C programs. Currenly, is usable for analysis of numerical
and dynamic variables. Verification is based on computing
invariants of source program by utilizing an SMT solver.

Due to complexity of computed invariants it is hard to

Author:

Supervisor: Ing. Viktor Malik

Motivation for This Work

2LS is a verification framework for analysing sequential

identify parts of the original program that cause
undecidability of verification.

We propose a solution, to identify parts of the original
programs that cause problems to the verifier by analysing

computed loop invariants.

Verification Example

C Parser Tree: /

Program written in C.

Consists of two variables, one

uinitialized and a simple loop.

Verification is inconclusive,
user-specified assertion is
true only if variable y is zero.

Martin Smutny, xsmutnl13@stud.fit.vutbr.cz

Improving Precision of Program Analysis
In the 2LS Framework

\ \\ \ ¥
) 1\ A
andV J Siah
S - N
s S)
|"‘~ . J 1]
1 : | % f ' W
[] I VP i
VY. V.
| W B = |
T v | A
E F L » B =»
0 Sud Sl
! V A (Y 4 y

Imprecise Variable Identification

So-called inductive invariants
are computed in various
abstract domains using
templates. Templates reduce
the invariant inference
problem so it can be
iteratively solved using
SMT solver.

We are looking for template
variables that have values
representing the top value in
their abstract domains.

Vv
{

{
}

VCOoO~NOTULT DA WN =

10

11 assert(x == 0)

12 }

2LS Architecture |

Parse Assignment

Expr
1

——Expr

X++;

| T Expr____

id

id

@ Position @ |nitial

GOTO Conversion

Intermediate program

represenation using

GOTO programs, which

are control flow graphs.
Various transformations,
such as function inlining
or light-weight static
analysis to resolve
function pointers,
resulting in a static call
graph.

oid main()

Intx =0;
inty;

while (y)

1

Numerical variables: finite
maXx. values of their types

Objects (static and dynamic):
non-deterministic set of
addresses

Invariant Generator

| SMT Solver

External solver,
over CNF formula
(translated SSA)
using theory of
bit-vectors.

before the loop

SSA Form ' "1 l= ‘
loop head multiplexer -

signed int x;
\
X =0;

v

signed int y;

N 2
k 1:IFy==0
Y
XxX=1+Xx;

\

GOTO 1

2: ASSER L. x.==.0

\

END_FUNCTION

~ True

Xphi3 = guardiss ? X|p5 : X1

l

loop body
X4 =1 + Xphi3

end of the loop body
X|b5

R ————E——

- ——> after the loop '-

| Interval domain

Analysis of humerical
variables. Variable x
and constant d-

(x < d)) A (—x < d,)

Octagon domain

Heap domain

Analysis of objects on
the heap, pointer p:

p— Objl Objz

p = &obj, V p = &obj,

Generated Invariant: |

(x < 2147483647) A
(—x < 2147483648)

Variables:
1: x#Ib5

% 1: Imprecise value of variable "x" at the

end of the loop, that starts at line 6

oid main()

Vv
{

}

int x =0;
Inty;

while (y)
{

}

assert(x == 0);

X++;

]

WN-a-aOLWLOONOTULD WDN =

Property Checker

Unknown

Acyclic single static
assignment form.
Satisfies the property that
each variable is assigned
to only once. Cuts the
loops at the end of the

[main.assertion.1] assertion x == 0: OK

** (0 of 1 unknown

loop body and introduces **0 of 1 failed
free variables. VERIFICATION SUCCESSFUL

