
http://excel.fit.vutbr.cz

Implementation of a simple speech recognition
engine for Android
Eduard Čuba

0 25 50 75 100 125 150 175 200
Sample

2000

0

2000

4000

6000

Am
pl

itu
de

Frame (200 samples)

0 10 20 30 40 50 60 70 80
Mel bank vectors

0

5

10

15

20

M
el

 b
an

k

Abstract
The aim of this project is to implement speech recognition software for Android platform. This paper
outlines fundamental components of a speech recognizer and reviews techniques used to optimize
the process of speech recognition on Android devices. At first, it examines the implementation of
the audio and speech feature extraction process. Then, it describes the design and implementation
of a decoder used to process speech features into transcription utilizing only limited resources
of a mobile device. The project is split into modules formed into an Android library, which should
be easily expandable and equipped with custom models tailored for the desired use. Later, this
paper discloses various approaches to modeling abstract data structures for recognition network
representation, as well, as ways of further development and applications of this project.

Keywords: Speech recognition – Dynamic decoder – Android – NDK – mobile devices

Supplementary Material: Demonstration Video
xcubae00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The domain of automatic speech recognition is one of
the most discussed topics in the world of computer sci-
ence. However, most of the speech recognition is still
performed in the cloud by powerful and often special-
ized hardware. Possibilities of getting a customizable,
real-time speech recognition for a specific use-case,
without an internet connection and paid cloud APIs,
are substantially limited. The goal of this project is to
create a portable, easy-to-use library, which provides
end-to-end access to speech recognition on Android
platform and empowers the user to use custom acoustic
and language models.

The main concern is the limited amount of re-
sources of conventional Android phones. For this
reason, real-time recognition must be run within sev-
eral hundred megabytes of operating memory using

a reasonable amount of CPU time, not significantly
affecting the functionality of a device. Therefore, it is
necessary to introduce various optimizations, includ-
ing a so-called dynamic decoder and voice activity
detection – to suspend demanding feature extraction
and decoder processes whenever possible. Due to these
limitations, the decoder will work with a limited lan-
guage model, specially designed for desired use. For
example, such model can contain a subset of conversa-
tional language for phone calls transcription or number
recognition.

From the existing solutions, it is worth mentioning
the Android internal speech recognizer, which may
work in offline mode. However, it is more suitable for
voice commands rather than continual recognition, and
it is not possible to equip the recognizer with custom
models. On the other hand, there is an open-source al-

http://excel.fit.vutbr.cz
https://www.youtube.com/watch?v=TQfB4nU02ls
mailto:xcubae00@stud.fit.vutbr.cz


ternative PocketSphinx1, a lightweight implementation
of CMUSphinx toolkit. But still, being quite complex
and complicated makes it hard to use for not involved
developers, and it is mostly used with small models
for application control purposes.

In this project, we focus on an implementation of
a simple speech recognition engine, including all the
mandatory components for reasonable recognition re-
sults. The acoustic model is based on a feed-forward
neural network, which might be trained for a particular
purpose. Similarly, we take the statistical approach
to language modeling, enabling the user to deliver his
own language model based on recordings and tran-
scriptions from a target area. All the core components
are implemented in a portable way, making it possible
to deploy the library to any platform which provides
sufficient resources for the desired use.

Particularly, we focused on an implementation of
a phoneme posterior probability extraction based on a
neural network and dynamic decoding, that might run
in real-time on a mobile device. With this in mind, the
project might be a valuable resource for mobile and
embedded developers seeking for speech recognition
engine to integrate with their applications.

2. Audio processing
The very first step of speech recognition itself is to
obtain a source recording. In order to use full comput-
ing potential of a target platform, the whole process is
implemented in a language, that might be compiled to
low-level code for the selected architecture. Having
Android as a target platform, we used toolkit Android
Native Development Kit (NDK) with the C++ program-
ming language. NDK toolkit provides an interface to
system audio devices using OpenSL ES framework,
including the system audio recorder.

Audio recording

Downsampling 
Framing 

Voice
signal

Spectral analysis

Hamming window 
Fourier transform 

Voice activity detection 

Frames 

Mel filter banks

Mel filter banks 
Mean normalization 

Power
spectrum

Audio
features

Figure 1. A block diagram of audio processing

For the speech recognition system, we use a fre-
quency band from 64Hz to 3800Hz. The sampling
frequency, according to the Nyquist theorem, has to
be at least two times higher than the highest listed fre-
quency. That makes the sample rate 8000Hz a good

1https://cmusphinx.github.io/

choice between accuracy and performance. Although,
input data may be sampled at a different sample rate
since the only guaranteed sample rate on the Android
devices is 44100Hz. Most of the Android devices,
however, support recording at many different sample
rates using an internal resampler. As of Android 5.0
(Lollipop), the audio resamplers are entirely based on
FIR filters2, but although the sample rate of 8kHz is
supported on most of the devices, the actual list of sup-
ported sample rates is vendor specific. Therefore, in
order to support all the devices, it is necessary to pro-
vide the recorder with a custom resampler including
an appropriate low-pass filter to avoid aliases.

2.1 Spectral analysis
To get an estimation of frequencies involved in a speech
over time, the speech has to be cut into smaller frames,
on which spectral analysis will be performed. A com-
mon approach to audio framing for speech recognition
is to use 25ms long frames with 10ms step. Cutting
down signal to frames may cause, that a ripple will be
cut off at its peak, possibly compromising the results
of the spectral analysis. For this reason, it is necessary
to apply appropriate window function.

0 25 50 75 100 125 150 175 200
Sample

2000

0

2000

4000

6000

Am
pl

itu
de

Frame after application of Hamming window

Figure 2. A speech frame after application of
Hamming window function

Later on, data about frequencies involved in frames
are used for audio feature extraction. Fundamental
frequencies in a frame are accentuated by computing a
power spectrum of the signal.

2.2 Voice activity detection
In order to save device resources and enhance the re-
sults of mean normalization, we use simple voice/silence
detection. If the recorder is in a silence state, it is pos-
sible to suspend both feature extraction and decoding,
keeping CPU usage by the recognizer close to none.

2https://developer.android.com/ndk/guides/audio/sampling-
audio.html



0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

0

50000

100000

150000

200000

250000

300000

Po
we

r

Figure 3. Power spectrum of the frame

This detection is performed by computing the en-
ergy of each frame and comparing against a statisti-
cally chosen threshold. After series of silent frames of
a specified length, the recognizer enters a suspended
mode, in which incoming frames are stored to a queue
of restricted length. This queue is used for smoothing
the transition to a active state. Since the threshold
might be crossed by short, but intensive sounds like
clapping or typing on a keyboard, it is convenient to
introduce an activation smoothing mechanism. The
recorder becomes active only after series of frames
classified as a speech. If the series is long enough,
the speech is considered to be confirmed and the most
recent frame is passed to further processing along with
preceding frames from the queue. The length of the
queue is determined by a rolling window width on
feature extraction model input, increased by a number
of frames required for speech activation.

2.3 Mel filter banks
The idea behind using Mel frequency scaling is to
simulate how the human ear works, having a better
resolution at lower frequencies. Thus, the power spec-
trum is divided into 26 overlapping bands, on which
24 triangular filters called banks are applied.

2.4 Mean normalization
To find out whether specific Mel banks are significant
in particular frames, their values have to be normalized
– showing the difference between bank mean and its
current value. Since the background noise may change
over time, it is necessary to normalize against recent
samples only.

We used exponential function f (x) = bx with base
b∈ (0,1) to restrain the negative impact of older frames
by decreasing their weight over time. For example,
if a 5 second old sample should be included with
weight 0.5, using sample rate 8000, and frame step

0 5 10 15 20
Filter

3

2

1

0

1

2

3

4

Po
we

r

Figure 4. Normalized Mel filter bank values of the
frame

80 samples, than the base parameter can be expressed
as b = 5∗ 8000

80
√

0.5 = 500
√

0.5. Generally, mean value M
for bank m for sample n+ 1 with base b can be ex-
pressed by the following formulas:

Sn+1[m] = Bn+1[m]+bSn[m] (1)

Mn+1[m] =
Sn+1[m]∫

∞

0 bxdx
(2)

Formula 1 computes a weighted sum of the sam-
ples in a new time step. Subsequently, formula 2 com-
putes new mean value M by dividing sample sum by
total weight represented by area under the exponential
curve of f (x) = bx from zero (new sample) to infinity.

3. Speech feature extraction
The process of speech feature extraction describes a
transformation of acoustic features retrieved from the
audio signal to speech features used for language mod-
eling. In this work, these features are represented
by single state posterior probabilities of phonemes in-
volved in particular speech frames. The speech feature
extraction model is defined by a feed-forward artificial
neural network (ANN), which may be trained for a
task-specific purpose. We use split context ANN [1]
with a bottle-neck inside [2]. For the most part, the
performance of feature extraction depends on the size
of a neural network. Stacked filter banks are used as
an input to the neural network. Each input vector rep-
resents the progress of individual Mel filter banks over
a time period (15 frames).

Admittedly, this part is one of the most significant
bottlenecks in the speech recognition process. Conven-
tional speech recognizers often use more than 2000
perceptrons in hidden layers of the neural network,
what is hardly computable in real-time on a mobile de-
vice. The practical output of this part is a system built



0 10 20 30 40 50 60 70 80
Mel bank vectors

0

5

10

15

20

M
el

 b
an

k

Figure 5. Visual representation of stacked Mel filter
banks over period of 90 samples.

for layer-wise parallelized computation of phoneme
posterior probabilities using a neural network.

3.1 Performance comparison
For testing purposes, we used an five-layer ANN, in-
cluding one bottleneck layer, trained on TED-LIUM
corpus [3]. Since the size of a single layer can be more
than 500 perceptrons, the task might have to be par-
allelized among several CPU cores. We discovered,
that for bigger networks (more than 500 perceptrons
in a layer) it is necessary to use appropriate single
instruction multiple data (SIMD) instruction set with
single-precision floating point representation (32 bit).
Specifically, we used SIMD instruction set extension
NEON on 64-bit ARM architecture (used in the most
of modern Android devices).

The most significant difficulties of the feature ex-
traction process are linear algebra operations, espe-
cially vector-matrix multiplication. For this reason,
it is important to choose a suitable linear algebra li-
brary with support of vectorization on a platform given.
Since most of the Android devices use ARM architec-
ture, we decided to use C++ library Eigen with native
NEON support. In table 1 and figure 6, we compare
the time required to perform feature extraction of 30
second long recording on a single-core – using chipset
Qualcomm MSM8953 Snapdragon 625 (Octa-core 2.0
GHz Cortex-A53).

Table 1. The time required to perform a feature
extraction from 30-second long recording on a single
core using a 5-layer neural network with 500
perceptrons in the hidden layer.

Single precision (32b) Double precision (64b)
NEON no vectorization NEON no vectorization
29.47s 55.49s 56.17s 61.37s

Figure 6. Comparison of time required to perform a
feature extraction using 32-bit (blue) or 64-bit (red)
data types with and without vectorization.

Since the process might be layer-wise parallelized,
the main restriction is the single core performance,
which must be taken into consideration when design-
ing a neural network for this purpose. In figure 7 we
compare the time required to process a single layer of
a neural network on a single core. According to these
measurements, we can see, that a reasonable number
of perceptrons in a hidden layer of a five-layer neural
network would be about five to six hundred. This con-
figuration would lead to utilization of approximately
two CPU cores in an active state.

Figure 7. Comparison of the time required to process
a single layer of a neural network in relation to the
size of the layer. The number of perceptrons in a layer
is shown on the bottom axis, layers with 360 inputs
are drawn by a blue color, whereas the ones with 500
inputs are drawn by a red color.

4. Design of the decoder
The major problem regarding static decoders is the size
of recognition network, usually in units of gigabytes.
We tried to overcome this issue by using a dynamic
decoder based on small uni-gram recognition network.
N-gram probabilities are applied at run-time by per-
forming a lookup in an appropriately designed data
structure. This modification makes memory require-



ments significantly smaller, at the price of making the
recognition procedure more demanding on computing
power. However, considering the performance of mod-
ern smartphone processing units, this approach may be
applicable to even quite big dictionaries and n-gram
models.

< / s >< s > n-gram score

Unigram network

word1

word2

...

...

wordN

Figure 8. A sample representation of a dynamic
decoder with unigram network and dynamic n-gram
probability application.

The goal of this part of the work is to create an
implementation of the dynamic decoder, that will be
able to handle decoding with both limited-vocabulary
and larger – conversational models.

4.1 Uni-gram network representation
The most performance critical part of a dynamic de-
coder is a token passing algorithm, which is principally
affected by representation of uni-gram network. Prob-
ably the most straightforward representation of such
structure would be a matrix of tokens, with word iden-
tifiers on one axis and position in the word on the other
one. However, this representation meets with two sig-
nificant disadvantages. At first, words have different
lengths, thus a substantial part of the matrix would be
empty. Secondly, we need to restrain the number of
active tokens in the matrix, that would make the matrix
sparse and hard to efficiently iterate over.

During the development process, we experimented
with several implementations of the uni-gram network,
including red-black trees, hash-maps and custom im-
plementation inspired in a hash-map – vector of re-
versed singly linked lists indexed by word identifiers.
The custom implementation makes it possible to up-
date tokens in-place, avoiding unnecessary copies, and
also provides support for row-wise parallelization, un-
like the other dynamic structures. Table 2 shows the
performance and memory comparison of the particular
data structures.

Usage of a dynamic decoder might require addi-
tional changes to the token passing algorithm. Since n-
gram probabilities are applied after the word is emitted,
it is possible, that a token with slightly better acoustic
likelihood will kill a token that would be better after
the application of n-gram probabilities. This might

Table 2. The time and memory required to decode
features extracted from 75-second long recording on a
single core using a uni-gram network only, a
vocabulary of 12000 words, 2000 live tokens and a
100 pruning beam.

Structure Time[s] Memory[MB]

Custom 31.78 1.12
std::unordered map 95.23 1.43
std::map 180.52 1.94

compromise the results of a recognition process. For
this reason, as proposed in work [4], we introduced
modified uni-gram network representation, that per-
mits having multiple tokens with different paths in a
single HMM transducer.

Again, this behavior might be achieved by using
an appropriate dynamic container (like C++ standard
templates multimap or unordered multimap).
In order to make this more efficient, we modified our
custom implementation by adjusting the behavior of
a reversed singly linked list in a way, that tokens in
the same position will not be replaced unless their
word path is the same. The performance of these data
structures is reviewed in table 3.

Table 3. The time required to decode features
extracted from 75-second long recording on a single
core using a uni-gram network, a vocabulary of 12000
words, 2000 live tokens and a 100 pruning beam
having multiple tokens (with different word path) per
transducer.

Structure Time[s] Memory[MB]

Custom 32.62 1.32
std::unordered multimap 109.04 1.89

4.2 N-gram storage implementation
Since decoding with large vocabulary requires a signif-
icant amount of n-grams, it is important to design the
n-gram storage to be memory efficient, but also pro-
vide reasonable lookup speed. The simplest solution
would probably be to store these n-grams in a hash-
map indexed by a tuple of word indexes. However, this
approach might be problematic when using n-grams
of various lengths – would require to implement cus-
tom hashing function for tuples of various sizes. We
used a solution for n-gram storage design proposed
in work [4]. Where n-grams are stored in an array
ordered by word identifier, and there is an additional
array to store ranges of n-gram indexes for particular
words. Specific n-gram is then found by binary search
within the range of a single word. Table 4 shows the



performance and memory comparison of these n-gram
storage designs.

Table 4. The time required to perform 25M random
lookups in n gram storage filled with 5M bi-grams.

Structure Lookup[s] Load[s] Memory[MB]

Custom 9.78 2.43 40.40
unordered map 14.17 6.87 140.45

4.3 Comparison with a static decoder
In comparison with a static decoder using the same
features extracted from TED-LIUM recordings, the
dynamic decoder performed slightly worse – the re-
sults are shown in table 5. However, the implemented
dynamic decoder should be able to compete with con-
ventional static decoders. Assuredly, there is still a
lot of work to be done fine-tuning the phoneme poste-
rior probabilities extraction and language models for
use with mobile device’s microphone in the desired
domain.

Table 5. The word error rate computed on a subset of
TED-LIUM test set using a dynamic and static
decoder with the same configuration (4k tokens and
150 beam pruning) and a vocabulary of 12k words
supplemented by a 3-gram language model.

Decoder type WER[%]

Static 69.42
Dynamic 74.04

5. Conclusions
In this work, we designed and implemented funda-
mental components of a speech recognition engine for
Android and compared various approaches. Particu-
larly, we focused on the efficient implementation of
neural network computations used for phoneme pos-
terior probability estimation, representation of data
structures used by the dynamic decoder and optimiza-
tions of decoding process itself. Consequently, we
created a library that might be used with various acous-
tic and language models trained for the desired use.
The accuracy of the recognition system is admittedly
determined by used models, therefore, the most con-
structive metric for evaluation of the results is the size
of the models supported for the real-time recognition.

Using a recent mid-end smartphone equipped with
chipset Qualcomm MSM8953 Snapdragon 625, the
recognizer can handle a vocabulary of 3700 words,
0.835M bi-grams and 1.52M tri-grams with 4000 live
tokens on a single core during constant voice activity.

While using the proposed custom implementation of
a uni-gram recognition network representation, the
task might be fully parallelized among several CPU
cores. With this configuration, it is possible to process
the given amount of workload per core and support
basic conversational models of spoken language with
a vocabulary of appropriately 12000 words utilizing 4
CPU cores.

Considering the complexity of the project, there
is still a place for further optimizations, including
data structure and algorithm as well as the platform-
specific ones, what might be a subject of the future
work. Speaking of Android, it is worth to mention Ren-
derScript3 framework, which can handle paralleliza-
tion of linear algebra computations and delegate some
parts of the process to graphics processing unit (espe-
cially the vector and matrix operations). Outside of
the implementation part itself, it will be convenient to
provide support for standardized neural network (e.g.
ONNX4) and language model formats to make it easier
for developers/researchers to train their own models
and integrate this speech recognition library with their
application.

Acknowledgements
I would like to thank my supervisor Ing. Igor Szőke,
Ph.D. for his help.

References

[1] Petr Schwarz, Pavel Matějka, and Jan Černocký.
Towards lower error rates in phoneme recog-
nition. Lecture Notes in Computer Science,
2004(3206):465–472, 2004.

[2] František Grézl, Martin Karafiát, and Lukáš Bur-
get. Investigation into bottle-neck features for
meeting speech recognition. In Proc. Interspeech
2009, number 9, pages 2947–2950. International
Speech Communication Association, 2009.

[3] Anthony Rousseau, Paul Deléglise, and Yannick
Estève. Enhancing the ted-lium corpus with se-
lected data for language modeling and more ted
talks. In LREC, 2014.

[4] Michal. VESELÝ. Dynamic decoder for speech
recognition. Master’s thesis, Brno University of
Technology, Faculty of information technology,
Brno, 2017. Supervisor Schwarz Petr.

3https://developer.android.com/guide/topics/renderscript/index.html
4https://onnx.ai/


	Introduction
	Audio processing
	Speech feature extraction
	Design of the decoder
	Conclusions
	References

