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Implementation of a simple speech recognition engine for Android
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Motivation

Lack of customizable speech recognition
frameworks, optimized for mobile devices,
which might be easily integrated in other
applications.

Problem

Insufficient resources of mobile devices for
running conventional speech recognizers in
real-time and high memory requirements
of static decoders.

Goal

To create an easy-to-use library, optimized
for mobile devices, which would provide a
speech recognition based on custom
models trained for the desired application.

1. Acoustic feature extraction
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(b) Speech frame
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Frame after application of Hamming window

(c) Hamming window
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(d) Power spectrum
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(e) Mel filter banks
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(f) Acoustic features

2. Posterior phoneme probability estimation

Single state posterior phoneme probabilities are estimated by an
artificial neural network with a bottle-neck layer. We built a
system for parallelized computation of phoneme posteriors using
appropriate vectorization techniques (e.g. NEON) for mobile
architectures, with an emphasis on real-time performance.

3. Acoustic modeling
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Figure 2. Acoustic representation of the word ”Hello”. The phoneme tag
inside the transducer shows the phoneme, which prior probability should be

used. The value above the transition arrow defines a probability of leaving the
transducer.

4. Dynamic decoder implementation

We tried to overcome the high memory requirements of static
decoders by using a dynamic one based on small uni-gram
recognition network. N-gram probabilities are applied at
run-time by performing a lookup in an appropriately designed
data structure.
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Figure 3. Sample representation of a dynamic decoder with uni-gram network
and dynamic n-gram probability application.


