
9
http://excel.fit.vutbr.cz

Stateful Packet Processing In High-speed Network
Devices Described In P4
Pavel Kohout

Abstract
Research and development in area of network technologies allow to increase speed of network
traffic up to 100 Gbps meanwhile requirements for its security and an easy administration stay the
same. A process of collecting network traffic statistics is important part in the defense of a network
infrastructures but its performing is difficult in a high-speed network environment. Nowadays, a P4
language becomes powerful tool for the network administrators thanks to the platform independence
and its ability to describe whole packet processing pipeline. The aim of this work is to extend
existing stateless solution developed at CESNET association target to FPGA platform by support of
stateful processing at speed 100 Gbps. This paper describes the designed system architecture for
stateful processing realization in P4 described device respecting requirements for its resources
or rate. Performance testing has shown that device is capable of achieving the target throughput
of 100 Gbps for limited number of used stateful memory requests in context of a table or an user
action.

Keywords: P4 — Stateful packet processing — FPGA

Supplementary Material: Repository with P4 sources

*xkohou15@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

With increasing numbers of internet users collecting of
network traffic statistics is an indispendable part of net-
work management and its security. Stateful packet pro-
cessing is appropriate way for collecting information
about received traffic and it allows to create complex
applications that behave differently based on the his-
tory of received traffic to detect some specific network
incidents. For satisfaction of network administrator’s
demands such devices have to be capable of calculat-
ing hundreds of gigabits of statistics per second with
ability of the functionality reconfiguration.

Nowadays, P4 language is one of the available so-
lutions for describing the devices mentioned above.

Platform independence allows developers to choose
the target platform according to the required features.
One of P4 solutions was created by CESNET. Current
stateless implementation of P4 language is capable to
reach 100 Gbps device rate using FPGA (Field Pro-
grammable Gateway Array) technology. In order to
enable stateful processing, it is necessary to extend
the current solution by support of stateful processing
provided by P4 at 100 Gbps rate with atomic execution
of operations working with stateful memories.

Barefoot Tofino [1] is another existing implemen-
tation of fully P4 programmable and high-performance
networking solutions. It is built using a Protocol In-
dependent Switch Architecture. Stateful processing is

http://excel.fit.vutbr.cz
https://bitbucket.org/PavelKohoutCoder/p4-sources-stateful/src/master/
mailto:xkohou15@stud.fit.vutbr.cz

supported but available stateful memory is constrained
to reach the highest performance.

The result of this article is about extending the cur-
rent P4 implementation by supporting stateful mem-
ories. The implementation of registers and counters
P4 primitives is offered in two modes. The first one
respects the resource limits on FPGA chips and there-
fore this memory is allocated in BRAM (Block RAM).
Second mode requires more chip resources and imple-
ments memory in the register arrays allowing to make
read or write operation in one clock period. To ensure
atomicity of execution of accessing stateful memories
a lock mechanism was developed. This mechanism
guarantees atomicity of operation for each use case
described in P4 using stateful memories.

The implementation realizes stateful processing
described in P4 language and current solution is ca-
pable of reaching 100 Gbps device rate for some use
cases. These use cases correspond to just one request
to stateful memory of registers and counters in con-
text of one user action. In case of more requests the
device rate is decreased and an user is informed about
reachable device rate. BRAM register configuration
saves chips resources effectively and the atomicity of
execution is guarenteed by lock mechanism.

2. P4 language

P4 (Programming Protocol-independent Packet Proces-
sors) is an open source, high level, platform-agnostic
language for programming protocol independent pro-
cessors. Its main purpose is to provide a way to define
packet processing functionality of network devices re-
specting possibility of field reconfiguration, protocol
and target platform independence.

Syntax and structure of P4 is described by stan-
dards. Nowadays P416 and P414 standards are avail-
able and they are able to describe five aspects needed
for definition of packet processing device as it is de-
scribed in [2]. These five aspects are: header formats,
packet parsing, control program, table and action spec-
ification. Header formats describe protocol headers
recognized by device. Packet parser defines order
of protocol headers parsing in form of state machine.
Table specification allows to define how the extracted
header fields are matched in possibly multiple lookup
tables meanwhile action specification defines a set
and order of actions that may be executed for packets.
In the end, a control program puts all previous parts
together, defining control flow among the tables.

P416 is an younger standard of P4 language and
user is not restricted by the set of usable actions. A de-
sired functionality is realized by an extern construction.

Figure 1. Model of P4 device (taken from [3])

The extern object describes a set of methods that are
implemented by an object. Implementation of these
methods is provided by user.

P414 is a second older standard for which this work
is reserved and therefore it will be described in more
detail. A core of P414 standard is abstract model deter-
mining the order of individual parts of P4 devices and
it is highlighted in the figure 1. The first module parser
is used for filling header fields with the incoming net-
work data. These data fields are passed to the ingress
Match+Action pipeline where packet is modified ac-
cording to desired functionality. Also queuing mecha-
nism is present to implement data distribution based
on configuration from ingress Match+Action pipeline.
Furthermore an egress Match+Action pipeline is exe-
cuted and data from protocol headers fields are trans-
formed back to the form of a network packet. The
modification of header fields is performed in user ac-
tions. These actions are composed of primitive actions.
Primitive actions are a set of functions provided by
P414 standard for realization of the user desired func-
tionality.

Stateful processing in P4
The P4 provides counters, meters and registers for
maintaining state for longer than one packet. To-
gether they are called stateful memories. An individual
counter, meter or register is referred as a cell. Stateful
memories are organized into named arrays of cells. A
cell is referenced by its array name and index. The
stateful memories in P4 can be global – they can be
referenced by any action of any table or to be static
– bound to one table instance. P4 also allows direct
access to memories. In case of a direct mode, memory
cell is allocated for each entry of table, which cell is
bounded to.

Counters are stateful objects used for calculat-
ing the number of certain phenomenon occurrences.
They determinate the number of proceeded packets

or bytes matched to desired table entry according
to a type of declared counter. A bytes type counter
gets incremented by the length in bytes meanwhile a
packets type gets incremented by just one. A pack-
ets and bytes type counter is a combination of both
previous counter types and it is composed of two sub-
counters, bytes and packets counter type. The counter
is incremented whenever count primitive action is exe-
cuted (in case of static counters) or a packet enters to
table (in case of direct counters).

Meters are stateful object that measures the data
rate, either in packets or bytes per second. The result
of meters execution is on of three colors: green, yellow
and red. Specific algorithm for meter implementation
is not given by P4 specification and it is left up to the
user. Available meter types bytes and packets are same
as counter types mentioned above. The execution of
requests to direct or static meters is also the same as in
case of counters. Primitive action working with meters
is execute meter.

Registers are stateful memories that can be read
and written in actions and they can be used in the
most general way. Both, direct and static registers are
accessed only through primitive actions register read
and register write.

3. Mapping of P4 statistics to FPGA
A realization of large data storage in the FPGA is a
complicated quest because of limited chip resources.
Using of block RAM (BRAM) is the most common
way but the delay between request to memory and
the result is critical in a design applying pipelined
processing with requirements for work with actual data.
Therefore a data storage realization in the distributed
RAM is also provided to minimize a delay. The choice
of desired implementation is left to the user.

A core of the implementation is built around regis-
ter component. Its design provides an instantiation of
chosen memory realization and it creates the circuits
needed for a correct communication with software pro-
gram. A bus communicating with software is capable
of transferring 32 bit width data in one message but
a bit width of register cells is variable. Therefore, a
special array of 32 bit width registers is created to hold
the currently transmitted data over the bus. The array
length is determined by bit width of register cells and
it is calculated according to the equitation 1.

arrLength = dcellWidth/32e (1)

When a request for stateful data of device appears
read data are stored in array and 32 bit width messages
starting at arr item[0] are sent over the bus to software

iterating over all array items. In case of writing data
to a stateful memory of device, array is filled by data
transmitted over the bus and write signal to cell is
generated when last message is received by the array.

The P4 language structure allows more stateful ob-
jects arrays bound to one table. To reduce an usage of
chip resources an envelope component was developed.
This component enables to connect register module
with more registers/counters end points. The final
width of cell is determine by the widest stateful ob-
ject of desired type. The end point represents a call
of primitive action working with stateful memory or
request of direct counter.

Meter implementation is based on RFC 2697 [4],
that serves as reference provided by [3]. This refer-
ence requires more complex architecture, therefore
meter design differs from previous ones. Meters com-
ponent is designed to be capable of calculating packet
color for each clock period. This feature is reached
by breaking meter to many subcomponents as shown
in the figure 2. Meter component is composed of two
Bucket pipeliner components. The aim of meter is cal-
culation of output color based on received flags from
Bucket pipeliner components and determination of a
bucket to update. Bucket pipeliner wraps a functional-
ity of one meter.Val selector detects multiple requests
to one address in a row and it makes a sum of these
value to secure data consistency in further processing.
Inc array component keeps values of last bucket ac-
tualization. These values are used for calculation of
value to increment a target bucket. To secure data con-
sistency bucket cache component was implemented.
It keeps dual information for one request to memory.

Meter

Bucket_pipeliner

Bucket_pipeliner

DATA

Update
signals

Update
signals

Result
Flags

Flags

Bucket_pipeliner

Val_selector

Color
calculation

INC_ARRAY

Memory

Calculation of
tokens

 consumption

Update
signals

Bucket_cache

DATA

Flags
set up

Flags

Update
signals

Address

Figure 2. Design of meter component.

Match+Action Table

Search
engine

Action_1

REG
ENVELOPE

Action number

Header_Meta_Data

Action_2

Action_3

Unlock
mechanism

Reg data
Reg data

Reg data

Direct
counter 1

Direct
counter 2CNT

ENVELOPE

Done 2

DONE1METER
DIRECT

RESULT2

METER
ACTION 1

Action_sel_proc

DATA_OUT

DONE2
AND

RESULT1

Lock
mechanism

Figure 3. Mapping of statistics to P4 pipeline

First one represents read value from memory mean-
while second one keeps a calculated value which will
be written back to the memory. Second value is used
in case of quick address switching when the calculated
value is not yet updated.

Figure 3 shows an integration of stateful memories
described above to a P4 pipeline. The figure depicts a
table where all kinds of stateful memories were used.
Yellow colored actions indicates an usage of primitive
actions working with registers. In Action 1 two primi-
tives to request registers were used and in Action 2 just
one. The table contains two direct counters. Direct
counters are not bounded to user action but they are
allocated in the context of table. An execution of direct
meters and user actions is parallel. The data pipeline
is locked when packet enters to the user actions. An
unlock mechanism is applied when every request to
stateful memory was handled. Meters are not wrapped
to one component as in the case of counters or regis-
ter. For each declared meter is instantiated one meter
component and the result is added to data flow at the
end of table context. Therefore it is not allowed to
use the meter result in the primitive actions of the cur-
rent table. The meter implementation is designed to
maximize device performance but it is still decreased
in case of multiple requests to the same static meter
during one user action.

4. Results

In this section achieved results will be commented.
At the time of writing this article registers and coun-
ters were fully integrated to a P4 processing pipeline.
Meters are still in the phase of integration but an im-
plementation of design described above was done. To
prove a validity of P4 register and counter concept an
existing verification was extended and for purpose of
performance testing, a list of P4 stateful use cases was
created. A card COMBO-100G2Q was chosen as tar-
get device for a testing process. This card is equipped
with FPGA Virtex-7 H580T chip enabling a running
of complex designs.

Testing of functionality was performed using CES-
NET verification environment [5] and an existing ver-
ification written in SystemVerilog. As a simulation
tool was used a program ModelSim. The verification
sends thousands of transactions through device and it
compares an output with a reference solution of be-
havioral model. Behavioral model is a software P4
implementation provided by P4 language Consortium.
Registers were tested on five hundreds of thousands
transactions. A sequence of write and read register
operations accessing same memory cells was called to
not defect data included in the packet.

The list of use cases contains seven P4 programs
using stateful memories in the different way. This list
was created to show an influence of stateful objects
to device resources and performance. A core of use
cases is built around three tables. Here is a list of P4

programs provided for testing:

reference.p4 It is the reference program without an
usage of stateful objects with which others will
be compared.

simple-reg This use case declares just one static reg-
ister array with three 8 bit width cells. One
register write operation is called.

reg-bram It is extension of simple-reg use case by
adding two direct register arrays implemented
in BRAM bound to table with 512 table entries
and 4 primitives operations execution in one user
action.

simple-cnt One static counter array with 5 items of
32 bit width. Just one call of count primitive
action.

cnt-direct-bram Direct counter array implemented
in BRAM bound to table with 512 entries. The
width is 11 bits.

reg-cnt-together Direct register array implemented
in BRAM bound to table with 512 entries and
cell is 16 bit width. Two counters are imple-
mented in same table. First counter array has
5 cells of 32 bit width. The second array has 4
cells of 16 bit width. In the context of user action
two calls of register and counters are executed.

cnt dir-multi-reg This use case was created for test-
ing of direct counters with registers. Two static
counter arrays with 5, 4 items, one direct counter
array and two direct registers array are declared
in table with 512 entries. Another table has one
static packet and bytes counter array with 444
items and register array with 3 items.

Table 1 shows resources needed by individual use
case and a maximal design frequency. Target frequency
of design is 200 MHz. Results show that current im-
plementation saves chip resources efficiently and it is
capable of running design at a desired frequency.

Use case LUT([%]) BRAM([%]) f [MHz]
reference 125554(35) 219(23) 202.8

simple-reg 130671(36) 219(23) 200.1
reg-bram 131206(36) 220.5(23) 201.7

simple-cnt 131217(36) 219(23) 201.7
cnt-direct-bram 130386(36) 219.5(23) 204.8
reg-cnt-together 130930(36) 220.5(23) 203.2
cnt dir-multi-reg 131277(36) 223.5(24) 202.9

Table 1. Table of resources for individual use cases

The performance of device is affects by a lock
mechanism interrupting table processing for an amount
of clock periods. The final device throughput caused
by the lock mechanism can be evaluated according to

an equation 2 where f is device frequency, Li means an
user action latency and Cntdir = max(CdirreqCount −
1,0). CdirreqCount signs for count of direct counter
accesses in table from where Li action latency was
given.

T hr =
f

max(L1,L2,L3, ...Ln)+Cntdir +1
(2)

The user action latency is determined by primi-
tive actions used in it. All supported primitive actions
except those working with stateful memories are im-
plemented in a combinational logic. Therefore, an user
action without or with just one access to stateful mem-
ory (lasts one clock cycle) has latency 1. Otherwise,
the action latency (Li) can be evaluated according to
equtations below:

Li = max(Rop,Cop,1) (3)

Rop = |Rwr|+ |Rr| (4)

Cop = |Ccount | (5)

|Rwr| , |Rr|and |Ccount | sign an amount of clock pe-
riods needed to execute all register write, register read
and count primitive actions in user action. An amount
of clock periods needed by individual primitive actions
are listed in table 2.

Implementation

Action Distribute
RAM BRAM(output reg)

register write 1 2(2)
register read 1 1(2)

count 1 1(2)

Table 2. Clock cycles needed for execution of stateful
primitive actions

Figure 4 shows results of performance testing on
network with 100 Gbps rate. Each use case was tested
for three specific network traffic. The device and the
generator of traffic were configure to target whole pro-
ceed traffic to actions using access to stateful mem-
ories. Therefore, a graph in figure 4 shows device
behavior for an extreme network traffic situation that
is not usual in normal network traffic. For each situa-
tions is dedicated one column. First mode of traffic is
a situation when each proceed packet size is 64 bytes.
Thanks to its size, a network link is capable of sending
more packets per seconds but this causes the reduction
of throughput, as device is currently able to process
only one packet per clock cycle. Device throughput of
a network traffic composed from packets of 64 bytes is
shown as blue column. The red column is earmarked
for a network traffic of 1526 bytes size. In this case the

Figure 4. Device throughput of individual use cases

network link is capable of sending less packets than in
previous one and the device throughput is sufficient to
process all packets for each use case. The last yellow
column signs a network traffic of packets from 64 to
1526 bytes size.

Results have shown that device throughput for the
largest (red) and random size packets (yellow) is same
for each use case. For this kind of traffic the device
throughput is sufficient even if stateful memories are
used. The lock mechanism affects performance in case
of the network traffic composed from packets with
small size. Results confirm a prediction of new de-
vice throughput derived from stateful memories usage,
based on equation 2.

5. Conclusion
The subject of this paper is the realization of stateful
processing in high speed network devices described in
P4 language, the description of the design of compo-
nents for stateful processing, an integration of these
components to existing stateless solution with a secu-
rity of atomic execution of stateful operations and their
influence to the final device throughput.

The solution of stateful processing in P4 provided
by this paper is capable of reaching to a desired device
throughput for a variety of P4 use cases with stateful
memories on only a packet larger length. However,
to achieve better performance it is possible to divide
requests to stateful memories into more tables and for
a transfer between these tables a meta data can be used.
The current implementation saves a chip resources
efficiently.

In the near future meter’s integration should be
finished. Another challenge is an extension of current
solution for a support of external memories to store

stateful information without significant negative effect
to device performance.

Acknowledgements
I would like to thank to my supervisor Doc. Ing. Jan
Kořenek Ph.D. for his help with preparing this paper
and a constant support during work on this project. I
would also like to thank to my project leader Ing. Pavel
Benáček Ph.D. for his constant enthusiasm, willing-
ness to share his experience and his assistance with a
design of components and their implementation. In
the end, I would like to thank to my colleague from
CESNET Ing. Radek Iša for providing verification
environment.

References
[1] Barefoot Networks. Barefoot tofino.

https://barefootnetworks.com/
products/brief-tofino/.

[2] Pavel Benáček. Generation of High-Speed Net-
work Device from High-Level Description. PhD
thesis, České vysoké učenı́ technické v Praze,
Fakulta informačnı́ch technologiı́, 2016.

[3] P4 Language Consortium. P414 specifica-
tion. https://p4.org/p4-spec/p4-14/
v1.0.4/tex/p4.pdf.

[4] J. Heinanen and R. Guerin. A Single Rate Three
Color Marker. RFC 2697, RFC Editor, September
1999.

[5] R. Iša, P. Benáček, and V. Puš. Verification of gen-
erated rtl from p4 source code. In 2018 IEEE 26th
International Conference on Network Protocols
(ICNP), pages 444–445, Sep. 2018.

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

	Introduction
	P4 language
	Mapping of P4 statistics to FPGA
	Results
	Conclusion
	References

