input im-
age at all possible locations and proposed to an image
classifier. Although it sounds like a simple concept,
it gets complicated by the fact that the objects can
have different sizes and aspect ratios, and therefore
additional methods have to be used. There are several
architectures for object detection, which are based on
different principles, and vary in their speed and ac-
curacy. The ones that have been considered in this
project are Faster R-CNN [1], which is characterized
by a high accuracy, and Single Shot Detector (SSD)
[2], which is known by its trade-off between speed and
accuracy.
To train an image classifier, there needs to be a set of
input images with their corresponding outputs. The
output contains the classes found in the image, and
can also include the given bounding boxes. These sets
are called image datasets. Many of them are publicly
available, and may vary in the context of the images.
In our case, the context are the basic objects, that can
be found in the real life. The possible datasets that
would fit this description and could be used are The
Open Images dataset [5], ImageNet [6] and COCO:
Common Objects in Context [4].

4. Suitable Image Classifier

This section discusses the process of building and
choosing a suitable image classifier, which fits the
needs of this project. As discussed in Section 3 Image
Recognition Background, there are several possibili-
ties that could achieve the same goal, under different
circumstances. The conceptual difference is mainly
between multi-label classification and object detection,
while both can use different methods and be trained on
different datasets.
Multi-label image classifier using Inception V3 model

Figure 1. The precision-recall curve of Inception V3
model, trained as a multi-label image classifier on 29
classes from COCO dataset, reaching the average
precision score of 0.68 over all classes, on the
validation set.

[3], had been initially trained on The Open Images
dataset, from which a subset of 20 classes, according
to the desired gameplay of the application was selected.
Although its accuracy on validation part of the dataset
reached more than 0.9, it failed to properly classify all
the objects in the multi-label setting. This was caused
by the fact, that the dataset rarely contained images
containing multiple objects from the selected subset
at once, and therefore, the model was only able to
classify a single object in the image. Considering this
issue, a different dataset had to be used. COCO dataset
was more promising in this case, because its images
often contain 2-5 of the selected objects at once. A
subset of 29 objects from this dataset was selected in a
similar way.
The trained model was evaluated on the validation part
of the dataset, using Precision-Recall metric [7] and
reached the average precision of 0.68 (mean average
precision (mAP) of 0.69) over all the selected classes
(see Figure 1). The precision for each class varied from
the highest 0.98 for tennis racket, to the lowest 0.39 for
spoon (see Table 1). This metric could help in setting
the threshold for recognizing the objects in the game,
however, another custom metric was created, which is
more suited for this purpose (see Figure 2). It is based
on the number of false positives and false negatives
per image in a multi-label setting. Considering the
gameplay of the application, false positive represents
the case when the application recognizes the object
that is not in the picture - user is able to fool the appli-
cation, while false negative represents the case when
the object is in the picture and does not get recognized.
By increasing the threshold, the number of false pos-



Figure 2. A graph showing the percentage of cases
given the number of false positives and false negatives,
at threshold of 0.25. The metric has been evaluated
using the multi-label classifier on the validation part
of COCO dataset, taking into consideration only the
29 trained classes.

itives decreases, while the number of false negatives
increases. The threshold has been experimentally set
to 0.25, where both false positives and false negatives
are in an acceptable range. At this threshold, in 54%
of cases there are not any false positives and in 58% of
cases there are not any false negatives. The rest mostly
contains one false positive or false negative, both at
30% of cases. Additional evaluation would be needed
on the images directly from the game, which might
have some characteristics compared to COCO images.
However, at this moment, there is not enough of such
images for the evaluation to be objective (see Section
5 User Testing).
Another approach that was used is to train Faster R-
CNN and Single Shot Detector (SSD) object detectors,
using Object Detection API [11]. Although knowing
the location of the objects is not necessary for the de-
signed functionality, the usage of a different method
for classifying the objects in the image may differ in
performance from the multi-label classification. Since
we deal with object detection, the training images need
to include the classes, as well as the bounding boxes of
the objects in the image. COCO dataset has the bound-
ing boxes available, and has been used for this purpose.
Faster R-CNN reached mean average precision (mAP)
of 0.54@0.5IOU, and Single Shot Detector reached
mAP of 0.45@0.5IOU, where IOU stands for Inter-
section over Union [9]. The Intersection over Union
decides, when the given object is detected, based on the
ratio between area of overlap of ground-truth bound-
ing box with predicted bouding box, and their union.
By decreasing the value of IOU, there is a possibly

to increase the mean average precision of classifying
objects in the image, but it has not been evaluated in
this scope.
Considering the discussed options, multi-label classi-
fication has been chosen for the purpose of this ap-
plication. The object detection has been disregarded
mainly because of its high computational complexity -
on GPU, the speed of Faster R-CNN reaches 5 fps, and
the speed of SSD reaches 59 fps. SSD could potentially
be considered and used, however, the operation costs
of using a GPU on the server are high, and running the
inference on CPU is unacceptable. Another advantage
of multi-label classification is that its input images for
the training do not need the bounding boxes around the
objects, and therefore, the model can be easily scaled.
Comparing the mean average precision of the methods,
the multi-label classification model reached mAP of
0.69, while the object detection models reached mAP
of 0.54@0.5IOU and 0.45@0.5IOU.

5. User Testing

So far, the application has been given to 10 users, in
order to test the concept and get a feedback about the
user experience. The information about their progress
in the game, as well as the taken pictures were gathered
in the database. Additionally, the users were personally
asked about their overall experience, possible issues or
the ideas.
The main part that has been taken into consideration
and already addressed is having quests as a list of 3
items, which caused several complications. It was dif-
ficult to put all of them into one picture, since they
may vary in size, and the camera frame in the applica-
tion has a square shape (this was used in order to not
have to resize the image before CNN inference, so it
can hold its proportions). Additionally, even when the
users managed to fit all the items into the picture, the
recognition part did not work as planned, and usually
only correctly classified 2 out of 3 items. This was
mostly caused by the confidence threshold for approv-
ing items in the image. The confidence for the items
was often spread out, and the third item was usually
below the threshold. Lowering the threshold, which
was already quite low, would cause having more false
positives, which is undesirable. Therefore, the deci-
sion to have only quests of 2 items was made. An
advantage it brings is having more quests along the
way.
The user interface has been tested as well, mainly mea-
suring the time from the first log in into the application,
to the time a user gets to the Quest view and gener-
ates his first quest. This was on average 13 seconds.



Considering the fact that the users have not seen the
application before, together with the time it takes to
read the quest instructions, this result seems to be sat-
isfactory.
The log in has been made using Facebook authentica-
tion [10], which had some negative comments from
the users, however, it is still more convenient than hav-
ing a manual registration. The authentication cannot
be removed, because it is needed in order to have a
unique id in the database, and to be able to access the
profile from the other devices. Other possibilities of
log in could be provided.
As mentioned, all the pictures taken by the users were
saved in the database, with the intention to further eval-
uate and improve the model. Most of them, however,
contain the objects used in the first few levels the users
played through, and therefore, it is not appropriate to
use them, yet. Currently, the testing is still going on.

6. Conclusions

This paper discussed the design, the background, and
the process of building a photo-challenge mobile ap-
plication, while addressing the reasons for most of the
decisions that have been made. It focused on the core
part, image recognition, as well as on the mobile ap-
plication itself.
The core part of image recognition has been solved
by training a multi-label classifier on a subset of 29
classes of COCO dataset, and evaluated on its vali-
dation part using Precision-Recall and other custom
metrics. The evaluated average precision equals to
0.68. At the confidence threshold, which has been
set to 0.25, in 54% of cases there are not any false
positives, and in 58% of cases there are not any false
negatives.
The mobile application can be considered unique in
its way, and will be publicly available. Other than
hopefully being interesting for the users, its usage
may create a multi-label image dataset, which with the
approval of the users, can be published for the commu-
nity.
The actual state of the application can be considered as
a minimum viable product. The main goal right now
is to deploy the server to the production environment,
and put the application on Google Play. By having a
larger feedback, additional features, objects and other
changes could be introduced. If the application gets
popular, there is a possibility of monetizing and build-
ing it further on.
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