
http://excel.fit.vutbr.cz

Performance Testing and Analysis of
Qpid-Dispatch router
Jakub Stejskal*

Abstract
The application performance testing has recently become more important during the application
development of all kinds. This paper analyzes the fundamentals of performance testing that
are commonly used and, in particular, it focuses on performance testing of components used in
Messaging systems, especially the AMQ Messaging Broker and Qpid-Dispatch router. Currently
used methods for performance testing of these components are primarily focused only on Messaging
Broker and are implemented in the Messaging Performance Tool. However, it still lacks support
for more broad range of components especially the Qpid-dispatch. In this paper I describe the
improvements of the Messaging Performance Tool to enable the performance testing of Qpid-
Dispatch and its capabilities in automatic testing. I evaluate the proposed extension and study the
performance of Qpid-Dispatch component on several real world case studies.

Keywords: Performance Testing — performance analysis — Qpid-Dispatch testing — router testing
— network technologies — Messaging Performance Tool

Supplementary Material: Downloadable Code
*xstejs24@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Good application performance is one of the main goals
during the software development. But what makes
software performance so important? Software reli-
ability has to be guaranteed by the owner, but with
undesirable performance there could be a lot of issues.
This can badly influence software behavior and can
subsequently cause a significant outflow of consumers,
and even brand destruction, financial damage, or loss
of trust. These few reasons should be enough to do
a proper performance testing before every software
release. Especially for large projects where industries
guarantee certain level of software behavior and they
would not be able to assure it with insufficient perfor-
mance testing.

In general an application performance is important.
However, smooth network application or hardware per-
formance became much more demanded nowadays,
since most of the communication is via the Internet.
Obviously when you make a payment using your in-
ternet banking you definitely want to have a stable

connection to your bank’s website without any delay.
Network stability is significantly influenced by net-
work components like routers and switches and hence
their performance should be under utmost case. We
refer to network performance testing as measurement
of network service quality which is directly influenced
by bandwidth, throughput, latency, etc.

For performance testing of particular network mes-
saging system developed by Red Hat Inc. there is
an existing solution —Messaging Performance Tool
(MPT) [1]. MPT is currently specialized for the per-
formance testing of Message Broker (Broker) [2] —
network application level software cooperating with
Qpid-dispatch service [3] in the network as the mes-
sage distributor. Unfortunately, the current version of
MPT does not support performance testing of enough
components like the Router component called Qpid-
dispatch. In this work I focus on this particular short
coming and develop a worthy solution allowing proper
performance testing of the Qpid-dispatch service. I
demonstrate created solution on series of case studies

http://excel.fit.vutbr.cz
https://github.com/maestro-performance/maestro-java
mailto:xstejs24@studfit.vutbr.cz

with selected network topologies with various differ-
ent components and focus mainly on throughput and
latency metrics. Our experiments show that the ex-
tension of Messaging Performance Tool allows quite
subtle analysis of performance of different scenarios
and impact of potential behaviours or events in the
network.

2. Messaging Performance Tool
Messaging Performance Tool (Maestro) [1] is a testing
system designed for testing the performance of Mes-
sage Oriented Middleware (MOM) [4]. The Maestro
is usually deployed on several machines. A typical de-
ployment consists of one node for Maestro Broker, one
or more for Senders, and one or more for Receivers
and the software under test (SUT). The architecture of
Maestro consists of the following components:

Maestro Broker — can be any Message Queuing
Telemetry Transport1 (MQTT) capable broker
with several topics. The topic is a named queue
where other messaging services can listen on the
traffic. This component takes care of distribution
of control messages between other components
such as Maestro Clients or MPT Backend.

Maestro Clients — contain the client API as well
as the test scripts for each test case. Moreover,
clients contain a sub-component called Reporter
which interprets the test data to user in the form
of web data visualizations.

MPT Back-end — consists of sender, receiver and
inspector. Sender and receiver ensure message
sending to the SUT and receiving messages from
SUT. Inspector monitors inter data of the SUT
and reports collected performance metrics to
the data server. Maestro currently supports two
backends:

• Java — used for JMS-based2 testing, in-
cluding Advanced Message Queuing Pro-
tocol (AMQP) [5], OpenWire and Core
protocols.

• C — used for AMQP and Streaming Text
Oriented Messaging Protocol3 (STOMP)
protocol testing.

The performance test in Maestro is basically a
generation of huge amount of messages which are sent
to SUT and received by the receiver. The configuration
of each test case is specified by several options defined

1MQTT —http://mqtt.org/
2JMS — Java Message Service
3STOMP —https://stomp.github.io/

in a Groovy4 script which influences the test behavior
with the following elements:

• message size — size of the generated test mes-
sage in bytes,

• number of connected clients — count of senders
and receivers connected to the SUT,

• test duration (time or load) — end condition
of each test; can be specified by time, limit or
message count,

• message rate — the desired rate that the system
should try to maintain through the test (set 0 for
unbounded rate).

• fail condition — when it is fulfilled during the
test, the test fails.

MPT Data Server
(HTTP)

Maestro
Broker

Active-MQ

Messaging Performance Tool architecture

MPT Client (C)
MQTT

Sender ReceiverInspector Agent

MQTT

SUT

HTTP

AMQP AMQP

AMQP AMQP

Figure 1. Scheme of communication and protocols
used between the Messaging Performance Tool and
testing nodes.

The actual communication between components
during the test cases is realized using the Maestro Pro-
tocol — a binary protocol implemented on top of the
MessagePack5. For the message exchange between
nodes it currently uses MQTT protocol (version 3.1.1)
and for sending the testing data to data server it uses
HTTP protocol (version 1.1). The messages exchanged
between the peers are called notes. In the Figure 1 you
can see the scheme of communication between the
Maestro and testing nodes6. The communication be-
tween sender/receiver used specific protocols based on
client type: AMQP, STOMP and OpenWire protocols.
The inspector and the agent communication with SUT
is based on send requests to AMQP management inter-
face, which return proper response with specific data.

4Groovy — object-oriented programming language for Java
platform http://groovy-lang.org/

6Image source —https://github.com/
maestro-performance/msg-perf-tool/blob/
master/doc/maestro-overview.png

http://mqtt.org/
https://stomp.github.io/
http://groovy-lang.org/
https://github.com/maestro-performance/msg-perf-tool/blob/master/doc/maestro-overview.png
https://github.com/maestro-performance/msg-perf-tool/blob/master/doc/maestro-overview.png
https://github.com/maestro-performance/msg-perf-tool/blob/master/doc/maestro-overview.png

The agent also executes scripts directly on the SUT
node.

The current version of Maestro offers 17 com-
mands for test setting and execution7. These are basic
commands such as start receiver, or test success notifi-
cation without payload. The other group of commands
has additional setting (payload) where it can specify
the test behavior. Good example is the set request
which sets all necessary test options (test duration,
rate, fail condition and so on). Another command with
payload is e. g. ping request.

Metrics
The type of metrics collected during tests depends on
the component. In the Table 1 you can see the summary
of the metrics, which are collected for each component.
Metrics for Broker component are collected by the
Inspector, which is strictly bounded only to one node
with SUT.
Table 1. The summary of Maestro metrics collected
during the performance test cases.

Component Metrics
Sender Throughput
Receiver Throughput

Latency
Broker JVM heap memory

JVM non-heap
Broker internals
OS basic memory
OS resources

Router Memory statistics
Network neighbors in-
formation

3. Maestro-Agent Extension
The current version of Maestro however cannot use all
performance testing and network recovery capabilities
of the Qpid-Dispatch. It offers only load generator
with latency and throughput measurements. For im-
prove performance analysis and measurements it is
necessary to design and implement additional func-
tionality for the MPT. We propose a new component
called Maestro-agent designed for simple execution
of user specific scripts on testing nodes. However,
Maestro is not a simple project, so creating new han-
dlers for some testing purpose can be difficult. Hence,
creation of Maestro-agent offers an elegant solution,
where every user only needs to provide groovy scripts

6Messagepack —https://msgpack.org/
7All commands are available at https://github.

com/maestro-performance/msg-perf-tool/tree/
master/doc/maestro/protocol

with action descriptions. This way user does not need
to change Maestro code at all, he only has to spec-
ify the source of the extension point, for example a git
repository, which is downloaded by agent and executed
during the test scenario.

shut-down
command

Agent

Router 1 Router 2 Router 3

ReceiverSender

Figure 2. Example of agent’s behavior during the test.

Since we want to measure the performance of
Qpid-dispatch during unexpected situations, we will
use the main function of the agent to execute the code
which will influence the behavior of the network dur-
ing the test. This way Maestro is able to answer ques-
tions such as ”how the crash of one major network
devices influence the load?” or ”how long it takes to
network device to recover from overload?”. An ex-
ample of agent execution is depicted in the Figure 2,
where the agent shuts down Router 2 and all of the
load is then redirected through the Router 3.

Basically Maestro-agent will execute external scripts
for handle some atomic operation on the specific node.
The agent only needs source of this scrips, for exam-
ple an url for git repository. The agent will download
the repository and then execute each script in seperate
thread. In this scripts, user can specify when the code
should be executed by specify the time of start.

In the Section 5 I will further show how agent’s
actions influences the performance of series of graphs.

4. Topology Generator
Since we want to run tests with as much automation as
possible, I created more auxiliary tools for smoother
automatization. One of these is the Topology Gen-
erator, which creates network topology configuration
files based on users metadata. This is very helpful
in cases of bigger networks or frequent changes in
topologies. Topology generator expects two files as an
input: Inventory with list of nodes and Metadata file
with network type and additional settings. The output
is a simple JSON file with generated configuration for
each router node in the network.

The automatic deployment is realized by Ansible
[6] script. Ansible is a simple automation framework
which allow users to automate daily tasks on multiple
nodes or containers. It offers very simple interface
which allows to deploy specific components on each

https://msgpack.org/
https://github.com/maestro-performance/msg-perf-tool/tree/master/doc/maestro/protocol
https://github.com/maestro-performance/msg-perf-tool/tree/master/doc/maestro/protocol
https://github.com/maestro-performance/msg-perf-tool/tree/master/doc/maestro/protocol

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

 120000

 135000

 150000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

M
es

sa
ge

s
pe

r
se

co
nd

 [
m

sg
/s

]

Relative Time [minutes]

Throughput

Router single (standalone)
Router single (interior)

Broker (with routers)
Broker (alone)

Router (with routers)

Figure 3. Chart of maximum throughput of router and broker during specific test cases.

Topology
Generator

Inventory

Graph Metadata

variables.json

Router 1

Ansible
script

Router n...

Figure 4. Configuration files generation by Topology
Generator and deployment by Ansible.

node of the network. During the tests, the Ansible is
used for Maestro and network topology deployment.
In case of topology deployment, Ansible script load
and fill a template for Qpid-dispatch configuration file
and fills it up with data from generator output. Ansible
then ensures that each node has proper configuration
settings. The main functionality of Topology Genera-
tor and Ansible deployment scripts is depicted on the
Figure 4

5. Experimental Evaluation

Since Maestro works as the orchestration system, I
needed proper infrastructure before I could run any
test for our experimental evaluation. The architecture
of Maestro, described in Section 2, specifies that in
ideal scenario I need at least four machines for running
a simple test: maestro broker, sender, receiver, and
SUT. The amount of needed machines rises with more
complex scenarios and larger network and this pro-

cess is not comfortable to deploy all of this manually.
Here I use the Ansible script with the data generated
from Topology Generator. I conducted the following
experiments with our extension of the MPT tool to
demonstrate its capabilities. I created a simple topolo-
gies of three routers connected together in line and
compared it with topology of router, broker and router
connected in line as well. Example of only router
configuration is depicted in the Figure 2. For both of
these configurations I compared the throughput and
latency of these combinations and discuss the results
with supervisors and author of MPT. The experiment
show, that extended MPT can significantly help to test
various scenarios and network behaviours.

Throughput
I measured throughput only by load generators — Maes-
tro Sender and Maestro Receiver. Load generation
depends on the test properties. Maestro is able to cre-
ate unbounded rate test, during which it generates as
much load as it can. This type of test was used to reach
maximum handled rate of Qpid-dispatch and its result
is depicted in the Figure 3. However, the maximum
rate was not achievable on all topology types. Qpid-
dispatch offers two modes — standalone and interior,
where standalone works as single router machine in
the network, while interior type works with multiple
routers. The current version of Qpid-dispatch has an
ability to load balance when buffers are almost full.
This ability offers faster message delivery in cost of a
slower throughput. I compared standalone and interior
router as depicted in the Figure 3 as the first case study.

But, throughput can be influenced by other net-

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
[µ

s]

Percentile

Latency

Router latency
Broker latency

Figure 5. Latency chart showing the difference between router and broker latency at 80 % of maximum rate.
The router’s latency is significantly better than latency of Broker.

work devices. As you can see in the Figure 3, the lone
router (pink and red color) can reach around 90 000
messages per second, while lone broker reaches only
about 30 000 messages per second. However, when I
try to add another component, the throughput changes
significantly. The topology with three routers uses the
flow-control of interior setting which cause percepti-
ble throughput degradation of that network (shown by
green color). On the other hand, when I replace router
in the middle by broker, the throughput is raised to
50 000 messages per second. Thus you can see that
load balancer of Qpid-dispatch should be improved,
because throughput degradation is too high as I demon-
strated. However, It has to be said that high throughput
does not necessarily mean better performance. I dis-
cuss this in the Subsection 5.2.

Latency
Latency is measured only by Maestro Receiver from
certain load samples. Since the Broker is a distribution
service, which needs to store messages for some time,
or create and keep queues for clients, it has higher
requirements for system resources. On the other hand
Qpid-dispatch has only one purpose — to route the
messages. This makes it more faster than the Broker.
So high load can be unprofitable, especially in the
case of topology with broker. The broker can handle
less messages than router, but using router can raise
broker’s throughput since it can control the load. Thus
gives more time to broker to process messages even
with higher load.

In the Figure 5 you can see the latency difference

that I measured between those two services. You can
see the measured latency on specified topology of three
routers (red), and two routers with some middle-broker
(blue). The latency curve proves, that router is able to
deliver messages into its destination faster than broker,
because broker needs to store them in the memory. The
latency of the topology with broker reaches more than
1 000 µs; on the other hand, topology consisting of
routers has significantly better latency that tops around
256 µs. The important thing is, that both of those tests
were run on the same machines and with the same test
setting: 10 000 000 messages, 80% of maximum rate
with five parallel senders and receivers and 256 byte
message size.

Another interesting comparison is between the la-
tency of single instance router and broker. In the Fig-
ure 6 you can see the latency output from the test with
the same load of 70 000 messages per second. Broker
can reach this rate with additional queue settings. This
configuration improves the distribution of incoming
load between multiple queues. That causes that Bro-
ker is slightly faster than the router in 40% cases, but
even with that, router is faster in other cases. Router
latency has threshold around 60 µs, while Broker’s has
threshold over 1 000 µs. The conclusion is, that router
should be much faster than Broker during certain cir-
cumstances.

Agent Evaluation
Moreover, I will present some preliminary results with
using the agent extension and changing behavior of
topology depicted in the Figure 2. In the Figure 7 you

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
[µ

s]

Percentile

Latency

Router latency
Broker latency

Figure 6. Router and broker latency comparison during the same load. You can see that router’s latency is more
stable than latency of Broker.

can see throughput of few simple tests during which
middle router is restarted or shut down. The through-
put spikes are caused by these events. Since router
does not have any queues to store messages, the mes-
sages are then discarded and lost. However, the sender
does not receive acknowledgment of lost messages so
it is not router responsibility. In the Table 2 you can
see the duration of each executed operation and rate
of lost messages during the operation (with expected
amount of messages being 10 000 000). For example
during the restart, router was completely shutdown for
a second during which no messages arrived. However,
after the restart there was some time to balance the
load to the previous point. This leads to message lost
equals to 2 seconds rate.
Table 2. Summarization of lost messages during the
connection issues.

Operation Duration (seconds) Message Lost
None 0 None

Restart 1 46437
Shutdown 12 280572

Long Shutdown 89 1304451

The Figure 7 also shows, that test case with long
shutdown is longer about 10 seconds that other sce-
narios and the throughput after the shutdown is quite
higher. This means that router high throughput to even
the messages lost.

Latency of test cases cases with the agent function
demonstration is depicted in the Figure 8. You can
see that router is able to even the latency during the
restart and short shutdown with test run without any

unexpected behavior. On the other hand, long shut-
down (red) gets worse latency almost for 50 percentile
of messages.

6. Conclusions
In this paper, I introduced Messaging Performance
Tool and proposed improvements, necessary to extend
the capabilities of performance testing of wider range
of components. The main improvement is the new ex-
tension of MPT, which allows one to run external code
during the test. This ability enables behavioral testing
of MOM, such as the network service recovery time
during the crash, root device crash influence over the
topology, or influence of configuration changes made
on the fly. The other improvement is the development
of Topology Generator, which can significantly sim-
plify the process of test automation.

I evaluated created solution on series of experi-
ments with Qpid-dispatch and Messaging Broker; Mae-
stro is however fully compatible with any other mes-
saging services. This shows wide application for devel-
opers who want to test performance of their messaging
systems, different topologies or different components.

Acknowledgements
I would like to thank my supervisors, Ing. Tomáš
Fiedor and Ing. Zdeněk Kraus for their time. Also I
would like to thank my colleague and author of Mae-
stro, Bsc. Otavio Rodolfo Piske for his help and guid-
ance during the development and testing. This work is
realized in cooperation with Red Hat Czech, s.r.o.

 0

 10000

 20000

 30000

00:00 02:00 04:00 06:00 08:00

M
es

sa
ge

s
pe

r
se

co
nd

 [
m

sg
/s

]

Relative Time [minutes]

Throughput

Router long shutdown
Router shutdown

Router restart
Router normal

Figure 7. Router throughput comparison during the same load after different unexpected events.

 0.25

 1

 4

 16

 64

 256

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
[µ

s]

Percentile

Latency

Router long shutdown
Router shutdown

Router restart
Router normal

Figure 8. Router and broker latency comparison during the same load.

References

[1] Otavio Rodolfo Piske. Messaging performance
tool. [Online; visited 2017/10/15].

[2] Red Hat, Inc., Raleigh, North Carolina, U.S.
Red Hat JBoss AMQ 7.0 Using AMQ Bro-
ker, 2017. Available at https://access.
redhat.com/documentation/en-us/
red_hat_jboss_amq/7.0/pdf/using_
amq_broker/Red_Hat_JBoss_AMQ-7.
0-Using_AMQ_Broker-en-US.pdf.

[3] Red Hat, Inc., Raleigh, North Carolina, U.S.
Red Hat JBoss AMQ 7.0 Using AMQ In-

terconnect, 2017. Available at https://
access.redhat.com/documentation/
en-us/red_hat_jboss_amq/7.0/
pdf/using_amq_interconnect/Red_
Hat_JBoss_AMQ-7.0-Using_AMQ_
Interconnect-en-US.pdf.

[4] Edward Curry. Message-oriented middleware. On-
line. [visited 2017/12/21].

[5] OASIS. Advanced Message Quieing Protocol
(AMQP) Version 1.0, 2012.

[6] Network automation with ansible. Online. [visited
2018/03/11].

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf

	Introduction
	Messaging Performance Tool
	Maestro-Agent Extension
	Topology Generator
	Experimental Evaluation
	Conclusions
	References

