BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Non-Parametric Modelling for Automatic Detection
of Performance Changes

Simon Stupinsky*

Abstract

Current tools that manage project performance do not provide a satisfying evaluation of the overall
performance history, which is often crucial when developing large applications. In our previous
work, we introduced a tool-chain that collected set of performance data, extrapolated these data
into a performance model represented as a function of two depending variables, and compared the
result with the model of the previous version reporting possible performance changes. The solution
was, however, dependent on precisely specifying and measuring those dependent variables. In this
work, we propose more flexible approach of computing performance models based on collected
data and subsequent check for performance changes that requires only one measured kind of
variable. We evaluated our solution on different versions of vim, and we were able to detect
a known issue in one of the versions as well as verify that between two stable versions there were
no significant performance changes.

Keywords: Performance — Continuous integration — Non-parametric analysis — Regressogram
— Moving average — Kernel regression — Automated changes detection — Difference analysis

Supplementary Material: Project Repository

*xstupi00@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

In particular, existing systems do not offer the au-
tomation and are missing more precise context for per-
formance management. When managing performance
profiles without full automation, the user is forced to
annotate and manage all collected data manually. Pos-
sible solutions for some of these problems could be
removed by using a database to store collected infor-
mation and performance profiles, but by using it, we
have to face new complications. Hence, we would
like a system, which will be light-weight, distributed
and be able to manage collected data and performance

Performance testing is a critical factor in optimization
of programs. This form of non-functional testing aims
to determine the performance of a system under certain
conditions to identify its critical locations, but is still
not so well developed. In contrast, functional testing is
covered by many tools as a part of a continuous integra-
tion. Although there exists several high-quality tools
for performance testing, the fully automating of the
profiling resources, or the subsequent comprehensive

management of the created performance, is provided
only by some of them.

Maintaining optimal performance during devel-
opment requires tracking multiple, often conflicting,
aspects under changing conditions. A user has to start
performance regression tests, handle the testing his-
tory and the context of the executed performance tests
himself. However, manual manipulation with a large
amount of data is highly prone to error and may lead
to loss of the exact history of tracked changes.

profiles.

To manage performance version the research group
VeriFIT developed the tool Perun: Performance un-
der control [1]. Tt provides full functionality for au-
tomation of the profiling process, manages and stores
collected data, and allows effective processing of the
results, as well as a set of visualisation techniques.
Nowadays, our framework for automated detection of
performance changes involves different types of col-

http://excel.fit.vutbr.cz
https://github.com/tfiedor/perun
mailto:xstupi00@fit.vutbr.cz

lectors, post-processor yielding models obtained by
the regression analysis and several detection methods.
This way we can provide estimates of performance
changes, such as degradation or optimisation, during
the code development for a broad range of programs.

Moreover, since Perun works as a wrapper over
repository, we obtain a powerful difference analysis.
Whenever when the user releases a new version of the
project, Perun runs the following. First, the profiles for
the new version are generated, and the regression mod-
els are created by post-processors. Subsequently, Pe-
run compares the newly regression models with stored
best models of the previous stable version. Finally, the
user obtains the list of performance changes, where
each change includes three crucial aspects: precise
location, severity and confidence [2].

The post-processing is one of the most important
aspects to achieve the most accurate performance anal-
ysis of collected data. The models created by indi-
vidual post-processors are the basis for our detection
methods. But, the current post-processor that imple-
ments regression-analysis requires to find the right so
called independent variable. This regression analysis
is based on the prediction of the dependent variable
values for every value of the independent variable.
However, this assumption, that an unknown function
belongs to the class of functions dependent on the pa-
rameter is sometimes not fulfilled and therefore the
resulting detection by these models can also be af-
fected. Sometimes the data are simply not dependent
on anything, and we still need to have an excellent
model to achieve more precise results. Hence, we pro-
pose to implement new types of post-processors, that
will be based on the non-parametric methods.

New non-parametric modelling brings new pos-
sibilities of post-processing data and subsequent de-
tection of performance changes by using them. In
particular, in this work we propose the implementation
of three new post-processors: regressogram, moving
average methods and kernel regression and two detec-
tion methods: integral comparison and local statistics,
within the Perun framework. Models created by these
post-processors and new detection methods allow per-
forming the detection of changes more flexibly and
thereby could possible achieve better results in some
cases in the whole process of automatic detection.

The raw performance data obtained by collectors have
no significant value without further processing. There-
fore we post-process data so they are suitable for differ-
ence analysis. We use the statistical technique called

smoothing [3] which can be approached in two ways —
parametric or non-parametric. Parametric estimates
are based on the assumption that the unknown function
belongs to the class of functions that depends on some
parameters. Non-parametric estimates do not prescribe
the data of "Procrustes lies” of parametrisation, but let
the data speak themselves.

Specifically in the context of our framework, we
use estimates of the regression function. The goal of re-
gression analysis is to find appropriate approximation
f of an unknown function f. The statistical problem,
which is solved by this analysis, is the fitting of the
curves to currently processed data-set of points. The
purely parametric approach does not always satisfy the
need for flexibility, but still, it is useful and retains its
benefits. The example of the parametric estimate of re-
gression function can be the regression curve reflecting
the linear dependency. In spite of data processing de-
velopment, both approaches preserve their advantages
and are orthogonal to each other.

In the next sections, we will use the following
notation of X variable and Y variable. In our frame-
work, the X variable can be represented as the size of
the underlying structures and Y variable as function
run-time.

2.1 Regression Analysis Post-Processor

This post-processor (authored by Jifi Pavela) imple-
ments the parametric methods, which are used to deter-
mine the relationship between the dependent (Y) and
independent variables (X). Regression function, as a
result of this analysis, then expresses the relationship
between these two variables. In general, the result
of this analysis is the set of mathematical functions
that describe the behaviour of code functions in the
researched program (i.e. consumed memory to the size
of a data structure).

_Lyi—BLfw)
= nY f(xi)yi — X f(xa) Xy
n¥ (f(x)* — (L f(x:)?

We use the coefficient of determination (R?) to rate
the goodness-of-fit of regression functions. Currently,
we supported selected types of regression models in
this post-processor: constant, logarithmic, quadratic,
power, etc. All models, except quadratic, are com-
puted using the general Formulae 1, for coefficients
Bo, Bi of function model £ (z) = Bo+ Biz. A quadratic
model uses specific computation Formulae 2, since it
requires more coefficients. The implementation of this
post-processor is already covered to a great extent in
our previous works [4, 2].

=

ey

0

=

2

Plot of "amount’ per 'structure-unit-size”; uid: hash__hash; method: regressogram; interval <0.0, 97.0>

| — res: buckers=az, star: mean. knz=v.c1a003

amount

o o o o

oo e o

oo

oo o o o

o cocococoo ocoodoo o ocoo

o ococooo o

cooo ocoocoococococoo o

I S

L= cooco

cocooco oo

Bi= o,

1 + t
o 20 a0

+ +
&0 a0

structure-unit-size

Figure 1. Example of regressogram model created with default value of options.

The first proposed post-processor, implements the sim-
plest non-parametric method called regressogram. This
method, also called constant function by steps or binning-
approach, uses the same idea as a histogram at density
estimation. Similar to the histogram, we first choose
N that represents the number of buckets. The main
idea is to divide the set of values X variable into the N
intervals B, forj=1,2,... N with an equal width:

LY g 12y o [N-1
Na , D2 = N7N sy DN — N y Xmax

3)
Subsequently the estimate in the point x € B; is taken
as the mean of values Y on this sub-interval, where
15, signs the indicator function of sub-interval B;:
. Y Yilig (x;)
Jh) =~
i=11]Bj| (i)

The fitness of estimation of regressogram model
depends primarily on the number of buckets into which
the interval of x-coordinates divided. Our post-processor
provides two options. The user can either choose a
number of buckets manually or use one of the support-
ing methods to estimate the optimal number of buckets.
These methods are well founded in the documentation
of the SciPy package '. These are simply plug-in
methods that give good starting points for number of
regressogram buckets. Post-processor also provides
the option to choose the statistics function to compute
the resulting value within buckets, with mean and me-
dian as two primary statistics metric. Generally, the
resulting estimate by regressogram model appropri-
ately describes the functions shape, but the estimate
can be too thick for further processing.

The implementation of this post-processor is based
on SciPy statistics package, which contains the method
for executing a binning approach. All the necessary
integration within our framework with friendly usage
with many other options.

“

Uhttps://docs.scipy.org/doc/numpy/histogram/bucket_edges

The natural generalisation of regressogram is the mov-
ing average, so-called rolling mean or running average.
This method uses local averages of Y values, with the
estimate at X based on the centering around this point.
It is based on the assumption, that if f is an unknown
smooth function, then observed points X; near point X
contains information about the value f function at this
point. Among the useful properties of moving average
belongs the ability to reduce the effect of temporary
variations in data, or an ability to show the data trend
more clearly. These methods can detect the outliers in
estimated data-set, as it can highlight any value above
or below the trend. We decided to implement two
most popular and most used variants: Simple Moving
Average and Exponential Moving Average.

A Simple Moving Average (SMA) is calculated by
average Y values over the specified period of X inter-
val. It is an unweighted moving average method, i.e.
each x-coordinate in the estimated data-set has equal
importance and is weighted equally. In science and
engineering, the average is usually calculated from an
equal number of data on either side of a central value
and the same principle was implemented in our proces-
sor. Besides, our processor offers option to calculate
the average from the previous N samples, where the N
marks the width of the period in both cases. Despite, it
is an unweighted moving average, our processor sup-
ports different types of window, that has the role of
weighted function. Their more specific definition and
the visual view is available in SciPy documentation .
The last extension that is provided in this method is as-
sociated with boundaries of interval. Since the window
at boundaries does not contain enough points usually,
users have the option to specify the minimal count of
points in the period to calculate correct results.

An Exponential Moving Average (EMA) is a weigh-
ted moving average that places a higher weight on

Zhttps://docs.scipy.org/doc/scipy/window _types

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bucket_edges
https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows

Plot of "amount’ per 'structure-unit-size”; uid: hash__hash; method: moving__average; interval <0, 97>

[— =ma: vanaow=zo0, mnz=o.roruze

amount

—+ o o o

o ococooo o cooo ococoo: coo o ooco

o cooco cocooco oo

+ + 1
&0 a0 100

structure-unit-size

Figure 2. Example of moving average model created by this post-processor with custom value of options.

the most recent data points. Compared with SMA it
responds more quickly to recent changes in the cur-
rent interval. The x-coordinates have assigned the
weight, that decreases exponentially, never reaching
zero. Its formula involves using a multiplier and start-
ing with calculating an SMA over a particular sub-
interval. Subsequently, the multiplier for weighting
the EMA must be calculated depending on the selected
formula, which returns specific value of coefficient «.
The different ways of computation this coefficient are
available by supported options for a specific parameter
that is derived from the so called decay parameter °.
This coefficient represents the degree of weighting de-
crease, a constant smoothing factor, when higher value
discounts earlier observations faster and smaller value
to the contrary.

A Kernel Regression is a non-parametric technique
that estimates the conditional expectation of a random
variable [5]. The objective is to find a non-parametric
relation between a pair of random variables X and
Y. All types of kernel estimates depend on the type
of kernel, that has the role of weighted function and
on the width of the smoothing window, that controls
the smoothness of the estimate. It puts the kernel to
each observation point of data-set and then assigns
the weight to each point depending on the distance
from the currently estimated data point. Generally, the
kernel estimates of the regression function f at point
x can be defined as is shown on the Formula 5, where
function

-

Fxe,n) =Y Wi(x, b)Y, (5)

1

Wi, fori=1,2,...,n, are called weights and are in-
dependents on Y, but depends on positive number £,
that is called smoothing parameter. Specifically type

3https://pandas.pydata.org/pandas-docs/ewma

W depends on kernel function K. Among the most
popular types of the kernel estimates we can includes
Nadaraya-Watson estimates, which are used by our
post-processor. The whole set of kernel estimates of re-
gression function (Nadaraya-Watson, Priestley-Chao,
etc.) are asymptotically equivalent [5]. In most of post-
processor modes we use Nadaraya-Watson estimates,
and therefore we defined these estimates as a weighted
function of shape:

Z?:] Kh(x —Xi)Yi
Ly Kn(x—x;)

Jaw(x,h) = (0)

The selection of concrete kernel is not essential
from an asymptotic point of view [6]. It is advisable
to choose the optimal kernel because these kernels are
continuous on R and the estimated regression func-
tion then inherit the kernel smoothness. This post-
processor supports a few types of kernels, concretely
Gaussian, Tricube, Epanechnikov and two kernels of
the higher order, Gaussian and Epanechnikov of order
4. On the Graph 4 we can see sketches of individual
supported kernels. A Gaussian kernel is less steep,
and hence the resulting kernel model will reflect the
greater count of surrounding points with decreased
weight from its centre. On the other hand, the Tricube
and Epanechnikov kernels put more emphasis on the
currently estimated point and reflect less count of sur-
rounding points with bigger weights.

We provide multiple modes, which does not differ
in the resulting estimate. Individual modes are differ-
ent in the way of computation of the resulting kernel
estimate. The purpose of these modes is to provide flex-
ibility in constructing the kernel estimate. Moreover,
user has the option to choose from available kernel
smoothing methods, as well as various combinations
of the estimate. One of the modes provides three meth-
ods: local-polynomial regression, local-linear regres-
sion and spatial-average method. Information about
mentioned methods is available in documentation *.

“https://pythonhosted.org/PyQt-Fit/kernel _regression

https://pandas.pydata.org/pandas-docs/version/0.17.0/generated/pandas.ewma.html
https://pythonhosted.org/PyQt-Fit/mod_npr_methods.html#pyqt_fit.npr_methods.RegressionKernelMethod

Plot of "amount” per ‘structure-unit-size’; uid: hash__hash; method: kernel_regression; interval <0, 97>

amount
v

o o o

oo e o

oo

oo o o

o cocococoo ocoood o ocoo

o ococooo o cooo

—— SmooIning: bW=11.365663581602998, R AZ=0.546052

ocoocoococococoo o ooco

o cooco

cocooco oo

+
20

+
&0

structure-unit-size

Figure 3. Example of kernel model created by kernel-regression post-processor with kernel-smoothing mode.

L

[os|

¥

Figure 4. (—) Tricube kernel, (—) Gaussian
Kernel, (—) Epanechnikov Kernel.

5.1 Smoothing Parameter Selection
The most critical factor of Kernel regression is the
width of the smoothing window. This value signifi-
cantly affects the smoothness of the resulting estimate,
for example a large window width leads to overlay,
and so to average data. When it comes to choosing a
smoothing parameter, it is important to realise that the
ultimate decision about the estimated curve is partially
subjective, because even asymptotically optimised es-
timates contain a relatively large amount of noise [3].
One of the most widely popular and used methods
to determine the optimum value of the smoothing pa-
rameter is the cross-validation method. This method is
based on an estimate of the regression function, which
omit the i-th observation.

n
foileh) =Y Wik, m)Yi=1,....n. (7
B
The function of the cross-validation method can
be defined as following:
1

CV(h) = P Y (_i(xi,h) = Yi)?, (8)
i=1

and estimation of the optimum value of the smoothing
parameter is the point at which is set the minimum of
this function, i.e.:

ilopt,O,k = hCV = Clrg}fll'elgl CV(h)a (9)

Except for this method, our post-processor sup-
ports other methods for optimal selection of smoothing
parameter. Akaike information criterion (AIC) com-
pares the quality of a set of kernel models with the
different value of bandwidth to each other. The AIC
creates several kernel models with various bandwidth
and ranks them from best to worst. Except for these
more complex methods, we implemented two simple
rules to determine the smoothing parameter. Scott’s
and Silverman’s rules were initially designed for den-
sity estimation but are usable for kernel regression too.
Scott’s rule of thumb produces a larger bandwidth, and
therefore it is useful to estimate a gradual trend in a
data-set. Except for all these options, a user can enter
the numeric value of the smoothing parameter in all
available modes of this post-processors.

The detection of changes is the last step in the cur-
rent automatic process in our framework. The input
of our methods is the pair of profiles, where the first
is called the baseline profile and represents the stable
base against which we compare the target profile, that
represents a newly released version of the project. All
methods in addition to the potential detected perfor-
mance change provides an error rate, which denotes
how significant a change has occurred in comparison to
baseline and confidence rate, which can help to decide
whether the changes is worthy of fixing. By provid-
ing these crucial aspects for each detected change, we
achieve a high ratio of performance fixes.

The detection methods, which were described and
evaluated in our previous work [2], were implemented
primarily for models created by regression-analysis
post-processor. The advantage of these methods is that
besides the mentioned aspects it reports the severity of
the changes, which is represent by individual kind of
the model. Our new detection methods are able to work
with all types of models. In particular, we propose
two approaches first based on computing integrals and

other on computing local statistics.

6.1 Integral Comparison

We based this simple heuristic on the assumption that
the areas under the curves that represent the individual
models, should be approximately equal. Therefore,
the main idea of this approach is to compute the def-
inite integral under the given curve. In the case of
models created by regression-analysis an integral is
computed from their formulae, which are represented
by coefficients 2.1. In the case of non-parametric mod-
els an integral is computed from a pair of points, which
represent the individual model. The computation is
performed for every non-parametric model and for a
best parametric model for every precise location (UID)
from given pair of profiles.

fxend ﬁdx_fxend fbdx

T e 10
O forld| <&

5=0 0O forls|<é (1)
&R else

The determination of resulting changes is execut-
ing according to the value of relative error (J,) that
is calculated from both values of integral, as it shows
Equation 10. This value is subsequently compared
with given thresholds and according to the result of
this comparison is to determine changes. As shows
Equation 11, there are two thresholds which serve
for differentiating of three possible states — without
change ((), possible change ((©), change (). The
first threshold (&) determines the boundary of change,
which is accepted between both models and the second
threshold (£4) determines the uncertainty interval, in
which may be potentially occurred change. The pre-
cise value of thresholds has been established based on
experiments and on requirements of users, which does
not accept errors with a small value of error rate.

In our case it is also sometimes appropriate to di-
vide the data into more intervals and do a subsequent
interval-based degradation detection. The partial re-
sults can give user precise locations, when the changes
occur and therefore we decided implements another
method adapted to these requirements. It is a method
whose principle is the same as was described above,
with only difference being that the integral is computed
from the sub-intervals.

6.2 Local Statistics Metrics

This degradation method assumes the change of sev-
eral statistics metrics on the individual sub-intervals.
As in the first method, there is also the analysis exe-
cuting on each non-parametric model and on the best

parametric model for every precise location. The orig-
inal values from each model are divided into several
sub-intervals, wherein the number of sub-intervals and
a minimal number of values in each sub-interval are
predetermined. The exception is the last interval in
which the number of points can be smaller. Subse-
quently, the following statistics metrics are calculated
for each interval: mean, median, maximum, minimum,
sum, first and third quartile.

After the computation of all these metrics for both
baseline and target models we compare these statistics.
It means that for each metric we compute a relative
error against to baseline model and then according to
its values we determine if change occurred. To report
a change on a specific sub-intervals we must detected
change in at least half of computed metrics. For an
overall change on the whole interval an average value
of the relative error must be computed through all
sub-intervals, and higher than predetermined thresh-
olds. The user receives information about the summary
change represents by the mentioned average error rate
(relative error), changes on the specific sub-intervals
and the error rate on these intervals.

This method was implemented with usages of Num—
Py package and its modules. Thanks to manipulation
with NumPy arrays and operating over all these ar-
rays, we receive a several times faster calculation in
comparison to usage of loops and lists.

We evaluated our new methods on repository of vim 2,
which contains known performance issues. We tried to
detect one known issue between two versions of vim
as well as checking that two following versions had no
significant changes. The issue, which is present in the
version v7.4.2293, caused performance degradation
of specific functions because it uses type garray_T
instead of hashtab_T to collect tags. Since the tags
are stored ina garray_T, vim has to perform a linear
search of all existing tags every time a new tag is added.
Using hash table (hashtab_T) obviously drastically
improves the speed. This issue was fixed in v8.0.0190
and therefore it will be our second tested version. We
selected as the last version v8.1.1005.

We run vim with the following configuration: an
argument —u with value NONE, which will ignore vim
configure files . vimrc. As workload, we used the fol-
lowing command ’ echo len(taglist ("a"))’,
which will find all tags containing the letter “a” and at
the end with command g we will terminates the editor.

Shttps://github.com/vim/vim

https://github.com/vim/vim

Table 1. Comparison of detection performance
changes using integral method between different
versions of vim.

v8.0 -v7.4 v8.0. - v8.1
Model| - + ? - + ?
RG 18% (17% | 13% | 11% 8% | 13%
#1 | MA 5% | 3% 0% (2)|0% (2)[1% (5)[0% (0)
KR 6% | 2% 0% (1)[0% (3)|1% (4)|0% (1)
RG 17% (10% | 10% | 17% 6% | 18%
#2 | MA 6% | 3% 0% (2)|0% (3)[1% (6)|0% (2)
KR 8% | 2% 0% 3)[1% (4H)|1% (5)|0% (2)

Running vim with this configuration is complex
and contains a large number of called functions, so we
needed some level of abstraction for collecting reason-
able data. Therefore, a trace collector was used to pro-
filing this program as it provides the option of global
sampling of calling each function and so we can moni-
tor every n-th calling only. From collected profiles
we subsequently create non-parametric models, by
our three new post-processors, and then use detection
methods to determine the possible changes. We tested
each type of non-parametric models —regressogram
(RG), moving average (MA), and kernel regression
(KR) — and two detection methods, on two kinds of
profiles with two values of the global sampling — 500

and 1000 — created over each traced version of vim.
Table 2. Comparison of detection analysis results by

the local statistics method between different versions
of vim.

v8.0 -v7.4 v8.0. - v8.1

Model| - + ? - + ?

RG 11% [8% | 13% | 6% (26) 3% (14) 6% (25)
#1 MA |13% (8% |11% [6% (23)|3% (12)|6% (26)

KR 12% 6% | 11% 6% (24)|3% (12)|7 % (29)

RG 9% 5% | 8% |8% (31)|3% (13) 14 %
#2 MA |11%|4% | 7% 5% (20)| 1% (4) 12%

KR 12% 5% | 7% 5% (20)| 2% (8) 13%

Tables 1 and 2 shows the results of our experiments.
We compared two pairs of different versions, we chose
version v8.0.0190 as the baseline profile and remaining
two versions as the target profiles. The different values
of sampling are represented by rows #/ and #2 in
the tables. Each row shows how much of functions
(in percents) were reported as degradations (+) and
optimizations (-). We use (?) to signify that some
change was detected, but was not drastic enough to be
reported.

In the first experiment (v8.0 - v7.4) we compared
333 common locations from both profiles and in the
second case (v8.0 - v8.1) we compared in summary
388 location. We can see that in the second case we
only detected minimal changes between specific mod-
els from each location of profiles, since the difference
between these two versions should be stable. Most of

the changes were reported using regressogram mod-
els, which confirms our assertion that it is an over-
estimating method. In first test case we confirmed the
presence of issues © in vim v7.4.2293, according to our
assumptions. The average increase of detected changes
is equal to 7.00%, which approximately corresponds
to the impact of a known issue on specific measured
functions. More thorough analysis of changes in spe-
cific functions has not been a part of these preliminary
experiments, and will be subject of our future work.

We introduced new methods for modeling performance
and detecting performance changes within the Perun [1]
tool. Using our methods, we were able to detect one
know performance issue in vim as well as comparing
two other versions of the same project. Our future
work will focus mainly on increasing the accuracy of
our detection methods and improving the performance
of post-processors for faster processing of collected
profiles. Furthermore, we plan to evaluate our solution
on other existing projects and potentially detect new
unique performance changes.

I thank for the support received from Red Hat company
and H2020 ECSEL project Aquas. I thank our supervi-
sors and colleagues from VeriFIT performance team —
Tomas Fiedor, Hana Pluhdckov4, Adam Rogalewicz,
Tomas Vojnar, Jifi Pavela and Matd$ LiS¢insky.

[1] Perun: Performance Version System. https://
github.com/tfiedor/perun. [Online; vis-
ited 15.3.2019].

[2] Pavela Jiii and Simon Stupinsky. Towards the
detection of performance degradation. In Ex-
cel@FIT’18.

[3] Michael G Schimek. Smoothing and regression:
approaches, computation, and application.

[4] Jiti Pavela. Knihovna pro profilovdani datovych
struktur programit C/C++. Master’s thesis, BUT,
FIT, 2017.

[5] Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. The Elements of Statistical Learning.

[6] Jan Koladcek. Jddrové odhady regresni funkce. Dis-
sertation’s thesis, 2004.

Shttps://github.com/vim/vim/pull/1046

https://github.com/tfiedor/perun
https://github.com/tfiedor/perun
https://github.com/vim/vim/pull/1046

	Introduction
	Post-processing the data
	Regressogram Post-Processor
	Moving-Average Post-Processor
	Kernel Regression Post-Processor
	Detection of Changes
	Experimental Evaluation
	Conclusion
	References

