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Abstract
In this paper we propose a specialization of the inductive incremental coverability algorithm that
solves alternating finite automata emptiness problem. We analyse and experiment with various
design decisions, add heuristics to guide the algorithm towards the solution as fast as possible.
Even though the problem itself is proved to be PSPACE-complete, we are focusing on making the
decision of emptiness computationally feasible for some practical classes of applications. So far, we
have obtained some interesting preliminary results in comparison with antichain-based algorithms.
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1. Introduction1

Finite automata are one of the core concepts of com-2

puter science. Alternation in automata theory has3

already been studied for a long time [1] and many4

practical classes of problems (WSTS or LTL formulae5

satsfiability and many more) can be efficiently reduced6

in polynomial time to the problem of alternating au-7

tomata emptiness. We are particularly motivated by8

the applications of alternating automata in software9

verification and in string analysis [2], where they can10

be used to detect ways to break their safety or, if no11

ways are detected, to formally prove that the program12

is safe.13

Alternating finite automaton (AFA) is a determin-14

istic finite automaton that is extended by the concept15

existential transitions and universal transitions. Dis-16

junction is implemented in constant time already with17

non-deterministic finite automata, using existential18

transitions. By introducing the universal transition it19

is easy to combine automata in constant time with con- 20

junction. Negation is done in linear time simply by re- 21

placing existential transitions with universal ones and 22

vice versa, and by swapping final and non-final states. 23

Although these operations are efficient, checking of 24

alternating automata emptiness (i.e. checking whether 25

a given automaton accepts the empty language) is un- 26

fortunately PSPACE-complete [3], which is considered 27

computationally infeasible. We however believe that it 28

is possible to design algorithms able to avoid the high 29

worst-case complexity in practical cases. 30

Simple state space explorations using antichains 31

[4] to subsume states and to reduce the number of 32

states that is needed to be explored, are currently con- 33

sidered as one of the best existing methods to check 34

the emptiness. On the other hand, a popular model- 35

checking algorithm IC3 has been adapted for well- 36

structured transition systems. The adapted algorithm 37

is named IIC [5] (incremental inductive converability) 38
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and in contrast to IC3, it benefits from subsumption.39

The main contribution of our research is design and40

implementation of a new algorithm—we show that the41

alternating finite automata are well structured transi-42

tion systems and subsequently we specialize the IIC43

algorithm to solve their emptiness. The IIC algorithm44

implicitly uses subsumption on states, and counter-45

example guided abstraction by under-approximating46

the reachable state space. It is progressing in incre-47

mental steps until convergence, or until a valid counter-48

example is found. We compare efficiency of the IIC49

algorithm to backward and forward antichain-based50

state space explorations.51

We have found some artificial classes of AFA52

where IIC significantly outperforms forward antichain-53

based exploration algorithm and one class where IIC54

outperforms both forward and backward one. We55

have compared the three algorithms also on real-world56

benchmarks extracted from the string program verifica-57

tion. For most of the cases, maximal and final cardinal-58

ity of state space representation (number of blockers59

for IIC, number of antichain elements) were very simi-60

lar. As for time, IIC was converging more slowly for61

bigger benchmarks because altering the sets of block-62

ers for IIC is quite expensive. For benchmarks with63

non-empty automata, IIC was sometimes much better64

than antichain in all metrics, or antichain was much65

better than IIC, but it was probably only by chance—66

the winning approach has just luckily got faster on67

the right way to bad states; these measurement results68

were not reproducible. Most of the benchmarks were69

very similar and the other ones were more complex and70

the measurements were often timing out on them. The71

implementation was written in the Python language72

and we are planning to make a more efficient one, to73

get more interesting results. We also need to determine74

properties of the input AFA that are significant for IIC75

performance, add optimizations and heuristics to op-76

erations and decisions where they would be effective,77

and suppress them in situations where they just waste78

the computing power.79

2. Preliminaries80

Downward and upward closure Let � ⊆ U ×U81

be a preorder. Downward closure X↓ of a set X ∈82

U is a set of all elements lesser than some element83

from X , formally: X↓= {y | y ∈ U ∧ ∃x ∈ X . y �84

x}. Analogous for upward closure: X↑= {y | y ∈85

U ∧ ∃x∈ X . x� y}. We define downward and upward86

closure on a single element as x↓= {x}↓ and x↑= {x}↑.87

Downward-closed and upward-closed sets are those88

that already contain all the lesser elements from U ,89

or greater respectively. We will designate the fact 90

that a set is downward-closed or upward-closed by the 91

corresponding arrow in the upper index. Intuitively it 92

holds that X↓ = X↓↓ and Y ↑ =Y ↑↑. It is known that the 93

set of downward-closed sets are closed under union 94

and intersection, same for the set of upward-closed 95

sets. Furthermore, if we complement a downward- 96

closed set, we get an upward-closed one, similarly for 97

the opposite. A system of an universum and a preorder 98

(U,�) is downward-finite if every set X ⊆ U has a 99

finite downward closure. 100

Well-quasi-order A preorder � ⊆U ×U is a well- 101

quasi-order, if each infinite sequence of elements 102

x0,x1, · · · from U contains an increasing pair xi � x j 103

for some i < j. 104

Well-structured transition system (WSTS) Let us 105

fix the notation of a well-structured transition system 106

to the quadruple S = (Σ, I,→,�), where 107

• Σ is a set of states. 108

• I ⊆ Σ is a set of initial states. 109

• →⊆ Σ×Σ is a transition relation, with a reflex- 110

ive and transitive closure→∗. We say that s′ is 111

reachable from s if s→∗ s′. 112

• �⊆ Σ×Σ is a relation. We will call it subsump- 113

tion relation, and if a � b, we will say that b 114

subsumes a. relation. 115

A system S is a WSTS iff the subsumption relation
is a well-quasi-order and the monotonicity property
holds:

∀s1∀s′1. s1→∗ s′1 =⇒
∀s2. (s1 � s2 =⇒ ∃s′2. (s2 � s′2∧ s2→∗ s′2)) (1)

The functions pre : Σ−→ 2Σ and post : Σ−→ 2Σ 116

are defined the following way: pre(s′) = {s ∈ Σ | s→ 117

s′}, similarly post(s) = {s′ ∈ Σ | s→ s′}. 118

Covering We say that a downward-closed set of states
P↓ covers a WSTS S iff the set of states that are reach-
able from initial states of S is included in P↓.

Covers(P↓,S) def⇔∀s ∈ I. @s′ /∈ P↓. s→∗ s′ (2)

We will use the term bad states for the complement 119

Σ\P↓. 120

Alternating finite automaton (AFA) Let us fix the 121

notation of an alternating finite automaton to the quin- 122

tuple M = (Q,ΣM, IM,δ ,F), where 123

• Q is a finite set of states. A subset of q is called 124

case, cases will be denoted as ρ or %. 125



• ΣM is a finite set of symbols — an input alpha-126

bet.127

• IM ⊆ Q is an initial set of states (also called128

initial case).129

• δ : Q×ΣM −→ 22Q
is a transition function.130

• F : F−Q is a negative boolean formula determin-131

ing final cases. A case ρ is final if F ∧
∧

q/∈ρ ¬q132

is satisfiable.133

Let w = σ1 . . .σm,m≥ 0 be a sequence of symbols134

σi ∈ ΣM for every i≤ m. A run of the AFA M over w135

is a sequence ρ = ρ0σ1ρ1 . . .σmρm where ρi ⊆ Q for136

every 0 ≤ i ≤ m, and ρi−1→
σi

ρi for every 0 < i ≤ m,137

where→
σ
⊆ 2Q×2Q is a transition relation by symbol138

σ ∈ ΣM defined the following way:139

ρ1→
σ

ρ2
def⇔

∃ξ ∈ Z. ρ2 =
⋃
{%∈ 2Q | ∃q ∈ Q. (q,%) ∈ ξ} (3)

where

Z = {ξ ⊆ Ξ | ∀q ∈ ρ1 ∃! %∈ 2Q. (q,%) ∈ ξ} (4)

Ξ = {(q,%) ∈ ρ1×2Q |%∈ δ (q,σ)}. (5)

The AFA transition relation →M ⊆ 2Q× 2Q is a140

transition relation by an arbitrary symbol:141

ρ1→M ρ2
def⇔∃σ ∈ ΣM. ρ1→

σ
ρ2 (6)

Let us define few properties of a run. It is termi-142

nating iff rhom |= F.ρm ⊆ f , commencing iff IM ⊆ ρ0,143

accepting iff it is terminating and commencing. An144

AFA M is empty if none of the runs over M is accepting.145

This emptiness property is denoted as Empty(M).146

AFA can be visualized similarly to NFA as a di-147

rected graph, universal transitions are visualized as a148

forking arrow. More detail is described in the appendix,149

here we provide an example of visualization for Q =150

{q1,q2,q3}, ΣM = {a,b}, IM = {q1}, F = ¬q1∧¬q2,151

δ (q1,a) = {{q2},{q2,q3}}, δ (q3,b) = {{q1}} and152

δ (q,σ) = /0 for other q and a.153

q1
q2

q3

a

a
b

154

3. IIC for AFA emptiness155

We have instantiated the general IIC algorithm from156

[5] for deciding the emptiness problem of alternating157

finite automata. Some decisions about the reduction158

were straightforward, some of them were inspired by159

the Petri net coverability instance and some of the deci- 160

sions were done by us. We will explain our reasoning 161

and show experimental results for multiple possible 162

implementations of some parts of IIC. 163

3.1 General IIC state 164

The IIC algorithm decides whether a downward-closed 165

set P↓ covers all reachable states of a well-structured 166

transition system. 167

State of the IIC algorithm consists of a vector R 168

of downward-closed sets of states R↓0R↓1 . . .R
↓
N and a 169

queue Q of counter-example candidates. We write 170

R|Q to represent the algorithm state. Set R↓i is an 171

over-approximated set of states that are reachable in 172

i steps of WSTS. N is the currently analysed step of 173

the system. Queue Q is a set of (a, i) pairs, where a is 174

an upward closed set of states from which we are sure 175

that a bad state can be reached in i steps. We write 176

min Q to denote a pair with minimal i. In addition 177

there is a special initial state Init and two terminating 178

states: Unsafe means that we proved that a state out 179

of P↓ is reachable, Safe is a proof that P↓ contains all 180

reachable states. 181

The state of the algorithm is modified by applica- 182

tion of transition rules, until the Safe or Unsafe state 183

is reached. 184

For practical reasons we postpone the description 185

of the particular transition rules. Prior to that, we will 186

start with convertion of the algorithm state for solving 187

the AFA emptiness problem. Then we will introduce 188

all the general transition rules along with their instan- 189

tiation and notes about actual implementation. The 190

algorithm is proved for soundness and if the WSTS 191

is downward-finite, it is guaranteed to terminate [5], 192

what holds for AFA due to finiteness of the state space. 193

3.2 State of the IIC for AFA 194

We convert the emptiness problem of an AFA 195

M = (Q,ΣM, IM,δ ,F) to the coverability problem of a 196

downward-finite WSTS S = (Σ, I,→,�) in a way that: 197

• Σ :=C — states of WSTS are the cases of AFA. 198

• I := {IM}— initial states of WSTS are singleton 199

with the initial case of AFA. 200

• → :=→M — transition function is the step func- 201

tion of AFA. 202

• � := ⊇ — well-quasi-ordering relation is the 203

superset relation, therefore, downward closure 204

X↓ is the set of all supersets of X and upward 205

closure X↑ is the set of all subsets of X respec- 206

tively. 207

• P↓ := Σ\F ↑— bad states are all subsets of F 208

(to avoid the confusion we will call them bad 209



cases).210

The following two theorems are proved in the ap-211

pendix.212

Theorem 1 The system created the way stated above213

is a valid WSTS.214

Theorem 2 The generated WSTS S is covered by P↓215

iff the AFA M is empty.216

Similarly to the Petri net coverability instance of217

IIC described in [5], we represent the steps R↓1, · · · ,R
↓
N218

as so-called stages B1, · · · ,BN , which are themselves219

sets of blockers β . Blocker β is a case about which220

we are sure that it is not reachable in i or less steps.221

The algorithm holds the invariant R↓i ⊆ R↓i+1, so if a222

blocker exists in stage i, its effect applies to the steps223

0 · · · i. We assure that if i < j then @b ∈ Bi. b↑ ∩B j.224

Equivalence of two successive stages is then easily225

checked by Bk = Bk+1. Blockers are upward-closed,226

i.e. even no subset of a blocker is reachable. At any227

point of the IIC algorithm, a stage Bi represents an228

under-approximation of cases that are not reachable in229

i or less steps of the AFA. Set R↓i = Σ \
⋃

Bi↑ is then230

an over-approximation of the reachable cases. The231

exception is R0, which is represented directly by the232

initial case IM. We will thus always handle the zero233

step in a special way.234

The queue of counter-example candidates Q is im-235

plemented as stack. Since current implementation per-236

forms depth-first search, the peak of the stack is always237

min Q.238

3.3 Forward and backward transitions239

In this section we introduce the forward and backward240

transition functions, which describe the internal repre-241

sentation of the transition function of AFA. We benefit242

from the backward transition function δ←σ when com-243

puting predecessors of case for the transition rules244

Decide/Conflict. The forward transition function δ→σ245

is useful in computing Generalization.246

Without the loss of generality we assume that the247

states of the input automaton are integers in range248

1, · · · , |Q|. Same for the input alphabet symbols, they249

are integers in range 1, · · · , |ΣM|. For simplicity of250

explanation will assume that a case of the AFA is251

represented as a set of states, however there is also an252

implementation with bit vectors that is more efficient253

for small state spaces. Initial states are represented as254

a vector of cases.255

Finally we have a vector of relations δ1, · · · ,δ|ΣM |,256

that are themselves vectors, containing for every state257

q = 1, · · · , |Q| a set of all cases q′ ∈ 2|Q| such that258

qδσ q′. Formally we may consider this forward δ→σ as 259

a function of type Q−→ 22|Q| , because it maps states 260

(integers) to sets of successor cases. 261

In IIC we have to do also backward transitions, so 262

in preprocessing we convert this representation to the 263

opposite one: δσ is a mapping from cases that can be 264

successors q′ of any state q to all their predecessors. 265

Backward δ←σ has type 2|Q| −→ 2|Q|: it maps cases to 266

sets of predecessor states. 267

3.4 Transition rules 268

The most of the talk will be devoted to the transition 269

rules of the IIC. The rules of the algorithm for general 270

WSTS are presented in the figure 1 and are of the form 271

C1 · · ·Ck

σ 7→ σ ′
(7)

We can apply a rule if the algorithm is in the state 272

σ and conditions C1 · · ·Ck are met, σ ′ is then a new 273

state. We will introduce the rules, specialize them for 274

our instance of the IIC and explain their purpose. 275

3.4.1 Initialize 276

In contrast with the general IIC, we start the algorithm 277

with an empty vector of stages because zero step that 278

contains downward closure of initial cases is handled 279

in a special way (we do not store it in our stage vector). 280

The candidate queue is initialized to an empty stack. 281

3.4.2 Valid 282

This rule checks for convergence of IIC. If any two 283

consecutive steps are equal (the first of the two equal 284

stages has no blockers), we have proved the emptiness 285

of AFA. 286

3.4.3 Unfold 287

If the candidate queue is empty (we have proved that 288

no candidate is reachable from any initial case) and we 289

have not yet converged, we start to explore new step: 290

we start with the over-approximating assumption that 291

in the new step we can reach all cases (the stage has 292

no blockers). 293

3.4.4 Candidate 294

If we have empty candidate queue and the last step R↓N 295

is intersecting bad cases, add one of the bad cases from 296

the intersection into the queue. If the last applied rule 297

was Unfold, all the bad states are elements of R↓N . We 298

can therefore choose F as the new candidate. Then, 299

as the candidates are upward-closed (all the bad cases 300

are included in the F candidate), if F is eventually 301

blocked, we are sure that R↓N is not overlapping bad 302

cases anymore. The implementation of this rule is then 303

very simple: we apply it right after the Unfold rule 304

and we just add the case F into the candidate queue. 305



3.4.5 ModelSem306

If a counter-example candidate includes some initial307

case, we know that a bad case can be reached from the308

initial case. The counter-example is thus valid and the309

AFA is not empty.310

3.4.6 Decide/Conflict311

These two rules are tightly connected together and are312

the main part of the IIC. The rule Decide performs313

a backward transition pre from the counter-example314

candidate. If the rule fails to transition back from315

a candidate (a, i) (i.e. no predecessor α , for which316

a� α , is in the previous step), we know that the candi-317

date is spurious and the Conflict rule is applied. The318

Conflict rule removes the candidate and refines the319

step i by adding a new blocker β to the stage Bi that is320

a generalization (see below) of the candidate a.321

We see that a predecessor can be blocked not only322

by a blocker form the previous step but also by the323

candidate. If it is a subsumption of the candidate, we324

know that its predecessor will be again only a subset325

of itself and we thus never reach any initial case.326

If we fail to transition back (the Conflict rule is be-327

ing applied), we add a new blocker to the stage i and it328

will affect all the steps k = 1, . . . , i. The blocker could329

be the candidate a itself but we can often cheaply find330

something better than a by so-called generalization331

Geni−1(a). Generalization is an arbitrary function that332

efficiently finds some β subsumed by the blocked can-333

didate a, such that β shares some common properties334

with a: the predecessors of β are blocked in the step335

i−1 and β does not contain any of the initial cases1.336

The two properties ensure that β is a valid blocker in337

the step i.338

We implement these rules in the following way.339

For each symbol σ in the AFA alphabet ΣM we iterate340

through the AFA’s backward transition function δ←σ341

(see 3.3). We accumulate predecessors of cases ρ that342

are subsets of the candidate a.343

ασ = {q ∈ Q | ρ ⊆ a∧q ∈ δ
←
σ (ρ)} (8)

We try to find a blocker βσ ∈
⋃N

k=i Bk that includes344

ασ . If such a blocker βσ does not exist, then ασ is a345

non-blocked predecessor in the step i−1 and we can346

enqueue it as a candidate for i−1 (Decide, α := ασ ).347

Before enqueueing, we check it with the ModelSem348

rule to ensure that the candidate does not include the349

initial case.350

We represent the zero step in a special way (as a351

set of initial cases instead of a set of blockers). Thus, if352

1We are sure that a does not contain any initial case because
we check every added candidate by the ModelSem rule

i = 1, we only check if ασ includes some of the initial 353

cases. If so, we have found a valid predecessor in 354

the zero step and by the ModelSyn rule we know that 355

the counter-example is finished (then the IIC ends up 356

in the Unsafe state). For the Generalization purposes 357

we need to find the blockers βσ — cases that are not 358

reachable in the zero step (do not include I) and do 359

include ασ . For each σ , we find some q such that 360

q ∈ I∧q /∈ ασ and then βσ = Q\q; . 361

The candidate is spurious if it is blocked for all 362

symbols of the alphabet (Conflict). We compute a 363

generalization β (described soon) of the candidate and 364

add it as a blocker for step i. As the new blocker 365

applies to all steps j = 1, · · · i, we remove all blockers 366

that subsume β from those stages. 367

Generalization Generalization is an important com- 368

ponent of the rules Conflict and Induction. It is the 369

most vaguely defined part of the IIC and a big part of 370

our contribution is specialization of generalization for 371

AFA. 372

We apply generalization Geni(a) to cheaply create 373

a blocker b that is subsumed by a. The blocker b is 374

then going to be added to the step i+ 1. The new 375

blocker b should hold some properties (that are held 376

by a). It should not subsume any initial state and all of 377

its predecessors should be blocked in the step i. 378

Geni(a) := {b | b� a∧b↑∩I = /0∧ pre(b↑)∩R↓i \b↑= /0}
(9)

We break the condition for valid generalizations
into these three restrictions:

b� a (10a)

b↑ ∩I = /0 (10b)

pre(b↑)∩R↓i \b↑= /0 (10c)

First of all we create a set of forbidden WSTS 379

states (AFA cases) C that are not allowed to subsume 380

the blocker b (to be included in it). Otherwise the 381

condition 10b or 10c would be violated. We try to find 382

a blocker b that blocks (is subsumed by) many WSTS 383

states (AFA cases) but is not subsumed by any of the 384

forbidden ones. So we apply approximative greedy 385

algorithm for solving minimum hitting set problem [6] 386

(which is dual to the set cover problem) to find a set 387

of AFA states D that intersects each case from C. If D 388

does not intersect b, then b is guaranteed not to include 389

any of the forbidden WSTS states from C. The new 390

blocker b is therefore obtained as a complement of D: 391

b = Q\D. 392

If some case from C intersected a, the approxima- 393

tive minimum hitting set D could contain a state from 394



Valid

∃i < N. R↓i = R↓i+1

R|Q 7→ Safe

ModelSem
min Q = (a, i) I∩a↑6= /0

R|Q 7→ Unsafe

Decide

min Q = (a, i) i > 0 α ∈ pre(a↑)∩R↓i−1 \a↑
R|Q 7→ R|Q.PUSH((α, i−1))

Initialize

Init 7→ [I↓]| /0

Unfold

R↓N ⊆ P↓

R| /0 7→ R ·Σ| /0

Conflict

min Q = (a, i) i > 0 pre(a↑)∩R↓i−1 \a↑= /0 β ∈ Geni−1(a)

R|Q 7→ R[R↓k ← R↓k \β↑]ik=1|Q.POPMIN

Candidate

a ∈ R↓N \P↓

R| /0 7→ R|[(a,N)]

ModelSyn
min Q = (a,0)
R|Q 7→ Unsafe

Induction

R↓i = Σ\{ri,1, . . . ,ri,m}↑ b ∈ Geni(ri, j) for some 1≤ j ≤ m

R| /0 7→ R[R↓k ← R↓k \b↑]i+1
k=1| /0

Figure 1. IIC transition rules

a. Then b would not be a superset of a what breaks395

10a. To ensure 10a we will obtain C from an interme-396

diate set C0 (that ensures 10b and 10c and is defined397

subsequently) following way: C = {c\a | c ∈C0}.398

To ensure the restriction 10b, the set C0 simply399

contains all initial cases. To break the restriction 10c,400

there must exist a symbol σ , for which a predecessor401

of some subset of b is not blocked in the step i. As a402

is a valid blocker in the step i+ 1, for each σ , all of403

its σ -predecessors are blocked in i by some blocker404

βσ (we know βσ from Decide/Conflict). The blocker405

b is not blocked by βσ in the step i iff a state q /∈ βσ406

exists, for which ∃c. qδσ c∧ c⊆ a. As a conclusion of407

these intuitions, C0 also contains the successors of all408

states out of βσ . We get these successors by using the409

forward transition function (see 3.3).410

C0 = I∪{ρ | σ ∈ ΣM ∧ q ∈ Q\βσ ∧ ρ ∈ δ
→
σ (q)}

(11)

3.4.7 ModelSyn411

A counter-example candidate can obtain zero step in-412

dex only if it was created by the Decide rule, which413

ensures inclusion in the zero step. If a counter-example414

is included in the zero step, it means it is a superset415

of some initial case s (no blockers can be added to the416

zero step by any rule). As the candidate is upward417

closed, it represents also the initial case s. All the can-418

didates lead to bad states, and thus the counter-example419

is valid and the AFA is not empty.420

3.4.8 Induction421

The Induction transition rule serves for pushing block-422

ers forward from steps i to i+1. We can see that luckily423

the general definition of the rule represents the step i424

with the concept of blockers, same as our implementa-425

tion. We can therefore directly translate it: If there is a426

blocker β ∈ Bi such that a generalization for it exists427

from the step i, we can push it to the step i+1. It needs428

some more explanation — generalization of β from 429

the step i exists iff all of its predecessors are blocked 430

in the step i and therefore it is a valid blocker for i+1. 431

Induction is implemented like this: for every step i 432

we iterate through all bi j ∈ Bi and check if there is for 433

every symbol of alphabet σ ∈ ΣM, in the same step i, 434

a blocker βσ that includes the predecessors of β . If so, 435

we generalize the β (we use the corresponding βσ to 436

compute the generalization) and add the result, in the 437

same way as in the rule Decide, into the step i+1. 438

4. Experimental Evaluation 439

IIC has much better results than antichains on a class 440

of AFA Primes(n). Let us define a class of AFA 441

Branch(m), with a single-symbol alphabet, by the fol- 442

lowing diagram: 443

q1

q2

q3

q4

p1

p2

pm
444

With given n, let π = 2,3,5,7,11, · · · be a sequence 445

of first n prime numbers. The AFA Primes(n) is then 446

conjunction of automata Branch(π1), · · · ,Branch(πn), 447

where q4 of one (e.g. random) of the branches is not 448

a final state. Since one of the branches lacks a final 449

state, the automaton Primes(n) is empty. The biggest 450

instance of Primes(n) where forward antichain solves 451

this problem in a reasonable time (15 seconds) is for 452

n = 4. For n = 5 it is more than two minutes. Back- 453

ward antichain is better: the maximal n where it does 454

not time out is n = 6, with 41 seconds. IIC converges 455

in reasonable time for bigger n, e.g. for n = 15 it is 456

still 40 seconds. 457

Evidently, this particular class of AFA can be eas- 458

ily detected in preprocessing, but it is interesting that 459



IIC can efficiently solve it implicitly. It may indi-460

cate that IIC can efficiently decide emptiness for some461

other, more interesting classes of AFA.462

We have experimented also with practical bench-463

marks extracted from [2]. The antichain-based algo-464

rithms performed objectively better. A possible reason465

for this is that vast majority of simple benchmarks was466

very similar—conjunction of one simple long chain467

of states and one very branch that is a bit more inter-468

esting but very small. These benchmarks were very469

easy for antichains and as IIC is much more complex,470

it could not break through with its power. There are471

also benchmarks that are more interesting but too com-472

plex and if the automata are empty, none of the three473

approaches converges. If an interesting automaton is474

not empty, IIC or antichains sometimes discover the475

bad state “by chance”, other time they time out. As all476

the three algorithms are implemented in Python, the477

poor performance on the interesting examples can be478

still significantly ameliorated by rewriting the code to479

a more performing language.480

Among 179 benchmarks, we considered 58 of481

them interesting, i.e. antichain did not solve them482

in all five runs (3 backward and 2 forward runs) in483

less than 2 seconds. 50 of the interesting benchmarks484

timed out (with 2 minute timeout) for both antichain485

and IIC, from which 44 were non-empty (we know it486

from the results of experiment in [2]) and 6 were with487

unknown result (the solver in [2] timed out). From488

the other 8 benchmarks, 2 were solved significantly2489

better by IIC concerning the final and maximal number490

of blockers (versus the final and maximal number of491

antichain elements). They were both non-empty. One492

of them had also significantly better time. From the493

same 8 benchmarks that did not time out, 5 were sig-494

nificantly better solved by backward antichain (which495

was always better than the forward one) concerning496

time, 3 of them were significantly better concerning497

the final and maximal number of antichain elements.498

One of them was empty, but after visual analysis we499

have found out that the benchmark is similar to the500

non-interesting ones, just much bigger.501

The experiments were performed on a machine502

with Intel Core i7 processor with two cores and 16GB503

of RAM.504

5. Conclusions505

We have specialized IIC for AFA emptiness problem,506

implemented it and compared the implementation to507

antichain-based algorithms on artificial and practical508

benchmarks. We were able to find an artificial class509

2at least two times; applies to the rest of the text

of AFA where IIC performed much better, e.g. for 510

the instance Primes(6) the IIC terminated in 7 sec- 511

onds, backward antichain in 41 seconds, and forward 512

antichain timed out (terminated in more than two min- 513

utes). For bigger instances of Primes the difference 514

was increasing exponentially. Research still needs to 515

be done to find more artificial classes, to determine the 516

properties of AFA which affect the efficiency of IIC, 517

and also practical benchmarks that dispose of these 518

properties. We have shown that IIC has some poten- 519

tial for the AFA problems and shared our experience 520

and thoughts concerning design and implementation 521

decisions as well as experimentation. 522
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Appendix A - Visualization557

Forking graph For visualisation purposes we define558

a graph with forking edges, as a tuple G = (V,L,E),559

where V is a finite set of nodes, L is a set of labels and560

E ⊆ V ×L×2V is a set of forking edges. Each node561

x∈V of a graph is visualized as a circle labelled with v.562

Each edge (n, l,W )∈E is visualized as a point p, a line563

labelled with l connecting x and p, and for each node564

m ∈W , an arrow that leads from p to m. If there are565

multiple edges that differ only in labels, they can be all566

visualized as a single edge with all the labels separated567

by comma. As an example, we present a graph G =568

({a,b,c},{l1, l2},{(a, l1,{b,c}),(a, l2,{b,c})}) in fig-569

ure 2.570

a
b

c

l1, l2

Figure 2. Forking graph

Visualization of AFA AFA will be visualised as a571

forking graph G = (V,ΣM,E), where V = Q and E =572

{(q,σ ,ρ) ∈ Q×ΣM×2Q | ρ ∈ δM(q,σ)}. The initial573

case is visualized as a hanging forking edge leading574

to IM. The final cases are visualized only if F is of575

form F =
∧

q∈Q\QF
¬q, where QF ⊆ Q is a set of final576

states. Then the nodes in QF are demarked with double577

borders.578

As an example, we show a visualization of an579

automaton in figure 3.580

Q = {q1,q2,q3}
ΣM = {a,b}
IM = {q1}

F = ¬q1∧¬q2

δM(q,σ) = {{q2},{q2,q3}} for q = q1∧σ = a
{{q1}} for q = q3∧σ = b
/0 otherwise

q1

q2 q3

a a b

Figure 3. Visualization of AFA

Appendix B - Correctness of reduction 581

Lemma 2.1 Monotonicity of � relative to→ is satis- 582

fied. 583

Proof 2.1 If ρ1 → ρ ′1 then there exists a σ and a q′i 584

for every qi ∈ c that satisfies qδσ q′ and ρ ′1 is the union 585

of those q′i. We know that ρ2 ⊆ ρ1, so we obtain it 586

by removing some of the qi states. We then get ρ ′2 by 587

removing the corresponding q′i cases from the union 588

operands. Clearly ρ ′2 ⊆ ρ ′1, as we obtained it by unify- 589

ing smaller set of cases. 590

Now we have to prove soundness of the reduction: 591

the generated WSTS S is coverable by P↓ iff the AFA 592

M is empty. 593

Proof 1 The monotonicity property is satisfied and as 594

� is a preorder on a finite domain, no infinite sequence 595

that is purely increasing can exist, therefore � is a 596

well-quasi-order. 597
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