
37

Implementation of a simple speech recognition engine for Android
Eduard Čuba

Brno University of Technology, Faculty of information technology

Motivation

Lack of customizable speech recognition
frameworks, optimized for mobile devices,
which might be easily integrated in other
applications.

Problem

Insufficient resources of mobile devices for
running conventional speech recognizers in
real-time and high memory requirements
of static decoders.

Goal

To create an easy-to-use library, optimized
for mobile devices, which would provide a
speech recognition based on custom
models trained for the desired application.

1. Acoustic feature extraction

Audio recording

Downsampling 
Framing 

Voice
signal

Spectral analysis

Hamming window 
Fourier transform 

Voice activity detection 

Frames 

Mel filter banks

Mel filter banks 
Mean normalization 

Power
spectrum

Audio
features

0 200 400 600 800 1000
Sample

4000

2000

0

2000

4000

6000

Am
pl

itu
de

Recording at 8kHz

(a) Speech

0 25 50 75 100 125 150 175 200
Sample

2000

0

2000

4000

6000

Am
pl

itu
de

Frame (200 samples)

(b) Speech frame

0 25 50 75 100 125 150 175 200
Sample

2000

0

2000

4000

6000

Am
pl

itu
de

Frame after application of Hamming window

(c) Hamming window

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

0

50000

100000

150000

200000

250000

300000

Po
we

r

(d) Power spectrum

0 5 10 15 20
Filter

3

2

1

0

1

2

3

4

Po
we

r

(e) Mel filter banks

0 10 20 30 40 50 60 70 80
Mel bank vectors

0

5

10

15

20

M
el

 b
an

k

(f) Acoustic features

2. Posterior phoneme probability estimation

Single state posterior phoneme probabilities are estimated by an
artificial neural network with a bottle-neck layer. We built a
system for parallelized computation of phoneme posteriors using
appropriate vectorization techniques (e.g. NEON) for mobile
architectures, with an emphasis on real-time performance.

3. Acoustic modeling

0.12 
HH

0.88

0.14 
EH

0.86 

0.13 
L

0.87 

0.09
OW

0.91

Figure 2. Acoustic representation of the word ”Hello”. The phoneme tag
inside the transducer shows the phoneme, which prior probability should be

used. The value above the transition arrow defines a probability of leaving the
transducer.

4. Dynamic decoder implementation

We tried to overcome the high memory requirements of static
decoders by using a dynamic one based on small uni-gram
recognition network. N-gram probabilities are applied at
run-time by performing a lookup in an appropriately designed
data structure.

< / s >< s > n-gram score

Unigram network

word1

word2

...

...

wordN

Figure 3. Sample representation of a dynamic decoder with uni-gram network
and dynamic n-gram probability application.


