
9
http://excel.fit.vutbr.cz

Hybrid Raytracing in DXR
Tomáš Polášek*

Engine

Utilities

Standard
Library C++17 

OS Binding

Win API 

Configuration

Resource Management
D3D12 D3DX12 DXTK 

Message Bus Rendering System

ImGUI DXR

Scene Management
Entropy 

Tiny glTF 

Scene System

Rendering Layers

Application

Input System Window Runner GPU Profiling Logic Systems

●

●

●

●

●

●

● ●

●

100

101

102

103

102 104 106 108

Triangles [n]

T
im

e 
[m

s]

Acceleration Structure Build Time

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

109.2

109.3

109.4

109.5

109.6

109.7

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [R
ay

s/
s]

Hybrid Ray Tracing

Abstract
The goal of this paper is to assess the usability of hardware accelerated ray tracing in near-future
rendering engines. Specifically, the DirectX Ray Tracing API and Nvidia Turing GPU architecture
are being examined.
The assessment is accomplished by designing and implementing a hybrid rendering engine with
support for hardware accelerated ray tracing. This engine is then used in implementing frequently
used graphical effects, such as shadows, reflections and Ambient Occlusion. Second part of the
evaluation is made in terms of difficulty of integration into a regular game engine - complexity of
implementation and performance of the resulting system.
There are two main contributions of this thesis, the first one being Hybrid Rendering engine called
Quark, which uses hardware accelerated ray tracing to implement above-mentioned graphical
effects. The hybrid-rendering approach uses rasterization to perform the bulk of the computation-
intensive operations, while allowing ray tracing to add additional information to the synthesized
image. The second important contribution are the performance measurements of the final system,
which include time spent on the ray tracing operations and number of rays cast for different input
models.
Presented system shows one possible way of using the Nvidia Turing Ray Tracing cores in generat-
ing more realistic images. Preliminary measurements of the rendering system show great potential
of this new technology, with results of 5 to 12 GigaRays per second on RTX 2080 Ti. The largest
problem so far is the integration of this technology into rasterization-based engines. Data needs to
be prepared for ray tracing and manually accessed from ray tracing shaders. The second problem
is the build-time of acceleration structures, which is in order of milliseconds, even for smaller models
with around 50 thousand triangles.
Keywords: Hybrid Ray Tracing — DirectX Ray Tracing — Hardware Accelerated Ray Tracing

Supplementary Material: Demonstration Video — Reflection Comparison — Downloadable Code
— Automated Testing Video

*xpolas34@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

http://excel.fit.vutbr.cz
https://www.youtube.com/watch?v=6XUOfmQsfFw
https://imgur.com/a/VThu8CQ
https://gitlab.com/tomtomp/Masters-DXR-Main/tree/Integration
https://www.youtube.com/watch?v=i24qBAHXaoQ&feature=youtu.be
mailto:xpolas34@stud.fit.vutbr.cz


1. Introduction
Ray tracing has always been the more intuitive and
straightforward way of solving many of the rendering
problems – primary ones being visibility, lighting and
shadows. One problem which always comes up with
the use of ray tracing is its computational complexity,
which is still higher, when compared to rasterization.
It is the goal of hardware accelerators, such as the
new Nvidia Turing [1], to allow us to implement real-
time ray tracing algorithms. According to the official
reports, the Ray Tracing cores should allow for casting
of up to 10 GigaRays per second [2].

The goal of this thesis is to evaluate the potential
of this new technology and try to solve some of the
most common rendering problems with it. While the
primary concern is certainly the computational effi-
ciency of the solution, which can be measured in rays
per second, there are also other matters which are of
interest. One of them is the pre-processing time, which
is required in order to prepare the scene data for ray
tracing. There are also problems with the nature of
ray tracing, which requires to have the whole scene
available, since any single ray cast may hit practically
any part of the scene.

A big part of the evaluation is the practical use of
the ray tracing cores, using DirectX 12 and DirectX
Ray Tracing, in implementing some graphical effects,
which are difficult or impossible to achieve with raster-
ization. First of these effects are hard shadows, which
are relatively well solved with rasterization, with many
methods such as Shadow Mapping [3] or Shadow Vol-
umes [4]. Both of these methods have their problems,
while Shadow Mapping can be implemented very ef-
ficiently, there are many artifacts which need solving
– e.g. Shadow Acne or Peter Panning. In comparison,
Shadow Volumes method generates much more precise
shadow, however it has serious performance problems.

Another effect which is quite problematic for ras-
terization methods to get right are reflections. There
are two main ways of solving reflections when using
pure rasterization – resolving the image in screen space
[5] or placing secondary cameras behind reflective sur-
faces. The first method is most commonly used for
fast reflections, which do not require precision. The
biggest disadvantage is the missing information about
objects not currently visible on-screen, which means
their reflections will be missing. The other approach,
by placing hidden cameras, comes short when trying to
display reflective surfaces which are not perfect planes,
or some other well-defined primitives.

Last of the tested effects is Ambient Occlusion,
which is in itself an approximation of the way in which

enclosed spaces are usually darker, since less light
gets to them. Among the most used rasterization ap-
proaches are methods Screen-Space Ambient Occlu-
sion or Horizon Based Ambient Occlusion [6]. All of
these methods work in screen space, which is quite
fast, but comes with a multitude of artifacts.

To fairly assess the potential of the Ray Tracing
cores, this thesis proposes a new type of rendering
system, called Hybrid rendering, which combines ad-
vantages of both rasterization and ray tracing. One
of the contributions of this thesis is the design and
implementation of a Hybrid rendering engine called
Quark, which is built using DirectX 12 and DirectX
Ray Tracing API [7]. This engine is then used in im-
plementation of above-mentioned graphical effects.

The results presented by this thesis show the po-
tential of this new technology, which could lead to rad-
ically different types of effects, in contrast to currently
used rasterization techniques. There are however some
challenges, in terms in integration of this system into
existing engines, which are yet to be resolved.

2. Principles of Hybrid Rendering

The basic idea of every renderer is to, more or less
precisely, solve the Rendering equation [8]. The Ren-
dering equation is an integral equation which, when
solved for a given scene, results in radiance of each
point in that scene, as viewed from some given direc-
tion.

Currently there are two main approaches used for
solving the Rendering equation and synthesizing the
final image. The first one is through the use of ras-
terization, which takes the input polygons – usually
triangles – and fills the pixel grid correspondingly. Ras-
terization is used for most real-time graphics, since it
is very fast and easily accelerated, however the output
is not very precise in respect to solving the Rendering
equation.

The second commonly used approach is to use Ray
Casting, which leads to the Ray Tracing techniques.
The main idea of these methods is to repeatedly cast
rays into the scene, through the camera plane or lens,
which allows them to solve the visibility between parts
of the scene. This maps very well to solving the Ren-
dering equation, since we are essentially searching the
scene for reflected light-sources.

The Hybrid rendering technique, presented as a
part of this thesis, is simply a combination of these two
approaches, taking advantage of their respective ben-
efits. Its carrying idea is very similar to rasterization
technique called Deferred rendering, the rendering
process can be surmised as follows:



1. Target scene is prepared for rasterization.
2. The scene is rendered using a Deferred pass,

which generates a so called G-Buffer. This G-
Buffer has several layer – position, normal, albedo,
material, depth etc. Example of a G-Buffer con-
tent can be seen in figure 1.

3. Scene is prepared for ray tracing. This includes
the building of all acceleration structures.

4. The scene is rendering using the Ray tracing
pass. The G-Buffer is used to provide some
basic information, which reduces the number
of necessary rays – there is no need to cast the
primary rays, since rasterization pass already
generated information for the visible geometry.

5. Final image is resolved by using the information
generated by the rasterization and ray tracing
passes and is displayed on the screen.

Figure 1. Example content of a G-Buffer, which
contains information about position in the scene
(top-left), normal (top-right), albedo (bottom-left)
and depth (bottom-right).

The goal of this approach is to minimize the num-
ber of rays cast in each frame, keeping the heavy lifting
operations on the rasterization pass, which solves the
basic visibility and shading. Ray tracing is then used
to fill in more precise information – like reflections
and shadows.

3. Hardware Accelerated Ray Tracing
The main problem of Ray Tracing methods is their
computational complexity. Casting a ray through a
scene and finding the closes hit is not a trivial task.
There are several ways of accelerating this operation,
mainly through the use of bounding volumes and accel-
eration structures [9]. Another problem is that – since
each ray can essentially hit any part of the scene – all
of the data has to be accessible, which requires random

access to most of the resources. This is in contrast to
rasterization, where there is usually well-defined set of
parameters for each triangle and even seemingly ran-
dom access resources, like textures, are still accessed
in a predictable pattern.

Rasterization is commonly accelerated using GPUs,
which allows to push out millions of pixels per second.
There were already many attempts to build hardware
acceleration for ray tracing [10], however most of them
failed outright, or were slowly forgotten.

Among the ways of accelerating ray tracing, is ei-
ther through computation of collisions on CPUs, or
through the use of GPGPU calculations, using com-
pute shaders. The new Nvidia Turing [2] GPU ar-
chitecture contains specialized hardware cores – Ray
Tracing cores – which allow the acceleration of ray
tracing. The acceleration consists of two parts: traver-
sal through the acceleration structure and intersection
evaluation. Diagram of this process can be seen in
figure 2.

RT Cores

Launch Ray Probe

Shading

Ray-Box  
Intersection Test 

Ray-Triangle 
Intersection Test 

Report Hit 

Shading Units

Figure 2. Diagram displaying the process of ray
tracing acceleration using the Ray Tracing cores [2].
The operation starts by launching a ray probe from the
shading cores. This request is passed to the Ray
Tracing cores, which asynchronously [1] perform the
operation. This allows the shading units to perform
other work in the mean time.

4. Design of Hybrid Rendering Engine

One of the crucial parts of this thesis is the Hybrid
rendering engine, which is later used for experiments
with the new hardware accelerated ray tracing system.

The main goal of this engine was to allow the use
of hardware accelerated ray tracing, which also shaped
its design and chosen libraries. The whole rendering
engine can be thematically divided into sub-systems
– which can be seen in figure 3 – the most important
of which is the rendering sub-system. Its foundation
is built on DirectX 12 and Direct3D API, which is a
lower-level alternative to OpenGL – similar to Vulkan.



Engine

Utilities

Standard
Library C++17 

OS Binding

Win API 

Configuration

Resource Management
D3D12 D3DX12 DXTK 

Message Bus Rendering System

ImGUI DXR

Scene Management
Entropy 

Tiny glTF 

Scene System

Rendering Layers

Application

Input System Window Runner GPU Profiling Logic Systems

Figure 3. Diagram containing the rough partitioning
of the engine, into sub-systems. Libraries used can be
discerned by the white background.

DirectX 12 has been chosen because it was the only1

rendering API which supported hardware accelerated
ray tracing through the use of DirectX Ray Tracing [7].

4.1 DirectX Ray Tracing
DirectX Ray Tracing, or DXR in short, is an exten-
sion of DirectX 12, which consists of the following
three parts: Shader Tables, Acceleration Structures
and the Ray Tracing Pipeline. First of these parts – the
Shader Table – is a concept, which is not necessary
when using the standard rasterization pipeline. Each
rasterization shader type can only contain one imple-
mentation, while some of the ray tracing shaders may
have multiple definitions. Rays cast into the scene may
hit any geometry, which means all of the shaders have
to be available – chosen shader depends on which ge-
ometry has been hit by the ray. Each table may contain
several shader programs and their local parameters,
example table can be seen in figure 4.

Shader Table

RecordRecord
Identifier

Root
Arguments

RayGeneration

Root
Arguments

CBV

Constant

...

Record
Miss

Root
Arguments

UAV

Descriptor
Table

...

Record

Root
Arguments

Closest Hit

Constant

CBV

...

Figure 4. Example shader table, which contains
multiple shader types [11] – Ray Generation, Miss
and Closest Hit. Each shader program is packed
together with its local parameters.

Included with these Shader Tables are the new
shader types, the original rasterization shaders cannot
be used with ray tracing pipeline. The new shaders can
be seen in figure 5.

The second, and the most important part, is the
acceleration structure, which is used for accelerated
ray-scene computation. There are two parts to acceler-
ation structures in DXR – top-level and bottom-level.

1Currently accelerated ray tracing is also supported by an ex-
tension of the Vulkan API.

TraceRay(...)

Ray Generation

Acceleration
Structure
Traversal

Any Hit 

Intersection ?

Yes

No

Hit Triangle? Closest Hit 

Miss 

Figure 5. New types of shaders, used in DirectX Ray
Tracing [11]. Closest Hit shaders are roughly equal to
the Pixel or Fragment shaders, and may be specified
separately for each geometry.

The bottom-level is generated from provided geome-
try – vertex position data and, optionally, indices. At
the leaf level, the bottom-level acceleration structure
contains triangles, which are wrapped in hierarchy of
bounding volumes, the upper-most of which contains
the whole model2. There are usually many bottom-
level acceleration structures per one scene.

The top-level acceleration structure is used to in-
stantiate the bottom-level geometry, placing it into the
virtual scene. There are several parameters, which can
be specified for each of the instances – transformation
within the scene, offset within the shader table and
identifier of the bottom-level structure. The number
of top-level acceleration structures is not limited, how-
ever there is usually only one per scene. Connection
between these two acceleration structures can be seen
in figure 6.

Top-Level AS

InstanceInstanceInstance
InstanceID

Mask

Shaders

Bottom AS

 
Transform

Instance
InstanceID

Mask

Shaders

Bottom AS

 
Transform

Bottom-Level AS

Figure 6. Diagram of the acceleration structures used
in DXR [11]. Bottom-level is used to store the
geometry, while the top-level instantiates this
geometry and places it within the virtual scene.

The final part of DXR is the ray tracing pipeline,
which connects all of the above parts together. Apart

2It is possible to pack several models into a single bottom-level
acceleration structure, which has performance benefits.



from the Shader Tables, it is also possible to provide
other parameters, such as maximal recursion depth of
the ray casts and size of the ray payload, which is a
user-defined structure carried by each ray.

5. Implementation Details
The most important part of the engine is the rendering
sub-system, which has been implemented using the
DirectX 12 API. In order to allow easy comparison of
ray tracing and rasterization outputs, all of the render-
ing effects are implemented in Rendering Layers, each
of which contain one or more passes. The application
allows switching between 3 primary modes – Raster-
ization, Full Ray Tracing and Hybrid Ray Tracing.
There are also two ray tracing acceleration back-ends
implemented, one of which is automatically chosen at
application startup:

• Hardware acceleration using Ray Tracing cores.
• Fallback using compute shaders [12].

The rasterization rendering layer is very rudimen-
tary and allows rendering of textured scenes for com-
parison. Most of the ray tracing operations have been
implemented as a part of the ray tracing rendering
layer. It contains 3 passes, which are called Deferred,
Ray Tracing and Resolve. First of these generates the
necessary G-Buffers (position, normal, albedo and ma-
terial), which are used in the next layers. Ray Tracing
rendering layer contains implementation of the ray
tracing effects described above. The last layer – the
Resolve layer – takes input from the Deferred and Ray
Tracing layers and combines their output into the final
image.

The ray tracing rendering layer requires access
to the geometry and textures of the scene, which re-
quired implementation of caching mechanism, which
prepares these resources for further use. Since the
ray tracing shaders do not receive any other attributes
than the world-space position of the hit geometry, it is
necessary to access the other vertex attributes directly,
through the use of raw byte-buffers. These buffers
contain the same vertex data, which is passed to the
rasterization. Indexation of these buffers is performed
manually, through the use parameters specified in the
top-level acceleration structure.

Implementation of the above-mentioned graphi-
cal effects is contained within the ray tracing shaders.
Hard shadows use a single ray, which is cast from
the world position recovered from the G-Buffer in di-
rection of the light. These rays are cast with special
flags, which do not trigger the execution of Closest Hit
shaders, which increases the performance. Reflections

are calculated by casting rays very similar to the pri-
mary rays used in full ray tracing. These rays require
access to the vertex and texture buffers, which means
they are much more expensive.

Ambient occlusion can be efficiently solved us-
ing ray tracing, by casting short-range rays around
the tested point in space and calculating the ratio of
occluded rays. Diagram of this method can be seen
in figure 7. The rays are similar to the shadow rays,
however their length is reduced to the desired ambient
occlusion range. The shorter range allows for better
performance, which allows casting many more rays –
8, 16 or more.

Occluded
Unoccluded

Range

Figure 7. Ambient occlusion methods approximate
detail shadows by calculating ratio of occluded rays in
a specified position. Created effect allows the human
eye to differentiate object detail, which can be seen in
the Demonstration Video.

Among other interesting parts of the implementa-
tion are sub-systems for profiling and scene manage-
ment. The profiling sub-system allows simultaneous
profiling of CPU and GPU code, through the use of
GPU queries. Scenes can be loaded from internal
format or glTF [13] files, which is widely supported.
Much more thorough description of the implementa-
tion can be found in the full text of this thesis.

6. Experiments and Results
There are many performance parameters, which are
worth investigating. The first metric I have chosen
to measure, is the maximum number of rays cast per
second – GigaRays/s as presented in the official speci-
fication [2]. Since the performance could be radially
different based on scene complexity and number of
rays which actually hit geometry, there are multiple
testing scenarios presented.

Another interesting parameter is the necessary prepa-
ration time, which is mainly the build time of the ac-
celeration structures. Since these structures are not
guaranteed to be compatible between devices [11], it
will be necessary to generate them at run-time. This
parameter can change the way this technology is used,
since long build times may prohibit their just in time
building.



In order to make the measurements, multiple suit-
able scenes had to be found, which is where the glTF
scene support is very helpful. There are many testing
scenes available in the official examples, from which
the following were chosen: Textured Cube, Suzanne
and Sponza. Information about each scene can be
found in table 1. Each of these scenes tests a differ-
ent scenario, for example the cube has a very simple
geometry, which allows to stress test the Ray Tracing
cores. Sponza on the other hand has many sub-objects,
which require more complex acceleration structures.

Table 1. Table contains information about tested
scenes. Each mesh is processed seperately, but
contained within the same bottom-level acceleration
structure. Texture count includes textures with diffuse,
metallic-roughness and normals information.

Scene Triangles Meshes Textures
Box 12 1 2
Suzanne 3936 1 2
Sponza 262267 103 69

After some initial experiments, it became clear
that there is one more parameter to control for – the
position and direction of the camera. Performance can
be radically different, when only part of the screen
is covered with geometry and most of the rays miss
completely; For this reason, the first batch of testing
scenarios is performed with static camera locations.

The second profiling category is focused on accel-
eration structure build times. There are several vari-
ables to account for:

• Number of meshes within a single bottom-level
acceleration structure.

• Number of bottom-level acceleration structures.
• Number of instances within the top-level accel-

eration structure.

In order to test how each of these affect the build times,
I have created automatic testing utilities, which take a
single glTF scene and duplicate it in controlled manner,
while measuring how long the build takes.

The last category measured category 3 attempts to
re-create movement in the scene, by using automated
camera tracks. These tracks can be recorded in the ap-
plication, saved to hard drive and then used – example
of the run can be seen in the Automated Testing video
in the abstract.

In order to automate these tasks, the application
accepts command line arguments, which enable the

3The final thesis will contain at least one more, which will test
how the recursion depth affects the number of rays per second.

profiling modes. After starting up, the testing is auto-
matically performed and profiling information is saved
into a log. Testing was performed on two systems
whose specifications can be found in table 2.

Table 2. Specifications of the testing systems. PC1
uses hardware acceleration, while PC2 uses compute
fallback [12].

CPU GPU
PC1 Intel Xeon W 2135 Nvidia RTX 2080Ti
PC2 Intel i5 4670k Nvidia GTX 970

6.1 Ray Tracing Performance
Pure ray tracing performance profiling is performed
by placing the camera into specific locations of the
scene, which can be seen in figure 8. For each of these
locations and each tested resolution, the number of hit
pixels and miss pixels has been manually calculated4,
allowing precise calculation of the number of rays cast
per second.

Resulting GigaRays per second values were cal-
culated using the following procedure. Frame time
values, in milliseconds, were aggregated into one sec-
ond blocks and averaged. From frame times, the total
number of frames per second was calculated. Other
used parameters are width and height of the render
area and number of rays cast per pixel (rpp). The final
value of GigaRays per second is then:

gigarays = f ps ·width ·height · rpp (1)

Figure 8. Camera locations used for measuring the
performance. The scenes used are: Cube (top-left),
Suzanne (top-right) and Sponza (bottom-left). Extra
image (bottom-right) shows the possibilities of
reflections for arbitrary geometry.

4Specific data can be found in the project repository
/prof/hardware/results.txt



Profiling scenarios can be divided into two cate-
gories – standard scene rendering and stress testing the
ray tracing cores. Scene rendering scenarios attempt to
assess what real-life performance may look like. The
three described scenes are rendered using pure ray trac-
ing – without generating the deferred buffers. Primary
rays are cast for each pixel. Upon hitting geometry
one shadow ray, for light visibility, and 64 short-range
ambient occlusion rays are cast. If the primary ray
misses all geometry, no other ray casting occurs.

The stress testing scenarios are performed on the
Sponza scene with 64 primary rays per pixel. The Miss
test measures performance when all of the primary
rays miss. For Stress test, all of the 64 primary rays hit
geometry, however no additional shading is performed.

Results for the hardware accelerated ray tracing,
using both testing computers, can be found in table
3. The first testing system – PC1 with RTX 2080 Ti
– shows performance corresponding with the official
sources of up to 10 GigaRays per second. Second
system, which does not have support for hardware
accelerated ray tracing and uses the fallback layer,
shows much lower performance.

There is a clear difference between ray tracing per-
formance of each model, which is reduced with grow-
ing number of triangles. One of the interesting parts
of the measured data is the difference between real
rays per second for Sponza and Suzanne models. With
much smaller number of triangles, the performance
should be much higher. This result can be explained by
taking into consideration the code divergence [14] be-
tween the shader units, since the position in the Sponza
scene is chosen to have 0% miss rate.

Table 3. Table containing profiling results, taken
using the static camera positions. All of these tests
were performed in 1440p. First column specifies
which scene/test is ran. Rays/pixel value is corrected
for the camera position and any ray misses. RFPS is
reference frames per second, taken using the
rasterization pass.

PC1 FPS Rays/pixel GigaRays/s RFPS
Box 142 25.7 12.82 2134
Suzanne 123 12.7 5.50 1879
Sponza 31 66.0 7.09 537
Miss 56 64.0 12.52 537
Stress 28 64.0 6.25 537

PC2 FPS Rays/pixel GigaRays/s RFPS
Box 2.3 25.7 0.55 1524
Suzanne 2.5 12.7 0.59 1182
Sponza 0.2 66.0 0.04 291
Miss 3.8 64.0 0.85 291
Stress 0.3 64.0 0.08 291

6.2 Acceleration Structure Build Times
Ray tracing acceleration structures, which need to be
built before initiation of ray tracing operations, are
divided into 2 parts. The bottom structure contains the
geometry, while the top acceleration structure contains
instances of the bottom levels. Profiling of build times
of these structures is performed by taking the base
scenes – Cube, Suzanne and Sponza – and duplicating
them multiple times in the rendered scene. The du-
plication is performed in a cube, so for a duplication
factor two, there are 8 models present. Bottom level
acceleration structures are then built for each of these
models 5.

The goal of the following tests is to measure the
performance of the automated build system, which
is provided by the ray tracing acceleration back-ends.
All of the following tests are performed with default
settings, which means the acceleration structures are
built for maximum ray tracing performance. During
the tests, the duplication factor is gradually increased,
up to total of 10. For Sponza model, this value had
to be lowered, since the GPU was removed due to
operation timeout.

Results from one of the tests, which can be seen
in figure 9, display the dependence of build times on
the total number of triangles in the bottom level ac-
celeration structures. The results show roughly lin-
ear complexity in respect to the number of triangles,
when taking into consideration the logarithmic axes.
With growing number of triangles, the total number
of bottom-level acceleration structures also increases.
This leads to worse relative performace for smaller
models – e.g. the Cube.

●

●

●
●

●

●

● ●

●

100

101

102

103

102 104 106 108

Triangles [n]

T
im

e 
[m

s]

GPU Bottom

●

●
● ● ●

●

●
●●

10−3

10−2

10−1

100

101

102 104 106 108

Triangles [n]

T
im

e 
[m

s]

GPU Top

●

●

●

●
●

●

●
●

●

100

100.5

101

101.5

102

102.5

103

102 104 106 108

Triangles [n]

T
im

e 
[m

s]

CPU Bottom

●
●

●
●

●

●

● ●

●

10−1

10−0.5

100

100.5

101

102 104 106 108

Triangles [n]

T
im

e 
[m

s]

CPU Top

Scenes ● Cube Sponza Suzanne

Figure 9. Graph showing build times of ray tracing
acceleration structures. Base models were duplicated
both in bottom-level acceleration structures and in the
scene, which simulates higher number of triangles.
Profiling was performed on PC1.

5De-duplication is disabled for these tests, normally duplicate
meshes just reuse the same bottom level acceleration structure.



Compared to the bottom level, the top level shows
almost no change with increases in the number of
instances. This can be caused by relatively small num-
ber of instances, which is around 1000, for the high-
est duplication. Other graphs, including dependance
on number of meshes and profiling for PC1, can be
found in the project repository (folder prof/automat-
ed/Graphs).

The measured build times show, that even for rela-
tively small models of around 50 thousand triangles,
the resulting build times would be in the order of
milliseconds. This performance prohibits building of
these acceleration structures in a just-in-time fashion
and necessitates a smarter building schemes. For future
development of this technology, it would be beneficial
to unify format of these structures and allow devel-
opers to ship pre-built structures straight with other
resources.

6.3 Hybrid Ray Tracing
Since most applications or games, which would use
this technology, do not intend to use it for full ray
tracing and use it just for some additional effects, it
would be probably used as a part of larger pipeline
with many other passes. To simulate this behavior, the
hybrid ray tracing approach first generates deferred
G-Buffers, which allows it to skip casting primary
rays. In order to simulate the camera movement, the
application allows running pre-recorded camera tracks,
which automatically control the camera – one of these
can be seen in the Automated Testing Video.

In contrast to previous tests, the following tests
also use different shaders, which additionally calculate
simplified physically-based lighting. For each pixel
one shadow ray and 8 ambient occlusion rays are cast.
In case of pure ray tracing, the primary ray is also still
used. Following tests were all performed on PC1 in
1440p resolution.

Results of the first test, which can be seen in figure
10, show the difference between using pure ray tracing
with primary rays and the hybrid ray tracing approach.
Performance of both systems seems to be very similar,
with a little higher GigaRays per second values for
the pure ray tracing approach. This can be explained
by the additional passes in case of hybrid ray tracing
approach, where the ray tracing pass needs to wait
for the deferred pass to finish rendering. In real-life
scenarious, this shouldn’t be a problem, since deferred
buffers are generated even without using ray tracing.

Second test, shown in figure 11, shows frames
per second comparison between the two ray tracing
approaches and a pure rasterization solution. As ex-
pected, the rasterization is much faster, at around 15

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

109.2

109.3

109.4

109.5

109.6

109.7

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [R
ay

s/
s]

Hybrid Ray Tracing

●

● ●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

109.4

109.5

109.6

109.7

109.8

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [R
ay

s/
s]

Pure Ray Tracing

Scenes ● Cube Sponza Suzanne

Figure 10. Graph showing the GigaRays per second
values for automated camera paths in 1440p
resolution. Profiling was performed on PC1.
GigaRays per second were calculated according to the
equation 1

times the number of frames per second. One interest-
ing part of this test is the lowering of frames per second
on both of the ray tracing test, with rasterization being
unaffected. This is caused by the camera going closer
to the object – Cube and Suzanne in this case – which
results in many more primary ray hits and calculation
of shadows and ambient occlusion.

●

●
●

●
● ●

●
●

● ●

●

●
●

● ●

● ●
●

●
●

●

●
●

●
●

●

● ●
●

0

50

100

150

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [F
ra

m
es

/s
]

Hybrid Ray Tracing

●

● ● ● ●

● ●
●

● ●

● ●
●

● ●
●

●

● ● ● ●

●
●

●

● ●
● ●

●

0

50

100

150

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [F
ra

m
es

/s
]

Pure Ray Tracing

●

●

● ● ● ● ●

● ● ● ● ● ●
● ● ●

● ●
●

● ● ●
● ● ● ●

●

● ● ●

0

500

1000

0 10 20 30
Frame [idx]

P
er

fo
rm

an
ce

 [F
ra

m
es

/s
]

Rasterization

Scenes ● Cube Sponza Suzanne

Figure 11. Graph showing the frames per second
values for automated camera paths in 1440p
resolution. Profiling was performed on PC1.

7. Conclusions
This paper presents a hybrid rendering approach, which
takes advantage of both rasterization and ray tracing
acceleration. This technique is then used in designing
and implementing a DirectX 12 powered hybrid ren-
dering engine, named Quark, which takes advantage
of the hardware accelerated ray tracing provided by
the new Nvidia Turing GPUs. The engine is subse-
quently used in solving several rendering problems,
which are difficult for rasterization approaches – shad-
ows, ambient occlusion and reflections. Finally, the



resulting application is profiled and the measurements
are used to assess the potential of hardware accelerated
ray tracing on several different devices.

Tentative results, presented in this paper, show a
great potential of this new technology. For relatively
performance heavy scenarios – primary ray, shadow
ray and 64 ambient occlusion rays – the RTX 2080
Ti GPU allows to cast from 5 to 12 GigaRays per
second. The second tested device – GTX 970 – does
not present such great performance, with around 0.04
to 0.9 GigaRays per second. This is however stil great
result, when taking into consideration the GTX 970
does not have the Ray Tracing cores.

The results presented in this thesis can be used in
deciding whether the initial time investment of imple-
menting this new technology is worth it for a given
project. The design and implementation of the hybrid
rendering engine is freely available and can be used as
a base for other implementations.

I will be continuing to work on the hybrid ren-
dering engine, with future plans of implementing the
Vulkan ray tracing extension and transforming the en-
gine into a platform for further experiments. There are
also few more parameters, which I would like to mea-
sure and present in the final paper - e.g. how does the
length of the ray affect the performance or comparison
of iterative and recursive ray tracing. The final goal I
would like to accomplish is to implement some basic
global illumination technique with lighting accumula-
tion from multiple frames.

Acknowledgements

I would like to thank my supervisor Ing. Jozef Kobrtek
for guidance and Martin Sobek from 2K for helping
me with choosing this topic.

References
[1] NVIDIA. NVIDIA Turing GPU architecture,

2018.

[2] Emmett Kilgariff, Henry Moreton, Nick Stam,
and Brandon Bell. NVIDIA Turing Architecture
In-Depth. Online, September 2018.

[3] Lance Williams. Casting curved shadows on
curved surfaces. ACM SIGGRAPH Computer
Graphics, 12(3):270–274, aug 1978.

[4] Franklin C. Crow. Shadow algorithms for com-
puter graphics. ACM SIGGRAPH Computer
Graphics, 11(2):242–248, aug 1977.

[5] Tomasz Stachowiak. Stochastic Screen-Space
Reflections. SIGGRAPH 2015, 2015.

[6] Daniel Kvarfordt and Benjamin Lillandt. Screen
Space Ambient Occlusion. Online, 2017.

[7] Martin Stich. Introduction to NVIDIA RTX and
DirectX Ray Tracing. Online, March 2018.

[8] James T. Kajiya. The rendering equation. In
Proceedings of the 13th annual conference on
Computer graphics and interactive techniques -
SIGGRAPH 86. ACM Press, 1986.

[9] Timothy L. Kay and James T. Kajiya. Ray tracing
complex scenes. ACM SIGGRAPH Computer
Graphics, 20(4):269–278, aug 1986.

[10] Jae-Ho Nah, Jeong-Soo Park, Chanmin Park, Jin-
Woo Kim, Yun-Hye Jung, Woo-Chan Park, and
Tack-Don Han. T&i engine. In Proceedings of
the 2011 SIGGRAPH Asia Conference on - SA

’11. ACM Press, 2011.

[11] Microsoft. DXR Functional Spec.

[12] D3D12 Raytracing Fallback Layer. Online, Oc-
tober 2018.

[13] Khronos. glTF 2.0 Overview. Online, 2018.

[14] Alex Dunn. Tips and tricks: Ray tracing best
practices. online, March 2019.


	Introduction
	Principles of Hybrid Rendering
	Hardware Accelerated Ray Tracing
	Design of Hybrid Rendering Engine
	Implementation Details
	Experiments and Results
	Conclusions
	References

