
9
http://excel.fit.vutbr.cz

Importance sampling probability density functions
represented with (hemi)spherical harmonics
Michal Vlnas*

Abstract
This paper discusses a novel approach for 3D importance sampling probability density functions
represented as spherical harmonics (SH). The proposed method pre-samples all spherical harmonic
basis functions using a pseudo-random number generator (PRNG) with known seed and decides
which samples will be used for further sampling and records these samples. Any function then
can be reconstructed given a vector of SH coefficients and PRNG. This approach has immediate
usability in rendering, e. g. global illumination, radiance transfer, etc. In the contrary to existing
methods, our approach does not require evaluation of any function integrals. The proposed
approach generates over 3 million sample per seconds (while using single core) and does not
decrease performance with increased size of SH basis.

Keywords: spherical harmonics — importance sampling — probability density function — pseudo-
random number generators

Supplementary Material: N/A

*xvlnas00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Spherical harmonics (SH) are special functions defined
on the sphere domain. They are important in many
nature applications, such as electrostatic and electro-
magnetic fields, atomic orbital electron configurations,
gravitational fields, or the magnetic fields of planetary
bodies and stars.

In computer graphics, spherical harmonics can be
also widely used in many different applications, since
many problems are defined over the (hemi)spherical
domain. An extensive research was focused in the area
of precomputed radiance transfer by Kautz, Snyder et
al. [1, 2]. Another popular technique is irradiance nor-
mal mapping, which is mostly used in games, where
the irradiance signal can be efficiently represented
with orthonormal basis functions, such as spherical
harmonics. In Wimmer and Habel work [3] can be
also seen, that not even a full spherical basis is needed,
as irradiance can be accurately represented using only
a few coefficients. Spherical harmonics also play a
role in modeling of 3D shapes and it’s description [4].
More intuitive view, focused on practical ways and

techniques, especially in lightning simulations using
spherical harmonics, can be also found in R. Green
work [5].

Importance sampling (generating samples accord-
ing to the intensity distribution of a function) is widely
used in many disciplines, as it can lead to significantly
better results. In rendering, Monte Carlo integrations
are very common in situations where importance sam-
pling techniques can be used to reduce variance. How-
ever, they have widespread usage in other branches,
e. g. procedural geometry, etc.

2. Background

The first practical SH importance sampling was pre-
sented by Jarosz et al. [6], which is based on hierarchi-
cal sample warping according to the function integrals.
Such approach requires a lot of effort for integral eval-
uation even though most of the values can be precom-
puted, it still suffers from performance drops when
using a high number of basis functions. Comparing to
their method, our approach does not need to evaluate/-
store any function integrals.

http://excel.fit.vutbr.cz
mailto:xvlnas00@stud.fit.vutbr.cz

2.1 Spherical harmonics
Spherical harmonics (also called as Laplace spheri-
cal harmonics, shortened to SH) represent spherical
functions, as they are completely orthogonal functions
on a sphere. They are based on associated Legendre
polynomials Pm

l (x)|x=cosθ , which can be defines using
recurrence relations 1, see Equation 1.

Pm
m (x) = (−1)m(2m−1)!!(1− x2)m/2

Pm
m+1(x) = x(2m+1)Pm

m (1)

(l−m)Pm
l (x) = x(2l−1)Pm

l−1− (l +m−1)Pm
l−2

If a direction ~ω is represented using standard spher-
ical parameterization, ~ω =(sinθ cosφ ,sinθ sinφ ,cosθ),
then the real-valued spherical harmonic basis functions
are defined in Equation 2.

ym
l (θ ,φ) =

√

2Km
l Pm

l (cosθ)cos(mφ) m > 0√
2Km

l P−m
l (cosθ)sin(−mφ) m < 0

K0
l P0

l (cosθ) m = 0

(2)

where Pm
l are the ALPs mentioned above and Km

l are
normalization constants defined as:

Km
l =

√
(2l +1)(l−|m|)!

4π(l + |m|)!

The constants l and m are integer values which
represent the order l and the degree m of the basis
functions. Formally, l is required to be a non-negative
number and m should satisfy the condition−l ≤m≤ l.

Spherical harmonics are also orthonormal and ro-
tation invariant [7]. Demonstration of SH is shown in
Figure 1.

2.1.1 Approximation
Any real-valued spherical function can be approxi-
mated (see Equation 3) with SH by using a linear com-
bination of spherical harmonics [5] basis functions:

f (θ ,φ)≈
N−1

∑
l=0

l

∑
m=−l

f m
l · ym

l (θ ,φ) (3)

where f m
l are function coefficients computed by pro-

jecting a function onto each SH basis. These values
can be estimated using various approaches, including
Monte Carlo estimations.

2.2 Hemispherical harmonics
As SH represents the whole spherical domain, in some
cases, it might be useful to limit domain only to hemi-
spherical (see Figure 2). The first set of hemispherical
basis functions was introduced by Gautron et al. [8].

1operator !! stands for double factorial

These functions are still based on associated Legendre
polynomials with shifted domain (Equation 4) using a
presented linear transformation.

P̃m
l (cosθ) = Pm

l (2cosθ −1) with θ ∈ [0,
π

2
) (4)

HSH are then orthogonal over 〈0, π

2 〉×〈0,2π), so the
corresponding normalization constant is then:

Km
l =

√
(2l +1)(l−|m|)!

2π(l + |m|)!

2.3 Monte Carlo techniques
Monte Carlo methods are a class of very common com-
putational algorithms that rely on random sampling
in order to provide estimated results. In the principle,
any problem described with probabilistic model can
be solved using Monte Carlo. Practically, Monte Carlo
is mostly being used for numerical integration. In this
case, it uses a kind of sampling from given probabilis-
tic model to evaluate definite integrals. Many different
approaches can be used, such as uniform, stratified
or importance sampling. For all of these techniques,
it is required to have a pseudo-random number gen-
erator and probabilistic description of function, e. g.
spherical harmonics in our case.

2.4 Pseudo-random number generators
Pseudo-random number generators (PRNG) are com-
pletely deterministic algorithms for generating a se-
quence of numbers whose distribution is obviously not
random, while it often can be acceptable by various al-
gorithms, but that can be effectively determined by an
initial value – seed. Sequence reproducibility is an im-
portant property for the proposed algorithm. Length of
the period and uniform distribution of samples are cru-
cial properties of these generators as well. Mersenne
Twister [9] has one of the longest periods with proven
equidistribution. But on the other hand, xor-shifts [10]
are one of the fastest generators.

3. Proposed approach
As mentioned above, in Equation 3, any spherical func-
tion can be approximated using the weighted sum of
(hemi)spherical harmonics. In the proposed algorithm,
it is assumed that each basis function coefficient f m

l
is a probability of picking the basis function so the
coefficients must fit the condition in Equation 5.

N−1

∑
l=0

l

∑
m=−l

f m
l = 1 (5)

In the following text, we are assuming usage of
hemispherical harmonics as in this case we can use

Figure 1. Spherical harmonic basis functions, up to
degree l = 2,m = 2

Figure 2. Hemispherical harmonics, up to degree
l = 2,m = 2

Algorithm 1: PRE-SAMPLING AND FILTERING
Data: N is total number of samples
Data: ym

l is basis function
Data: seed for random number generator
Result: S is a skipping sequence

1 // pre-sample basis function
2 for i← 0 to N−1 do
3 u,v← random float(seed)
4 θ ,φ ← sample hemisphere(u,v)
5 samples[i] = ym

l (θ ,φ)

6 end
7 // normalize values to [0, 1)
8 normalize(samples)
9 // initialize rejecting step

10 step = 0
11 foreach s ∈ samples do
12 r1← random float(seed)
13 // threshold rejecting
14 if r1 > s then
15 step++
16 continue
17 end
18 // store skipping interval
19 S← insert(step)
20 // reset current "skip" step
21 step = 0
22 end
23 // reset PRNG state to default
24 reset(seed)
25 return S

the approximated form as the probability density func-
tion of the distribution given by coefficients f m

l , while
using the whole spherical domain would break the
probabilistic rules.

3.1 Pre-sample and filter
The crucial part of the proposed approach is prepro-
cessing. The main idea behind this part is to impor-
tance sample each basis function independently (each

function independently on the other ones).
As it can be seen in Algorithm 1, at first, each basis

function is uniformly sampled (using projection to the
hemisphere) from given PRNG seed. It is needed
to normalize all the sampled function values to the
interval [0,1), as naturally they are out of this interval.
Also, this normalization constant needs to be kept, as
it is needed when assembling a function from SH basis
functions.

The latter step is to filter these samples so that they
are ”importance distributed” according to the function
value. Filtering is based on threshold rejecting, sam-
ples are compared to the random threshold and then
rejected or accepted. This is the most important part
of preprocessing, as when the sample is rejected, it
is noted (recorded) and when one of the following
generated samples is accepted, the algorithm stores
information about the number of previously skipped
samples so that it creates a sequence of these skipping
intervals – an intuitive view can be seen in Figure 3 a),
the skipping interval is meant to be the gap between
the accepted samples. Finally, it is required to reset
the state of PRNG. Otherwise it would not be possi-
ble to reproduce the selected samples during online
sampling.

From the implementation point of view, according
to our observations, skipping steps can be safely stored
into the single bytes to efficiently optimize memory us-
age. When generating a large number of preprocessed
samples, so that it would not fit in the random access
memory, it is recommended to pre-load sequences
from the storing device to not decelerate the perfor-
mance of the sampling.

3.2 On-line sampling
Before the actual sampling, it is needed to assembly an
approximated function. Each basis function requires
a weights, from given set of weights (estimated with
some kind of analytical or numerical method – depends

offline pre-processing

samples filtered

online sampling

input skipping sequences

basis #1

basis #2

basis #3

basis #4

40%

15%

20%

25%

basis weight

pick
0,3,5,2,7,9,...

skip samples

seq. index

take sample ”k”

sample

a,b,c,d,e,f,g,h,i,j,k,l,m,n,.. a, , , ,e, , , , , ,k, , ,n

0,3,5,2,...a)

b) c)

d)

Figure 3. Algorithm illustration: a) generate N random samples (for clarity a-n), filter out minor samples, using
random threshold rejecting, so the probability distribution is preserved b) each basis function has assigned
weight, pseudo-random generator with seed and skipping sequence c) pick basis according to the weight
distribution, get it’s skipping sequence, including current position inside, currently pointing on 5 d) skip x
samples and take the following sample ”k”

Algorithm 2: ON-LINE SAMPLING

Data: F [l(l +1)+m] is a vector of function coefficients
Data: S is a pre-defined skipping sequence
Data: seed for random number generator
Data: i is an index in the sequence
Result: ω is a sampled direction
Result: p is a probability of sampling ω

1 // select basis w.r.t weights in F
2 ym

l , p← pick basis(F)
3 // two random numbers per sample
4 step← 2 ·S[i++]
5 // skipping
6 for k← 0 to step do
7 random skip(seed)
8 end
9 // sample from filtered set

10 u,v← random(seed)
11 θ ,φ ← sample hemisphere(u,v)
12 // update sampling probability
13 p = p∗normalize(ym

l (θ ,φ))
14 return ω(θ ,φ), p

on application). All these weights are multiplied with
basis normalization constant and then re-normalized,
so they sum into one. Practically, it arranges a bal-
ance between the given weights and the basis function
norms. Function is then defined with N weighted basis
functions, what corresponds to Equation 3.

Sampling
Given a skipping sequence, the function sampling is
then straightforward using of Algorithm 2. At first, it
is needed to choose a basis according to given vector
of function coefficients – it corresponds to weighted
pick from set, see Figure 3b. Afterwards, using the
selected basis function, one can get a number of sam-

ples to be skipped (Figure 3c) – assuming that we have
stored an index variable to indicate the position in the
sequence. Practically, sample is a composited number
from two-random numbers generated with the RNG,
so the skipping is just switching the RNG state. After
skipping the selected number of samples, the resulting
sample is just the next generated sample with pseudo-
random number generator, projected onto hemisphere,
as the resulting sample is in spherical coordinates.

The probability of sampling a direction ω can be
evaluated as product of basis weight (normalized to
[0,1) and function value in sampled direction, normal-
ized according to basis norm.

4. Results
The fundamental question is about performance. Be-
cause of the implementation manner of the algorithm,
sampling performance remains the same, independently
on number of the basis functions. It is a remarkable ad-
vantage against other methods. The proposed method
samples about 3 million samples per second while us-
ing the only one core. On the other hand, memory
complexity is raising with increasing number of coeffi-
cients. The memory consumption is shown in Graph 4a
using input of 1 to 10 millions of samples. However,
the real memory consumption would be quite differ-
ent, when using some kind of effective storage, as the
samples are used only once, there is no need to keep
them in the memory, they can be safely stored on the
hard drive and synchronously loaded during sampling,
so there would be just a constant number of samples
in the memory.

Also, preprocessing performance measured in real
time (in seconds) can be seen in Graph 4b. Both graphs

9 16 25 36 49 64 81 100
0

128

256

384

512

number of basis functions

M
B

s
Memory usage

1M samples
10M samples

(a) A graph showing memory consumption of proposed
method

9 16 25 36 49 64 81 100
0

20

40

60

80

100

number of basis functions

tim
e

in
se

co
nd

s

Preprocessing performace

1M samples
10M samples

(b) Preprocessing stage performance dependent on
grade and number of samples

Figure 4. Memory and performance graphs

(a) An example of function surface
(b) A function sampled with proposed algorithm. Color
represents the probability of sampling a direction

Figure 5. Hemispherical function, both plots are top view for better clarity

are dependent on the number of basis functions. All
the values were measured using Intel(R) Core(TM)
i5-4460 CPU @ 3.20GHz processor.

A demonstration of algorithm is shown in Figure 5.
An example of hemispherical function was generated,
shown in Figure 5a, using 4 different hemispherical
harmonics basis function up to grade 3. As was already
mentioned, that the goal of this paper is to present a
method for representing a probability density func-
tions, so the sum of function coefficients is equal to 1.
On the other side, in Figure 5b, one can see an impor-
tance sampled function, using the same set of basis
functions and 500 samples.

No comparison to state of the art methods is pre-
sented, as the proposed method is quite different in it’s
approach and also the practical usage of the algorithm
is not complete yet – making the actual comparison

very complicated. For that reason, state of the art
comparison is still an opened question which will be
answered in the future.

5. Conclusions
In this paper, we presented a new technique for fast
importance sampling of probability density functions
represented with spherical harmonics. The main advan-
tage of proposed algorithm is its constant performance
which is independent on the count of given coefficients.
The probability density function modeled using the
spherical harmonics could be used as a black box in
guided renderer, as most of the techniques nowadays
lacks the simplicity and requires a lot of computational
time to make them efficient.

The future work includes efficient memory man-
agement for high order sequences. As it has been

already said in previous section, one approach could
be to pre-load enough numbers, required for on-line
sampling, and discard the already used ones, as the
generated numbers can be used only once. In addition
to this, a question about how many samples to pre-
generate is still open. In some situation it is possible to
get notion about this, but mostly it is unknown. How-
ever, every time, it is possible to generate new data set
of samples, not only offline, but also on the fly.

Acknowledgements
I would like to thank my supervisor, Pavel Zemčı́k, for
his ideas in introducing this method and substantial
help.

References
[1] Peter-Pike Sloan, Jan Kautz, and John Snyder.

Precomputed radiance transfer for real-time ren-
dering in dynamic, low-frequency lighting envi-
ronments. ACM Trans. Graph., 21(3):527–536,
July 2002.

[2] Jan Kautz, John Snyder, and Peter-Pike J Sloan.
Fast arbitrary brdf shading for low-frequency
lighting using spherical harmonics. Rendering
Techniques, 2(291-296):1, 2002.

[3] Ralf Habel and Michael Wimmer. Efficient ir-
radiance normal mapping. pages 189–195, 02
2010.

[4] Mohamed Mousa, Raphaëlle Chaine, and Samir
Akkouche. Direct spherical harmonic transform
of a triangulated mesh. Journal of graphics tools,
11(2):17–26, 2006.

[5] Robin Green. Spherical harmonic lighting: The
gritty details. In Archives of the Game Develop-
ers Conference, volume 56, page 4, 2003.

[6] Wojciech Jarosz, Nathan A. Carr, and Hen-
rik Wann Jensen. Importance sampling spherical
harmonics. Computer Graphics Forum (Proceed-
ings of Eurographics), 28(2):577–586, apr 2009.

[7] Cheol Ho Choi, Joseph Ivanic, Mark S Gordon,
and Klaus Ruedenberg. Rapid and stable deter-
mination of rotation matrices between spherical
harmonics by direct recursion. The Journal of
Chemical Physics, 111(19):8825–8831, 1999.

[8] Pascal Gautron, Jaroslav Krivanek, Sumanta
N. Pattanaik, and Kadi Bouatouch. A novel hemi-
spherical basis for accurate and efficient render-
ing. ACM SIGGRAPH 2007 Papers - Interna-
tional Conference on Computer Graphics and
Interactive Techniques, pages 321–330, 06 2004.

[9] Makoto Matsumoto and Takuji Nishimura.
Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number genera-
tor. ACM Trans. Model. Comput. Simul., 8(1):3–
30, January 1998.

[10] George Marsaglia. Xorshift rngs. Journal of
Statistical Software, Articles, 8(14):1–6, 2003.

	Introduction
	Background
	Proposed approach
	Results
	Conclusions
	References

