
http://excel.fit.vutbr.cz

Artificial Intelligence for a Board Game
Dominik Tureček*

Abstract
Dice Wars is a discrete stochastic board game. This work proposes an artificial intelligence able
to play the game. Several strategies for AI players were implemented using rule-based approach
and expectiminimax algorithm. A client-server implementation of the game was created to test
the proposed AI players. Statistics from games played with these were collected. Data from
the experiments are evaluated and discussed. Proposed single-turn expectiminimax algorithm
can accurately estimate game state in a next turn and has a 34.9 % win rate in games against 5
opponents. Using the implementation and data collected in this work, more sophisticated AI players
involving reinforcement learning could be created.

Keywords: Discrete Stochastic Games — Expectiminimax — Artificial Intelligence

Supplementary Material: Source Code
*xturec06@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Board games are popular target for developing artificial
intelligence players [1], [2], [3]. This paper proposes
an AI for Dice Wars1. As the original implementation’s
source code is not public, a client-server implementa-
tion was developed for this paper.

The games is turn-based, for which reason it is
relatively uninteresting from the point of game theory,
zero-sum, and stochastic. It is played on a stochastic
board.

Because it would be difficult to use strategies by
TD-Gammon[3], this work uses rule-based approach.
Statistics where gathered during experiments with cre-
ated AI players. These data will serve as a basis to
create machine-learning algorithms.

2. Dice Wars
Dice Wars is a turn-based strategy game played with
two to eight players on a board divided into territo-
ries. Each territory contains a number of dice. These
dice determine a player’s presence and strength in the
territory and are rolled when attacking adjacent ter-
ritories controlled by opponent players. The goal of

1http://www.gamedesign.jp/flash/dice/dice.
html

Figure 1. Example of a game board used in Dice
Wars. Each colour represents territories controlled by
one player. The number in each territory corresponds
to its strength. If two territories share at least one
edge, they are considered adjacent.

the game is to conquer all territories. An example of
a five-player game is shown in Figure 1.

2.1 Setup and Terminology
The game board is randomly generated as follows: At
first, 29–31 territories are generated using a seed-like
algorithm. Territories are randomly assigned to indi-

http://excel.fit.vutbr.cz
https://github.com/dturecek/dicewars
mailto:xturec06@stud.fit.vutbr.cz
http://www.gamedesign.jp/flash/dice/dice.html
http://www.gamedesign.jp/flash/dice/dice.html

Figure 2. Picture showing a region controlled by
a green player. The region has size of three and
consists of one territory with strength of seven and
two territories with strength of one. The green player
has a score of three.

vidual players. Then, for each player, a predefined
number of dice is distributed in territories owned by
the player. Lastly, the player order is determined ran-
domly.

The number of dice in a territory represents how
much power a player holds over it and is referred to
as the territory’s strength. Strength of a territory can
neither be lower than one nor higher than eight at any
given time.

A region is a group of adjacent territories con-
trolled by a single player. An example of a region is
shown in Figure 2. Score of a player is the number of
territories in his largest region.

2.2 Player’s Turn
On each turn, a player has the option to attack as many
territories held by his opponents as he wants, provided
that the following two rules are satisfied:

• To attack an enemy territory, it must be adjacent
to a player’s territory from which the attack is
initiated.
• The territory from which the attack is initiated

has strength of two or more.

Whenever a player cannot or doesn’t wish to make
another attack, he or she declares that his turn has
ended.

Then a number of dice equal to the player’s score
is distributed randomly across all territories under the
player’s control. Dice that cannot be placed due to the
limit of eight dice per territory are kept in reserve up
to the limit of sixty-four and can be distributed at later
turns.

Figure 3. Red player chose to attack the blue terriory.
Red rolled four dice with whereas blue rolled three.
Red rolled higher, so he took control of blue’s
territory, placing there three dice and leaving one die
in the territory from which the attack started.

2.3 Attack’s Resolution
When a player starts an attack, a battle occurs. To de-
termine the result of a battle, both players roll number
of dice corresponding to the strength of their territory
involved in the battle. The player with higher roll is
the winner. In case of a tie, the defender wins.

In case the attacker wins the battle, he gains control
of the attacked territory. Defender’s dice from the
territory are removed and the attacker moves there
all dice except one from the territory from which he
attacked.

If the attacker loses the battle, the number of dice
in the territory from which he attacked is reduced to
one and nothing happens to the attacked territory.

An example of a battle can be seen in Figure 3.

3. AI Player Agents
In this section, three AI player strategies that were
proposed by this work are described, with each of
these having higher complexity than the previous one.

3.1 Naı̈ve Random Player
This strategy is the simplest possible. Each turn, the
naı̈ve player iterates over all his territories in random
order. For each one that has strength higher than one,
it checks all adjacent territories and if any of them
belongs to another player, it is picked as a target for
an attack. After the attack, the player starts over. The
player ends its turn if and only if no further attack can
be made.

This strategy will serve as a baseline to assess the
performance of the other AIs.

3.2 Strength Difference Checking
This player attempts to make reasonable attacks. It
judges the strength difference (SD) associated with

every possible attack. Then he makes the one with the
most favourable SD.

If there is no possible move with strength differ-
ence higher or equal to zero, the player ends its turn.

3.3 Single Turn Expectiminimax
This variant uses two-ply expectiminimax algorithm
[4] to estimate game state after a single opponent’s turn
to choose optimal move. As a heuristic measure of
success, it uses number of held territories at a start of
player’s turn. When looking for a possible move, the
player searches for such that has the highest chance to
increase this number. To achieve this, moves with high-
est probability of conquering a territory and holding it
over a next player’s turn are prioritized.

Let Pa→d
2 be a probability that a player attacking

a from territory a will conquer a defending territory d.
Then the estimated probability of successfuly attacking
a territory and then holding it through next player’s
turn can be formally described as follows:

Pad = Pa→d×
k

∏
i=1

(1−Pni→d), (1)

where ni are neighbours of territory d that are con-
trolled by an opossing player.

However, this estimate is limited because it treats
individual territories as independent and omits any
relation between them. For example, this doesn’t take
into account the possibility that a is taken over by an
opponent and d is then attacked from a. Furthermore,
in games played with more than two players, one of the
neighbours of d might be conquered by an opponent
with higher strength.

From all possible moves with calculated probabil-
ity higher than 20 %3, the highest one is chosen. If
no such move is found, the agent then looks if there
is a possible move from a territory containing eight
dice to prevent a situation where no player is willing
to make a move. Otherwise, the agent ends its turn.

4. Experiments
To test the AI agents described in previous section,
a client-server implementation in Python was devel-
oped. Server handles the game logic and receives
moves from the clients which can be controlled either
by a human player or an artificial intelligence. Client

2General formal description of this probability is non-trivial.
However, as the number of dice rolled is limited, it is not needed
for this work. For this reason, the probabilites were precalculated
numerically for each possible combination of dice.

3This treshold was chosen ad hoc and if changed could proba-
bly slightly affect the performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 3 4 5 6 7 8

P
ro

b
ab

il
it

y
 [

%
]

Number of players

Figure 4. Win rate of players playing first in respect
to number of players in a game. These data were
gathered using only random naı̈ve players.

controlled by a human player uses a GUI implemented
using PyQt, a Python binding for Qt framework4.

The most important metric that could be measured
during experiments is win rate. However, the game
gives an advantage for the player playing first, so win
rate itself may be affected by the rate of which one is
the first player, even though the advantage is lower in
games played with larger number of players. To show
this, a thousand games were played for each number
of players with naı̈ve player. Figure 4 shows win rate
when starting as a first player.

Therefore, the rate at which a player wins despite
the disadvantage of starting second is used as another
metric. On top of that, in games played by more than
two players, we use overall ranking of a player to get
finer assessment of its performance.

All of the experiments described in the following
sections were carried out with games that used ran-
domly generated game board and random player order.

4.1 Naı̈ve Player vs Strength Difference
A series of ten thousand games were played between
Naı̈ve Player and Strength Difference Checking (SDC).

Table 1 shows data from these games. SDC has
won 63.5 % of these games. In addition, it was able
to win 40.4 % of games it started from the second
position, whereas naı̈ve player only won 12.5 % in
such situation.

For each possible combination of the two AIs,
a series of thousand multi-player games were played.
From the collected data shown in Figure 5 can be seen
that even with just the preference of highest strength
difference, SDC is able to win more games than the
naı̈ve player.

4https://www.qt.io/

https://www.qt.io/

Table 1. Data from the two-player games between
naı̈ve player and strength difference checking (SDC).
The table shows wins rate and a percentage of games
starting as second that were won (Won 2nd).

Won Won 2nd
Naı̈ve 36.5% 12.7%
SDC 63.5% 40.4%

Table 2. Data from two-player games between STE
and naı̈ve player or SDC. The table shows win rate
and number of games won despite starting second
(Won 2nd).

Won Won 2nd
STE 75.7% 60.9%
Naı̈ve 24.3% 9.9%

STE 48.0% 24.3%
SDC 52.0% 29.1%

 0

 10

 20

 30

 40

 50

3 4 5 6 7 8

W
in

 r
at

e
[%

]

Number of players

Naive SDC

Figure 5. Win rate of naı̈ve player and SDC and STE
in games of three to eight players. These data were
collected from every possible combination of the two
players.

4.2 Single Turn Expectiminimax
A series of two-player games with random initializa-
tion were played against both naı̈ve player and SDC.
Table 2 shows data from these games. Single turn
expectiminimax (STE) performs better against naı̈ve
player than SDC does, winning 75.7 % of games and
60.9 % started from second position.

However, in two-player games played against SDC,
STE performs slightly worse, winning only 48.0 % of
games. STE also wins only 24.3 % of games when
starting second, whereas SDC wins 29.1 % of games
in this situation.

However, as shown in Figure 6, STE was able
to achieve higher win rates than SDC when playing
games with three or more players.

For each move of the STE, the estimated proba-
bility of successfuly attacking and holding a territory

 0

 10

 20

 30

 40

 50

3 4 5 6

W
in

 r
at

e
[%

]

Number of players

Naive
SDC

STE

Figure 6. Win rate of naı̈ve player, SDC and STE in
games of three to six players. These data were
collected from every possible combination of the three
players.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

R
es

u
lt

s
[%

]

Predicted probability [%]

2 players
Multi-player

Ideal

Figure 7. Success rate of attacking and holding
a territory through opponents’ turns in relation to
calculated probabilities. This figure shows data
collected from both two-player and multi-player
games. The ideal line shows where the prediction
would match the results.

(Eq. 1) were collected alongside the actual outcome.
Figure 7 shows collected data. The probability es-
timation is quite accurate and very similar for both
two-player and multi-player games.

Up to the probability of around 65 %, the actual
results are better than the estimated probability. This is
due to the fact, that the estimation is calculated with the
assumption that all enemies will attack, which is not
the case. On the other hand, for the probabilities higher
than 80 %, the actual results are worse. This is because
of the limits of used approximation as described in 3.3.

5. Conclusions
In this paper, the game of Dice Wars was presented.
Three rule-based strategies that could be adopted by
AI players were introduced. To test these strategies,
a client-server implementation of the game was cre-
ated. The experiments showed that even with a simple
heuristic such as the probability to conquer and hold
a territory to the next turn can increase chances for
winning. The single-turn expectiminimax algorithm
was able to successfuly predict this probability and has
win-rate of 34.9 % in 6-player games.

In the future, the data gathered during these ex-
periments can be used for implementing a learning
algorithm for an AI player. In addition, thanks to the
created implementation, it would be easy to create new
AI clients without the need to provide the game logic.

Acknowledgements
I would like to thank my supervisor Karel Beneš for
his help.

References

[1] Jan Černohub. Umělá inteligence pro deskovou
hru carcassonne. Bakalářská práce, Vysoké učenı́
technické v Brně, Fakulta informačnı́ch tech-
nologiı́, 2011.

[2] David Silver, Aja Huang, and et al. Chris J. Mad-
dison. Mastering the game of go with deep neural
networks and tree search. In Nature, pages 484–
489, 2016.

[3] Gerald Tesauro. Programming backgammon using
self-teaching neural nets. In Artificial Intelligence,
pages 181–199, 2002.

[4] Stuart J. Russel and Peter Norvig. Artificial Intelli-
gence: A Modern Approach, 3rd ed. Prentice Hall,
2010.

	Introduction
	Dice Wars
	AI Player Agents
	Experiments
	Conclusions
	References

