
http://excel.fit.vutbr.cz

Automatic Web Page Reconstruction
Viliam Serečun*

Abstract
Many legal institutions require a burden of proof regarding web content. This paper deals with
a problem connected to web reconstruction automation and web archiving. The main goal is to
provide an open source solution which will satisfy legal institutions with their requirements. This work
presents two main products. The first is a framework which is a basic building block for developing
web scraping and web archiving applications. The second product is a web application prototype.
This prototype shows the framework utilization and the solution for institutions requirements. The
output from the application is MAFF archive file which comprises a reconstructed web page, web
page screenshot, and meta information table. This table shows information about collected data,
server information such as IP addresses and ports of a device where is the original web page
located, and time stamp.

Keywords: web reconstruction — web scraping — web indexing — Lemmiwinks — web page —
MultiFIST

Supplementary Material: Lemmiwinks GitHub — MultiFIST GitHub
*xserec00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

With a new form of crime which is evolving on the
Internet such as a drug market or people trafficking,
legal institutions demand to collect and archive pub-
lished information by cybercriminals for a burden of
proof. However, there is not an open source solution
to offer this functionality.

In this work, I introduce web reconstruction ap-
proaches. There are two main problems related. The
first is a selection of web archive format. There is not
a standard archive format and only a few of them are
fully supported by web browsers. The second prob-
lem is an HTML document structure and complexity
related to modern web pages, especially with dynamic
content.

Most of the current tools and solutions give par-
tial functionality related to automation of web recon-
struction and web scraping. Commercial solutions are
mostly focused on web scraping such as Dexi.io [1] or
Scrapinghub [2], and either open source solution [3]
provides similar approach. There are also browser ex-
tensions [4, 5] for web archiving, but it is not possible
to use them for automation.

However, any of these solutions provide a com-
prehensive platform for web reconstruction and web
scraping. I developed a framework and web appli-
cation, where I tried to connect archiving, scraping
and indexing of web page content. The Lemmiwinks
framework provides a set of tools to archive content
and extract information from it. Upon this framework,
I developed a web application having an ability to
schedule scraping and archive tasks. This application
also serves as a search platform where a user can look
for stored information and even visualize the web page
snapshot.

My current solution provides many possibilities to
develop automation tool to archive web content and
extract information from it. The framework supports
accessing websites with and without JavaScript render-
ing of web content. The currently supported archive
format is Mozilla Archive Format. The web appli-
cation MultiFIST (Multi-Functional Index Scraping
Tool) is a demonstration of the possible future prod-
uct. The goal of accessing archived website was to
create feeling that behaviour of an accessed archived
web page is the same as the original one stored on the

http://excel.fit.vutbr.cz
https://github.com/nesfit/Lemmiwinks
https://github.com/nesfit/MultiFIST
mailto:xserec00@stud.fit.vutbr.cz

Internet.

2. Web Reconstruction
During the accessing the web page there are two ap-
proaches to reconstruct the web page content:

• with JavaScript execution when the content is
reconstructed with dynamic elements already
rendered. A drawback of this solution requires
more CPU power and it is slow, but it provides
better results on dynamic web content.

• without JavaScript execution. The web page
is not rendered before archiving. This fact can
cause a problem with dynamic content render-
ing. This approach is extremely fast because it
requires just HTTP GET requests when the re-
ceived content is stored directly into an archive.

2.1 Mozilla Archive Format
MAFF file format was designed to store multiple web
pages into a single archive. The archive is an ordinary
zip file. The design of this format allows storing even
dynamic content like videos or audio files. It also
allows storing meta-data of saved resources [6].

The MAFF specification defines four conformance
levels. Elementary, basic, normal and extended levels
define different requirements for reading and writing
implementation of the standard. The main differences
among these levels are specifications of storing and
accessing meta-data stored in archives [7].

Figure 1 shows the directory structure of MAFF
archive satisfying basic level [7].

Figure 1. MAFF archive structure comprises a root
directory. The root directory has 1 to N
sub-directories. Each sub-directory represents one tab.
There is an index file, index.rdf (optionally), and
index files directory inside the sub-directory. The
”xyz” extension of index file depends on the file
content type. If the index file consists of external
resources, these resources will be stored in the
index files directory. The collected meta information
from resources is in the index.rdf file [7].

The RDF file usually include the following infor-
mation [7]:

• The file name of the main document.
• The original URL the page was saved from.
• The date and time of the save operation.
• The title of the page, if present.
• The character set to use when parsing files that

are part of the page.

2.2 Web Page Structure
Each web page is constructed from various elements.
Some of those elements can refer to external resources.
These resources can be images, videos, scripts etcetera.
The elements referencing to external resources can
cause the recursion. For example, linked CSS file can
refer to another CSS file [8, 9].

Figure 2. Web Page document structure. Red arrows
represent recursion where the resources can refer to
other resources.

Figure 2 presents possible parts of web page docu-
ment which can cause recursion. During the website
content reconstruction, it is necessary to take these as-
pects into consideration. Ignoring recursive resources
can cause insufficient results in course of archive ren-
dering.

2.3 Web Page elements
The following subsection shows some examples of
web page elements to create clearer vision how ele-
ments can refer to external resources and even how
they can create a recursive reference as was discussed
in the previous subsection. Figure 3 shows mentioned
elements.

External resources can be referenced using URL
addresses. URL address path can be in absolute or
relative format. Relative paths are resolved using base
URL address path. Some elements can hold a spe-
cial reference type called data URI. This means that
resource data are encoded as BASE 64 string. This
string is placed in data URI scheme [10].

(a) HTML elements

<i frame s r c =” u r l ” />

<s c r i p t s r c =” u r l ”>< / s c r i p t>

(b) CSS elements

@include ” v e v e r k a . c s s ” ;
@include u r l (” / v e v e r k a . c s s ”) ;
background : u r l (v e v e r k a . g i f) ;

Figure 3. HTML and CSS elements referencing to
external resources [8, 9].

3. Framework
The Lemmiwinks framework provides basic building
platform for developing applications focused on web
archiving and scraping. This framework is developed
in Python 3 and compared to other open source solu-
tion [11, 3] provides asynchronous HTTP clients using
the asyncio standard library [12]. The advantage of
this solution is that the framework also provides HTTP
client developed under Selenium library [13] to render
dynamic content. It is possible to divide it into four
major modules.

• HTTP client
• Parser
• Archive
• Extractor

3.1 HTTP Client
HTTP client module implements two types of clients.
The first is asynchronous client using asyncio and aio-
http library[12, 14]. The second client uses Selenium
library. Each of Selenium instance is running asyn-
chronously using threads. This approach allows faster
and more efficient websites processing. The Selenium
client is managed by Selenium pool. The Selenium
pool functionality is described in Figure 4.

A Selenium library wraps real browsers. The in-
stances in the framework are created by a factory. This
factory can currently work with Firefox, Chrome, and
PhantomJS browsers types. The last type is browser
without a user interface, therefore it saves some re-
sources.

3.2 Parser
In the parser module, I implemented two types of
parsers. The CSS parser, which searches for import
and URL tokens. The parsers allow to extract external
references and update them. The similar functionality
provides HTML parser. This parser can also extract

Input Start

Input == Request Release inst

Stop

Check inst list

Free inst in list? len(list) < max

Acquire inst Create inst

Instance Stop

Wait in queue

yes

no

yes

no

yes

no

Figure 4. Selenium Pool functionality described by
the flowchart. The pool manages instances of
Selenium clients. The input can be a request or a
Selenium instance. A running task uses the pool to
acquire a Selenium client or to release an instance. If
a requested instance does not exist and Selenium pool
does not manage a specified instance limit, the pool
will create a new client instance. Otherwise, a task has
to wait in a queue until some instance is released.

all textual data from web content to help Extractor
module with data extraction.

3.3 Archive
This module implements two archiving modes. Modes
reflect web reconstruction types described in previous
section. Currently supported archive format is MAFF.
The archive module is designed to support multiple
tab archiving. This is achieved using general interface
implementation. A programmer can implement cus-
tom archiving process using this interface. Archiving
processes are then added to a list. This list is processed
and all data are stored into an archive file.

Depending on archiving mode JavaScript resources
have to be handled properly. If the content is ren-
dered during archiving process, scripts will have to be
deleted. It avoids element double rendering.

3.4 Extractor
The last module used for data extraction is the smallest
one. Currently supported data extraction type is by
regular expressions. I implemented a generic inter-
face which allows other developers to implement the

extractor upon their needs.

4. Web Application

Multi-functional index scrapping tool is demonstra-
tion application which allows user administration task
scheduling, and web archive storing. It also allows
search scarped information. The application is devel-
oped using Django framework.

4.1 Scheduler
Task scheduling is handled by APScheduler library
[15]. The application supports task creation, task edit-
ing, task pausing and resuming. Each task consists
of several jobs. An archiving job is executed as a
subprocess and is parallelized with other jobs. Each
subprocess can handle one web page. A task can pro-
cess one to five web pages with an unlimited number
of scraping rules.

4.2 User Interface Design
The user interface design was meant to be simple and
easy to use. After signing in to the application a user is
redirected into task list view. The view shows Figure
5a. This part allows a user to manage tasks (edit, delete,
pause resume) or create a new task.

Each task has its own detailed view. This view
shows URL address list of a targeted web pages and
scrapping rules applied during data extraction. It also
contains search form where a user can search for ex-
tracted information from specified rules. Bellow the
searching for is a list of archived web pages. Figure 5c
shows a described view.

Figure 5d shows a detail view of task where it is
possible to see scrapped data from ”the pirate bay” web
page, especially Bitcoin and Litecoin address placed
on its content.

The last view in Figure 5b shows a list of scrapping
rules. This view is accessed true navigation menu and
allows a user to create a new rule, edit existing rule or
delete unused rule.

5. Conclusions
This paper described a solution for automating web
page reconstruction. The result of this work is Lemmi-
winks framework and demo application demonstrating
framework possible use. The framework support re-
construction with and without dynamic content render-
ing. Example of a reconstructed web page using the
framework shows Figure 6.

However, the framework has some limitations on
web pages using Captcha or other advanced tools against

web scraping. This is causing a problem when the re-
quested content is not reconstructed.

The advantage of my solution is flexibility during
application development. A developer can use the
framework to optimize needs of requirements. The
framework also provides a complex platform for web
archiving and web scraping, which other solutions
[1, 3] do not provide.

The future work will be focused to optimize Lem-
miwinks framework especially reconstruction using
Selenium library can be written more efficiently. One
of the other improvement is to implement captcha re-
solving and adding a module allowing for signing in
to websites which require authentication.

Acknowledgements

I would like to thank my supervisor Mr. Vladimı́r
Veselý for his help during development part of this
project and to Mr. Martin Vrábel for suggestions.

References
[1] Available at https://dexi.io/. Online; ac-

cessed 8 April 2018.

[2] Available at https://scrapinghub.
com/. Online; accessed 8 April 2018.

[3] Scrapy. Available at https://scrapy.
org/. Online; accessed 8 April 2018.

[4] Danny Lin. webscrapbook. Available at
https://github.com/danny0838/
webscrapbook. Online; accessed 8 April
2018.

[5] Paolo Amadini Christopher Ottley. Mozilla
Archive Format, with MHT and Faithful
Save. Available at https://addons.
mozilla.org/en-US/firefox/addon/
mozilla-archive-format/. Online;
accessed 8 April 2018.

[6] Paolo Amadini Christopher Ottley. Fea-
tures of the MAFF file format. Avail-
able at http://maf.mozdev.org/
maff-file-format.html. Online;
accessed 8 April 2018.

[7] Paolo Amadini Christopher Ottley.
The MAFF specification. Avail-
able at http://maf.mozdev.org/
maff-specification.html. Online;
accessed 8 April 2018.

[8] Tab Atkins and Simon Sapin. CSS Syntax Mod-
ule Level 3. Available at https://drafts.

https://dexi.io/
https://scrapinghub.com/
https://scrapinghub.com/
https://scrapy.org/
https://scrapy.org/
https://github.com/danny0838/webscrapbook
https://github.com/danny0838/webscrapbook
https://addons.mozilla.org/en-US/firefox/addon/mozilla-archive-format/
https://addons.mozilla.org/en-US/firefox/addon/mozilla-archive-format/
https://addons.mozilla.org/en-US/firefox/addon/mozilla-archive-format/
http://maf.mozdev.org/maff-file-format.html
http://maf.mozdev.org/maff-file-format.html
http://maf.mozdev.org/maff-specification.html
http://maf.mozdev.org/maff-specification.html
https://drafts.csswg.org/css-syntax-3/

csswg.org/css-syntax-3/. Online, ac-
cesed 8 April 2018.

[9] Mozilla. HTML elements reference. Available
at https://developer.mozilla.org/
en-US/docs/Web/HTML/Element. On-
line; accessed 8 April 2018.

[10] Larry Masinter. RFC 2397: The “data” URL
scheme,”. IETF, August, 1998.

[11] Mikhail Korobov. Splash - A javascript render-
ing service. Available at https://github.
com/scrapinghub/splash. Online; ac-
cessed 8 April 2018.

[12] Python Software Foundation. The Python Stan-
dard Library. Available at https://docs.
python.org/3/library/index.html.
Online; accessed 8 April 2018.

[13] Selenium. Available at https://www.
seleniumhq.org/. Online; accessed 8 April
2018.

[14] Aiohttp contributors. Welcome to AIO-
HTTP. Available at https://aiohttp.
readthedocs.io/en/stable/. Online;
accessed 8 April 2018.

[15] Alex Grönholm. Advanced Python Sched-
uler. Available at https://apscheduler.
readthedocs.io/en/latest/. Online;
accessed 8 April 2018.

https://drafts.csswg.org/css-syntax-3/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://github.com/scrapinghub/splash
https://github.com/scrapinghub/splash
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://aiohttp.readthedocs.io/en/stable/
https://aiohttp.readthedocs.io/en/stable/
https://apscheduler.readthedocs.io/en/latest/
https://apscheduler.readthedocs.io/en/latest/

(a) Task list view (b) Rule list view

(c) Task detail view

(d) Web archive detail view

Figure 5. User interface of MultiFIST application

(a) Reconstructed web page

(b) Meta information table

Figure 6. Example of a reconstructed web page with collected information.

	Introduction
	Web Reconstruction
	Framework
	Web Application
	Conclusions
	References

