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Abstract
Tree automata and their languages find use in the field of formal verification and theorem proving but
for many practical applications performance of existing algorithms for tree automata manipulation
is unsatisfactory. In this work a novel algorithm for testing language equivalence and inclusion on
tree automata is proposed and implemented as a module of the VATA library with a goal of creating
algorithm that is comparatively faster than existing methods on at least a portion of real–world
examples. First, existing approaches to equivalence and inclusion testing on both word and tree
automata are examined. These existing approaches are then modified to create the bisimulation
up–to congruence algorithm for tree automata. Efficiency of this new approach is compared with
existing tree automata language equivalence and inclusion testing methods.
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1. Introduction
Finite tree automata can be viewed as an extension
of commonly used finite word automata that allow
processing of languages with entities that do not have
a strictly linear structure. These automata and lan-
guages they describe can be used in the field of verifi-
cation to locate bugs in safety critical systems, theorem
proving, database systems, and language manipulation
based on XML schema [1, 2].

For instance, regular model checking of programs
with dynamic memory uses finite automata for repre-
senting heap objects, where language of the automaton
encodes possible states or value of the corresponding
heap object. Language inclusion and equivalence are
important for checking whether a set of possible states
of a given object encoded as an automaton language is
closed under the transition relation.

Also there exists a connection between tree lan-
guages and solutions to WSkS formulae, which can be
exploited to decide problems stated in terms of WSkS
using language operations on tree automata [1, 3].

For the purposes of verification and theorem prov-
ing, performance of existing algorithms for manip-
ulation of nondeterministic finite tree automata can

be deemed unsatisfactory for many real–world prob-
lems. Because checking language equivalence and
inclusion on nondeterministic tree automata has an
exponential–time worst–case lower bound, there is a
strong incentive to develop efficient algorithms that
perform this task in as limited time as possible, trying
to avoid, offset or limit an exponential growth even for
larger automata [4].

Being a fundamentally exponential–time problem,
it might not be possible to develop an algorithm that
will perform satisfactorily on every possible automa-
ton. The goal is rather to develop an algorithm that
will outperform existing approaches on at least a sub-
set of the tree automata that stem from real–world
applications.

1.1 Previous work
This paper builds on previous work done in [5] where
the first prototype of bisimulation up–to congruence
for VATA library was presented. In this paper the
bisimulation up–to congruence prototype is developed
into a fully functioning algorithm, several optimiza-
tions are implemented, and its efficiency is compared
with state–of–the–art approaches.
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1.2 Goal
The goal of this paper is to modify bisimulation up–
to congruence [6], an existing algorithm designed for
testing language equivalence and inclusion on finite
word automata for the use with finite tree automata.

Its main idea is based on optimizing the classical
procedure for testing language equivalence, which is
based on first determinizing both automata and then
trying to find a bisimulation between their initial states.
Bisimulation up–to congruence extends this procedure
by eliminating some of the checked state pairs based
on information gained from already processed pairs
and thus reduces the size of the search space, total
number of processed pairs, and time required to per-
form language equivalence or inclusion check. This
approach was shown to be an improvement over pre-
ceding techniques resulting in significant reduction in
run times with relative reduction ratio growing with
automata size [6].

However, bisimulation up–to congruence has so
far only been used with (and its soundness proven for)
finite word automata. Substantial changes for both the
algorithm and proof resulting from different structures
used by word and tree automata are necessary to suc-
cessfully adapt this approach for finite tree automata.

The main components of this paper therefore are:
implementation of the modified bisimulation up–to
congruence algorithm as an extension of the VATA
library [7] and comparison with existing equivalence
and inclusion testing approaches for tree automata
already implemented in the VATA library, namely al-
gorithms based on the so–called antichains [8, 9, 10].

2. Tree Automata
Finite tree automata are tools for describing languages
containing entities with the tree structure. They are
similar to finite word automata in both their compo-
nents and operation but they require an extended alpha-
bet, called ranked alphabet, to allow symbols to have
more than one successor.

Tree automata can be divided based on determin-
ism and a direction in which trees are processed. Pro-
cessing can start with the root symbol and progress in
the top-down direction expanding from the root sym-
bol and assigning states to nodes as they are processed
until all leaf nodes are reached. The alternative is
to start with leaf nodes progressing in the bottom-up
direction eventually reaching the root node [1].

In contrast to word automata where the process-
ing direction largely does not matter, bottom-up deter-
ministic tree automata are strictly stronger then their
top-down counterparts [1]. This difference stems from

the tree structure, where when traversing a tree in the
bottom-up direction, states of all child nodes need to be
used to determine the state of the parent node, whereas
in the top-down direction a single state of parent nodes
must determine the states of all children nodes.

2.1 Ranked Alphabet
A ranked alphabet Σarity is a finite set of symbols to-
gether with a ranking function rank : Σ→ N. Ranking
function determines arity of each symbol (number of
successor symbols).

For example, the following ranked alphabet can
be used to construct syntax trees from the language of
mathematical expressions using symbols +,−,×,÷
and numbers:

Σarity = {+,−,×,÷,n}

rank : + 7→ 2, − 7→ 2, n 7→ 0,
× 7→ 2, ÷ 7→ 2,

where all mathematical operators are binary (having
a rank of 2) and n, representing a number, is nullary
(having a rank of 0). Symbols with the rank 0 are
called leaf symbols or leaves because they terminate
branches of trees.

2.2 Tree
A tree t over a ranked alphabet Σarity is a function
t : Pos(t)→ Σarity where
• Pos(t)⊆ N∗,
• Pos(t) is nonempty and prefix closed meaning
∀u,v ∈ N∗ : uv ∈ Pos(t) =⇒ u ∈ Pos(t) and
• ∀p ∈ Pos(t) : a = t(p) =⇒
{ j ∈ N | p j ∈ Pos(t)}= {1, . . . ,rank(a)}.

2.3 Bottom-up Tree Automata
A bottom-up nondeterministic finite tree automaton
(abbr. NFTA) is a quadruple

A = (Q,∆,Σarity,F),

where
• Q is a finite set of states,
• ∆ is a transition function ∆ : Q∗×Σarity→ 2Q

such that if (p1, . . . , pn)
a−→ P then rank(a) = n,

• Σarity is a ranked alphabet,
• F is the set of accepting states, F ⊆ Q.

We use (p1, . . . , pn)
a−→ P to denote that ((p1, . . . , pn),

a,P) ∈ ∆.

2.3.1 Determinism
Deterministic tree automata are a special class of non-
deterministic tree automata, where

∀(p1, . . . , pn)
a−→ P ∈ ∆ : |P| ≤ 1.



2.4 Run
Let t be a tree and A = (Q,∆,Σarity,F) be a NFTA.
A run of A over a tree t is a mapping rt : Pos(t)→ Q
consistent with ∆, meaning ∀p ∈ Pos(t) : rt(p) = q∧
1 ≤ i ≤ rank(t(p)) : rt(pi) = qi ⇔ (q1, . . . ,qn)

a−→ q.
Run rt is called accepting if r(ε) ∈ F .

2.5 Language
Language accepted by a NFTA A = (Q,∆,Σarity,F),
denoted L(A ), is the set of all trees for which there
exist an accepting run rt compatible with ∆, formally
L(A ) = {t | ∃rt : rt is a run of A on t ∧ rt(ε) ∈ F}.

2.5.1 Inclusion and equivalence
Even though asking whether two languages are the
same (equivalence) or one is a subset of the other (in-
clusion) may seem as two distinct questions, there is a
mathematical connection between these two problems.

Because A⊆ B∧B⊆ A⇔ A = B and A∪B = B⇔
A⊆ B, being able to test inclusion can also be used to
determine equivalence and vice versa.

Therefore, algorithms described in this document
may be specifically designed to solve only one of these
problems, but can also be utilized to solve the other by
exploiting this connection.

3. Existing methods

Testing inclusion and equivalence on tree automata can
be done using several different techniques. First, there
is the approach based on removal of unreachable states,
determinization, and minimization. Because every
minimal tree automaton is unique (up to isomorphism),
equivalence can be determined by directly comparing
minimized versions of input automata [11, 1].

Using determinization can be complicated by the
state space explosion [1]. Thus performing deter-
minization before equivalence checking is resource–
intensive, decreasing the overall performance of this
approach. Moreover, even if equivalence can be dis-
proven by finding counterexample using only portion
of the automata, the determinization and minimiza-
tion will build the whole minimized automata first and
check equivalence later, leading to poor performance
on nonequivalent automata pairs.

An alternative is to use on–the–fly determinization.
Techniques in this category do not work with automata
as whole but rather with their macrostate (a set of states
of the original automaton) pairs [10]. These algorithms
start with pairs of macrostates that imply language
equivalence (pairs of states of leaf nodes for tree au-
tomata) and use successor pairs generated during the
run of algorithm. Those successors constitute proof

obligations that need to be satisfied to prove the initial
assumption. This process is repeated until a failed obli-
gation is found (counterexample) or no unprocessed
proof obligation is left (the initial assumption holds).
This allows for early termination of the whole process
if a counterexample is found [10, 8, 9]. The most basic
on–the–fly subset construction technique is successor
generation while constructing bisimulation relation.

These techniques can further be aided by tools
that prune the searched macrostate pair space. The
antichain approach, defined in [9], uses the identity
relation, which implies language inclusion, to prune
the search space [10, 9]. Simulation–based approaches
are generalized versions of antichains that allow the
use of any relation that implies language inclusion, but
they are not complete (simulation implies language
inclusion but not vice versa) [10]. And, finally, the
antichain approach can be combined with simulation
to obtain a combined method [10].

4. Bisimulation up–to congruence for
tree automata

Bisimulation up–to congruence is an extension of the
regular language equivalence checking by relating au-
tomata states with a bisimulation relation [12] and
using on–the–fly determinization. The input automata
can be nondeterministic and determinization is done
during the algorithm run only for macrostates that are
encountered during the successor pairs generation. It
is based on Hopcroft and Karp’s algorithm [13], which
builds a maximal bisimulation relating initial states of
both automata [6, 13].

If all pairs in this relation are final state equivalent
(meaning either both or neither states are final), then
the first automaton can simulate any transition in the
other one always ending in a final state if the first
does and vice versa, therefore guarantying language
equivalence of input automata.

Definition 1 (Bisimulation) Bisimulation on tree au-
tomata A = (Q1,∆1,Σ,F1) and A2 = (Q2,∆2,Σ,F2)
is a relation R ⊆ 2Q1 ×2Q2 , such that if ∀a ∈ Σ : n =
rank(a)∧∀1≤ i≤ n : (Xi,Yi) ∈ R then

1. ∀1≤ i≤ n : Xi∩F1 = /0⇔ Yi∩F2 = /0 and
2. (∆1(X1, . . . ,Xi,a),∆2(Y1, . . . ,Yi,a)) ∈ R.

This definition of bisimulation is based on the definition
found in [6] and deviates from the standard definition
of bisimulation for tree automata found in [12].

Lemma 1 Languages of two tree automata are equal
if there exist a bisimulation relating them.



input :N = (QN ,∆N ,Σarity,FN),M = (QM,∆M,Σarity,FM)
output : true iff L(N ) = L(M ), otherwise false

1 todo←{(∆N(a),∆M(a)) | a ∈ Σarity}
2 done← /0
3 while todo 6= /0 do
4 actual← (X ,Y ) ∈ todo
5 done← done∪{actual}
6 if (X ∩FN = /0 < Y ∩FM = /0) then
7 return false
8 end
9 foreach a ∈ Σ do

10 todo← (todo∪post(a, actual, done))\ c(done)
11 end
12 end
13 return true

Algorithm 1: Bisimulation up–to congruence for tree automata.

1 Function post(a: symbol, (X, Y): macrostate pair, done: set of pairs) : set of pairs is
2 return

{(∆N(P1, . . . ,X , . . .Pm,a),∆M(Q1, . . . ,Y, . . .Qm,a)) | m = rank(a)−1∧1≤ i≤ m)(Pi,Qi) ∈ done}
3 end

In order to improve performance of language equi-
valence checking, it is desirable to reduce the search
space as much as possible. This is accomplished by
using bisimulation up–to congruence (Algorithm 1),
an approach that only adds a new macrostate pair into
todo if it is not in the congruence closure of done,
denoted c(done), thus removing all new pairs that can-
not contribute to finding counterexample from further
search.

Definition 2 (Bisimulation up–to) [6] Given tree au-
tomata A = (Q1,∆1,Σ,F1) and A2 = (Q2,∆2,Σ,F2)

and a function f : 22Q1×2Q2 → 22Q1×2Q2 a relation R
on macrostates is a bisimulation up–to f if whenever
∀a ∈ Σ : n = rank(a)∧∀1≤ i≤ n : (Xi,Yi) ∈ R then

1. ∀1≤ i≤ n : Xi∩F1 = /0⇔ Yi∩F2 = /0 and
2. (∆1(X1, . . . ,Xi,a),∆2(Y1, . . . ,Yi,a)) ∈ f (R).

4.1 Congruence Closure
Congruence closure is a symmetric, transitive, and
reflexive closure of the original relation. Let R⊆ 2Q×
2Q, the congruence closure of R, denoted c(R) can be
defined inductively using following rules:

X R Y
X c(R) Y

,
X c(R) X

,
X c(R) Y
Y c(R) X

,

X c(R) Y Y c(R) Z
X c(R) Z

and
X1 c(R) Y1 X2 c(R) Y2

X1∪X2 c(R) Y1∪Y2
.

Lemma 2 Relation built in done over the run of Al-
gorithm 1 is a bisimulation up–to congruence if line 13
is reached, otherwise a counterexample was found
and actual holds a state pair that is reachable over
the same tree in both automata and only one of the sta-
tes is accepting.

5. Implementation

Algorithm 1 for language equivalence checking was
implemented as an extension of the C/C++ VATA li-
brary1 [7]. It uses iterative calculation of successor
macrostate pairs (Function post) and congruence clo-
sure membership checking using fixpoint calculation
described in [13], which is based on applying inference
rules described in Section 4.1.

6. Experiments

Bisimulation up–to congruence was compared with
the bottom–up algorithm for inclusion checking based
on antichains implemented in the VATA library [7].
Neither algorithm was combined with the simulation
approach. Inclusion checking algorithm based on an-
tichains was used to test equivalence by checking inclu-
sion in both directions. To take care of the possibility
that inclusion would hold in one direction and not in

1https://github.com/Iorethan/libvata-congruence
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Figure 1. Scatter plot of the times needed by the bisimulation up–to congruence and the algorithm based on
antichains to check equivalence.

Figure 2. Comparison of the time needed to decide language equivalence for antichain based algorithm and
bisimulation up–to congruence. Relative difficulty is average time needed by both algorithms to decide the given
problem.

Table 1. Required time [s] (all results)

Algorithm 50% 90% 95% 99% 100%
Antichains 0.100 0.327 0.670 23.406 -
Bisimulation 0.112 0.336 0.533 10.333 202.674

the other (artificially inflating the time two inclusion
checks need to find a counterexample), lower measured
time for both directions was taken as the result.

Experiments were conducted on a set of NFTA
obtained from Abstract Regular Tree Model Checking
(ARTMC). There were in total 95 automata ranging in

Table 2. Required time [s] (valid equivalences only)

Algorithm 50% 90% 95% 99% 100%
Antichains 3.87 69.28 131.23 297.24 -
Bisimulation 2.73 15.13 22.39 178.25 202.67

size up to automata with approximately 100 symbols
in the alphabet, 1000 states, and over 20000 transitions.
Every automaton was tested for equivalence with every
other automaton (including itself), totaling 9025 com-
parisons of which 594 were valid equivalences (499
non–trivial) and 8426 were invalid equivalences.



Percentile times for both algorithms can be seen
in Table 1 for all comparisons and in Table 2 for valid
equivalences only. For problems that could be decided
relatively quickly (most of the invalid equivalences
fall into this category) algorithm based on antichains
performed better than bisimulation up–to congruence,
but with increasing difficulty this reversed and bisimu-
lation up–to congruence outperformed antichains on
the majority of the difficult examples.

Scatter plots of the times both algorithms took to
check equivalence are in Figure 1 (all cases and valid
equivalences only). Another comparison of time re-
quired to check equivalence, this time based on relative
difficulty of individual test cases, is in Figure 2 (all
cases and valid equivalences only).

7. Conclusion
In this paper, bisimulation up–to congruence, a novel
algorithm for testing language equivalence and inclu-
sion on tree automata was presented. This algoritm
operates on nondeterministic tree automata and per-
forms on–the–fly determinization to try to offset state
explosion connected to determinization. Moreover, it
tries to build only a fraction of a bisimulation rela-
tion that would usually be required to check language
equivalence by exploiting properties of the congruence
closure to prune the search space.

In comparison with the algorithm based on an-
tichains, bisimulation up–to congruence has a larger
overhead, thus performing worse on simpler examples
and invalid equivalences where counterexample can
be found relatively quickly, but it outperforms the al-
gorithm based on antichains if the problems become
complex enough and effectiveness of the search space
pruning outweighs larger overhead. The difference
between efficiency of bisimulation up–to congruence
and the algorithm based on antichains seems to grow
with increasing difficulty of test cases.

Therefore, the main goal of this paper to develop
an algorithm for language inclusion and equivalence
testing on tree automata and outperform existing ap-
proaches on real-world examples was accomplished.

7.1 Future Work
Because the direction of processing trees has a lot of
impact on tree automata, even restricting the set of
recognizable languages for deterministic top–down
automata, it will be interesting to study the effects
of parsing direction on the performance of language
equivalence and inclusion checking algorithms. There-
fore modifying bisimulation up–to congruence for top–
down automata and comparing its effectiveness with

bottom–up approach (for both bisimulation up–to con-
gruence and antichains based algorithm) can yield
some insight into this issue.

Another possibility is to augment bisimulation up–
to congruence with a simulation relation. Language
equivalence and inclusion checking based on simula-
tion relation can be extremely efficient, but this tech-
nique is not complete. Combining bisimulation up–to
congruence with a simulation relation could possibly
exploit effectiveness of a simulation for cases where
it is sufficient and use bisimulation up–to congruence
for cases where simulation fails.

Results of the comparison done in this paper are
not corresponding to those in [14]. Therefore further
tests to determine efficiency of bisimulation up–to con-
gruence and antichains approach on larger and more
diverse automata sets should be made. To rule out
possible distortion of results stemming from different
optimization level of bisimulation up–to congruence
and antichains implementations a new measure to di-
rectly compare search space sizes and not run times
should be developed.
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[7] O. Lengál, J. Šimáček, and T. Vojnar. VATA:
A Library for Efficient Manipulation of Non-
deterministic Tree Automata. In Proc. of TACAS

’12, pages 79–94, Berlin, Heidelberg, 2012.
Springer.

[8] M. De Wulf, L. Doyen, T. A. Henzinger, and
J. F. Raskin. Antichains: A new algorithm for
checking universality of finite automata. In Proc.
of CAV ’06, pages 17–30, Berlin, Heidelberg,
2006. Springer.

[9] L. Holı́k, O. Lengál, J .Šimáček, and T. Voj-
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