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Abstract
Speech enhancement aims to improve speech intelligibility and overall perceptual quality of speech
by using various algorithms. Neural networks (NNs) have become a standard approach for solving
such problems. NNs are usually trained by comparing the network output to the target sample. In
our work, we incorporate cycle consistency constraint during the training period to improve the
network robustness — we add another NN to the process. The second NN performs an opposite
task — its goal is to introduce noise to clean speech recording. The networks are trained in a
cycle, each taking the output of the other network as an input. Cycle-consistency, among other
things, causes the network to see a much larger variety of noisy data, which improves the network’s
robustness. We perform experiments on both paired and unpaired data, which is enabled by adding
adversarial training to the training. The DNN models are evaluated by using an automatic speech
recognition system. The speech enhancement models trained and evaluated in this work are based
on a recent publication. Our results have shown that adding cycle-consistency improves the models’
performance significantly.

Keywords: Speech Enhancement — Deep Learning — Cycle-Consistency

Supplementary Material: N/A

*xkarli05@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Automatic speech recognition (ASR) is a widely used
technology that allows transcription of a spoken speech
utterance into a corresponding sequence of words.
The field has been intensively researched in the past
decades, with significant advances being made through
the years. These improvements led to a surge in usage
of intelligent human-machine speech communication
systems, such as virtual speech assistants or interactive
voice response systems.

Despite significant advances in this area, there are
still certain factors that limit the performance of such
systems. Most notably, reverberation and ambient
noise drastically reduce speech quality of speech sig-
nal. There are many speech enhancement (SE) and
ASR techniques to detect and combat the effects of
noise and reverberation [1, 2, 3].

Current state-of-the-art speech enhancement meth-
ods primarily employ artificial neural networks (ANNs)

[4]. These networks are trained using datasets that con-
tain pairs of clean spoken utterances and the same
spoken utterances with incorporated noise and rever-
beration — paired data. However, paired sets for train-
ing the network are not always available. Generative
adversarial network (GAN) [5] is a framework that
enables neural networks to train on unpaired data. In
GANs, two neural networks are pitted against each
other, each attempting to reach its objective, which
is ’adversary’ to the other network. Generative adver-
sarial network essentially models the distribution of a
given dataset.

One of the modifications of the aforementioned
framework, CycleGAN [6], uses cycle-consistency for
unpaired data training to further improve the archi-
tecture. CycleGAN as a whole is described in Sec-
tion 3. In [6], it was demonstrated that enforcing
cycle-consistency constraint significantly improves the
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model robustness in image-to-image translation1. Cy-
cle-consistency can be achieved by introducing an ad-
ditional neural network to the framework. The network
performs a dual task — in our case, it attempts to pro-
duce noisy speech signal given clean speech signal as
input. Both networks are then used in conjunction to
be consistent with each other. Therefore, we can run
a corrupted sample through denoising network, and
then use its output — an enhanced speech signal — as
input to the other network, producing reconstructed
corrupted sample. The constraint is therefore enforced
by adding the reconstruction loss function to the main
objective function.

The potential of CycleGAN has mostly been ex-
plored in the image processing field. The aim of this
work is to evaluate the effect of cycle-consistency in
the speech enhancement domain, for both paired and
unpaired data. This work is based on a research paper
recently published by Meng et al. (2018) [7] which
proposes a framework inspired by [6] for a speech en-
hancement task. We implement and evaluate neural
network models using the constraint during the train-
ing period for various architectures. First, using paired
data, we train a standard NN without the constraint,
which will serve as a baseline. Then, we train a net-
work which inserts noise into a clean speech signal.
We use that network and the baseline to further train
the model with cycle-consistency. Lastly, we use the
same dataset as if it contained no pairs to train a GAN
with cycle-consistency constraint.

We perform experiments using automatic speech
recognition (ASR) system on the CHiME-3 dataset [8].
We use evaluation set for evaluating the models with
ASR system and training set for training the models.
In addition, we re-train the acoustic model (AM) with
data enhanced with our models and perform another set
of experiments using the ASR system with re-trained
AM.

Section 2 explains the problem of noise and rever-
beration in the speech recognition field. In Section
3, we briefly discuss the process of training standard
neural networks and GANs. Additionally, we describe
cycle-consistency constraint. In Section 4, we describe
experiments performed in this work. Section 5, show-
cases our results. The article concludes with Section
6, in which we briefly summarize the results we have
achieved and present possible improvements.

1In the case of mapping an input image to a specific output
image, paired data is rarely available. For example, transforming a
photo to a painting in the style of Van Gogh. There are no existing
photo-Van Gogh painting pairs. However, an unpaired collection
of the artist’s paintings and photos can be used to train such model.

2. Speech Enhancement and Noise Re-
duction

Despite widespread use of ASR technologies in vari-
ous systems, there is a large number of challenges that
such systems need to handle to be applicable. When a
speech signal is captured by a microphone, the picked
up signal can get corrupted, causing loss of quality
and intelligibility. Such an altered speech signal might
then be erroneously processed by the ASR system.
One of the fields that pursues this problem is speech
enhancement.

This Section describes the impact of noise on speech
recognition and briefly overviews current speech en-
hancement approaches.

2.1 Noise and Reverberation
Noise in a speech signal generally represents an un-
wanted modification that a signal may be subjected to
when being captured or processed. According to the
spectral distribution, the noises can be grouped into
two categories - stationary noise, which keeps con-
stant spectral distribution over time and non-stationary
noise, which is more difficult to suppress because its
statistics change over time.
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Figure 1. Comparison of clean and corrupted speech
signal spectrogram.

Besides non-stationary noise, reverberation in a
corrupted speech signals has a substantial impact on
speech quality, as well [3]. Reverberation is a superpo-



sition of several time-shifted and attenuated versions
of the clean signal. The signals differ in delay and am-
plitude, which makes the transition between phonemes
in the signal less distinct. The presence of noise and re-
verberation is much longer than the Short Time Fourier
Transform (STFT) analysis window size. This causes
these artifacts to smear across several frames, as shown
in Figure 1.

2.2 Speech Enhancement Methods
Generally, speech enhancement techniques modify the
signal in the frequency domain. These techniques
only modify the magnitude of the STFT spectrum [9],
which can then be used to reconstruct the signal along
with the original phase.

Common speech enhancement methods include
spectral substraction [10], which uses noise spectrum
estimated during non-speech period for denoising and
linear filter-based methods [3], which enhance the
signal in the STFT or time domain.

Neural network-based methods
These approaches vastly outperform standard speech
enhancement techniques and their usage is currently
considered a standard [2, 4]. Both high-level features
and raw speech can be used as an input and output of
the network.

While the ASR performance in difficult noisy and re-
verberant conditions has significantly improved over
the past years [2, 11], there still are certain areas of
focus where such systems perform poorly. It has been
observed that, when ASR systems are given a challeng-
ing environment with distant noisy and overlapping
conversational speech, the system performance suffers
significantly [12].

3. Neural Networks and Cycle Consis-
tency

The main purpose of a neural network is to map input
X to another output Ỹ , formally written as

F : X −→ Ỹ ≈ Y, (1)

where the network F attempts to produce an output
that is similar to a reference sample Y with respect
to the cost function. We can indirectly improve the
robustness of F by enhancing the training process with
a constraint, called cycle-consistency.

3.1 Cycle-Consistent Neural Network
Cycle-consistency is a technique initially used in ma-
chine translation and visual tracking, that can be ap-

plied to enforce additional constraints within the train-
ing framework [13, 14]. For example, when translat-
ing a sentence from language A to language B, the
machine should be able to transform the translated sen-
tence back to the original sentence in language A. This
form of cycle-consistency is called forward-backward
consistency.

Cycle-consistency can be achieved by introducing
an additional neural network to the framework. The
network serves as an inverse mapping function

G : Y −→ X̃ ≈ X , (2)

where G is the neural network performing a dual task
— attempting to produce X when given Y as an input.
Both networks are then used in conjunction to be con-
sistent with each other. The forward cycle-consistency
objective aims to accurately reconstruct X , and can be
defined as

X −→ F(X)−→ G(F(X))≈ X . (3)

Similarly, we can define backward cycle-consistency,
where the goal is to reconstruct Y , as follows:

Y −→ G(Y )−→ F(G(Y ))≈ Y. (4)

The constraints are enforced by adding the cost
functions for (3) and (4) to the main objective func-
tion. A large advantage of this constraint is that it
has no computational performance impact on use of
the resulting model. Since network F produces the
wanted output, network G is not used at beyond the
training process. The full objective function is defined
as follows:

LCSE = λ1L(F)+λ2L(G)+
λ3L(F,G)+λ4L(G,F),

(5)

where L(F), L(G), L(F,G) and L(G,F) is a cost func-
tion of F , G, a forward and a backward cycle, respec-
tively, with λ s being weight coefficients. The training
framework is shown in Figure 3.

Enforcing forward-backward consistency can im-
prove the robustness of speech enhancement models
[7]. In this work, which is based on [7], we implement
the cycle-consistency framework for speech enhance-
ment. Besides a standard neural network framework,
we use the constraint together with generative adver-
sarial network (GAN).

3.2 Generative Adversarial Networks
The goal during the training of a standard neural net-
work is to produce an output that resembles a certain
target output — the label. It is a supervised approach



to learning. However, neural networks require a sig-
nificant amount of training data and having a labeled
sample for each training input can be a costly task. The
main advantage of generative adversarial networks
(GANs) [5] is that it can be trained with data that does
not contain input-target pairs (paired data). In GANs,
two neural networks are pitted against each other, each
attempting to reach its objective, which is ’adversary’
to the other network. These models learn to model the
probability distribution of data that resembles a given
training set.
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Figure 2. A structure of generative adversarial
network.

Generative adversarial network consists of two neu-
ral networks, as seen in Figure 2. The generator, G,
produces samples in the target domain, Y , given the
generated noise (e.g., uniform noise) Z:

G : Z −→ Y. (6)

Its adversary, D attempts to recognize whether its in-
puts have been drawn from the training set or not. The
output of the discriminator is defined as

D : X −→< 0,1 > . (7)

Generative adversarial networks are primarily used
for image vision problems. In this work, we attempt
to couple GANs with cycle-consistency constraint to
solve speech enhancement.

3.2.1 CycleGAN
CycleGAN [6] is a GAN framework that uses a cycle-
consistency loss to enable training without the need
for paired data. It was originally proposed for image-
to-image translation problems.

The goal of CycleGAN is to learn a mapping from
the source domain to the target domain and vice versa.
The framework consists of four neural networks in
total — two generator-discriminator pairs. Forward
and backward cycle-consistency losses are added to
the cost function.

Additionally, the full cost function is extended
with identity mapping loss. The generator networks
are kept close to the identity mappings by the following
constraints:

X −→ G(X)≈ X , (8)

Y −→ F(Y )≈ Y. (9)

The full objective function of CycleGAN is defined
as

LCycleGAN = λ1L(F,G)+λ2L(G,F)−λ3LD(DF)
−λ4LD(DG)+λ5LI(F)+λ6LI(G),

(10)
where L(F,G)+L(G,F) is a forward-backward cycle-
consistency loss, LD(DF), LD(DG) are discriminator
losses, and LI(F), LI(G) are F and G identity losses,
respectively, with λ s being weight coefficients. The
whole CycleGAN architecture used in this work is
shown in Figure 4.

Unlike standard GANs, the generator networks in
CycleGAN do not take a sample from random noise
as input. Instead, the input is a specific piece of infor-
mation, such as noisy speech utterance [15].

Recently, experiments using CycleGAN for single-
channel speech enhancement problem have been con-
ducted [7]. In this work, we apply the same architec-
ture to evaluate performance for speech enhancement
task.

4. Experiments
For training and evaluation, we use the CHiME-3
dataset [8]. The dataset incorporates Wall Street Jour-
nal (WSJ) corpus sentences spoken in challenging
noisy environments, specifically in café (CAF), street
junction (STR), public transport (BUS) and pedes-
trian areas (PED). The real data consists of 6-channel
recordings of sentences spoken live in the environ-
ments. The simulated data was constructed by mixing
clean utterances into environment background record-
ings. The training set consists of 9137 pairs of clean
and simulated noisy training utterances. For testing,
we use real noisy speech utterances from the develop-
ment test set. We use recordings from the 5th channel,
as was done in [7].

We evaluate three models in total — noisy-to-clean
mapping network, which will serve as a baseline, a net-
work with cycle-consistency, and a generative adver-
sarial network with cycle-consistency. These models
were proposed in [7]. For testing, only the noisy-to-
clean mapping network portion of the models is used
to produce enhanced speech utterances.
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Figure 3. The architecture of cycle-consistency training framework for speech enhancement (CSE). Based on
[7].
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Figure 4. The architecture of adversarial training framework with cycle-consistency for speech enhancement
(ACSE). Based on [7].

Training and evaluation was done using Sun Grid
Engine2 job scheduling system. The evaluation is per-
formed by using a provided ASR system. ASR scripts
and acoustic model re-training scripts were provided
for this work. Training framework and the imple-
mented neural network architectures are the author’s
own work.

4.1 Models Trained With Paired Data
This subsection describes models trained with paired
data — each noisy utterance in the set has a corre-
sponding clean utterance. We describe the training
process of the baseline model and models with cycle-
consistency constraints.

4.1.1 Baseline
Using standard supervised training, we first train a
neural network for suppressing noise, F . The network
input consists of log Mel-filterbank (MFB) features
appended with first and second-order delta features,
forming an 87-dimensional vector. The output is a 29-
dimensional MFB without delta features. The network
consists of two Long-Short Term Memory [16] layers
followed by a linear layer. Each LSTM layer has 512
units. The input features were globally normal and
mean variance normalized before being fed into the
network.

2Sun Grid Engine - http://www.fit.vutbr.cz/CVT/
cluster/SGE-UsersGuide.pdf

We heavily tuned network parameters in order to
achieve satisfying results. In LSTM layers, forget
gate biases are initialized to 1 (otherwise 0) [17]. The
weights were initialized using Xavier normal distribu-
tion [18]. For optimization, we use AdamW algorithm
[19]. The learning rate is set at 9 · 10−4 and batch
size is set at 48. The weight decay of AdamW is set
at 1 · 10−4. We find that using recurrent dropout in
the first LSTM layer slightly lowers the model perfor-
mance. We use Mean Squared Error (MSE) as a cost
function.

This baseline setup slightly deviates from [7], in
which the network was optimized by using stochastic
gradient descent (SGD) optimizer. No weight initial-
ization techniques nor any other training parameters
were mentioned in the reference paper.

4.1.2 Forward and Backward Cycle-Consistency
We train a neural network, G, that inserts noise into
clean speech utterance. The input and the output fea-
ture dimensions are 29 and 87, respectively. The learn-
ing rate is set at 8 ·10−4. Other parameters and a cost
function are the same as specified in 4.1.1.

Then, we use the pre-trained networks, F and G,
and jointly train them using cycle-consistency loss.
We train the model with forward cycle-consistency
and a model with both forward and backward cycle-
consistency. When computing cycle-consistency loss,
the input of one network is normalized before being
fed to the other network. We set the learning rate at

http://www.fit.vutbr.cz/CVT/cluster/SGE-UsersGuide.pdf
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4 ·10−4. The batch size is set at 24. The λ loss function
coefficients are the same as in [7].

While using a forward cycle alone has shown to
degrade the model performance, having both forward
and backward cycle constraints has shown to further
improve the model’s robustness. The training process
of the best model converges in 7 epochs. We assume
that, by pre-training F and G with carefully tuned
hyperparameters, the networks adjust the weights to a
relatively proper state rather quickly.

4.2 Models Trained With Unpaired Data
We use the same training set that contains noisy-clean
sample pairs. However, the dataset is used as if it
contained no related pairs. In practice, we take a batch
of random noisy samples, a different batch of random
clean samples, and work with these during the training
iteration.

For generator networks, we use the same architec-
ture as F and G. The discriminator networks consist of
two fully-connected hidden layers. Each hidden layer
has 512 units. The output layer has 1 unit. The dis-
criminators, DF and DG, take 87-dimensional inputs
(appended with delta features) and 29-dimensional
inputs, respectively. DF and DG evaluate the proba-
bility of the input belonging to the noisy and clean
set, respectively. We use AdamW optimizer for both
generator and discriminator training.

Generally, GANs are difficult to train as a whole,
as they can be very sensitive to changing hyperparam-
eters. A large amount of minor training process ad-
justments was proposed [20, 21] that can significantly
improve convergence and prevent common pitfalls,
such as mode collapse [20].

Before beginning adversarial training, the gener-
ator networks need to be initialized in order to learn
an underlying structure. Otherwise, the model would
have trouble converging. From our experiments, these
techniques were important to make the adversarial
training converge:

• initialization of generators - The initialization
is done by pre-training the generators as iden-
tity mapping functions — the target sample is
the same as the input sample, but without nor-
malization. The training hyperparameters for
noisy-to-clean and clean-to-noisy generator net-
works are the same as of F and G, respectively.
The initialization procedure in [7] may differ, as
the initialization details were not mentioned.
• buffer of generated samples - As suggested by

Shrivastava et al. [21], we update the discrimi-
nators by using a history of generated utterances

rather than the ones produced by the latest gen-
erators. We store two sample buffers of size 72
that keep previously generated noisy and clean
samples. The original Cycle-GAN uses a history
of 50 samples [6]. It is not specified whether the
framework in [7] uses such technique.
• one-sided label smoothing - We modify the

cross-entropy cost functions of the discrimina-
tors by employing one-sided label smoothing.
Label smoothing is a regularization technique
that prevents the discriminators from predicting
the labels too confidently during training, which
can result in poor generalization.

Using pre-trained generators, we perform adversarial
training. The learning rate and weight decay are set
at 1 · 10−6. During each iteration, the discriminator
networks are trained before the generator networks.
The λ loss function coefficients are the same as in [7].

5. Results
In this Section, we show the performance of our best-
performing models for each category. We discuss the
re-training of an acoustic model portion of the ASR
system and discuss its impact on the system perfor-
mance. We compare our approach to the reference
publication. The results show that cycle-consistency
plays a vital role in improving the model’s robustness.

5.1 Models Trained With Paired Data
Due to carefully optimizing training hyperparameters
and using proper weight and bias initialization meth-
ods, the baseline model alone reduces the ASR word
error rate (WER) by 17.40% as opposed to no enhance-
ment.

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
Baseline 28.91 16.36 27.58 18.68 22.88 17.40
CSE-FW 29.41 15.68 26.68 18.82 22.65 18.23

CSE 28.35 15.40 25.24 18.57 21.89 20.97

Table 1. The ASR WER (%) performance of real
noisy test data in CHiME-3 enhanced by different
models. Relative WER reductions (%) are shown in
the last column. BUS, PED, CAF, STR refer to 4
different recording environments.

Further training the model with using only a forward
cycle-consistency (CSE-FW) slightly boosts the model
performance, up to 18.23% relative WER reduction
(RWERR). The model with both cycle-consistency



constraints has shown to perform better, increasing the
RWERR to 20.97%.

5.2 Models Trained With Unpaired Data
As shown in Table 2, we have reached 12.71% rela-
tive WER improvement over noisy data with our vari-
ation of CycleGAN (named ACSE), which is only
slightly worse than the baseline from Table 1, which
was trained with paired data.

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
ACSE 32.91 16.27 26.39 21.16 24.18 12.71

Table 2. The ASR WER (%) performance of real
noisy test data in CHiME-3 enhanced by different
models. Relative WER reductions (%) are shown in
the last column.

5.3 Re-training the Acoustic Model
The authors of [7] performed acoustic model re-training
in order to improve ASR performance. The acoustic
model portion of the ASR is trained by taking speech
recordings and their text transcriptions, from which
a statistical representation of the sounds that make
up each word is created. The ASR system provided
for this work, trained using Kaldi3 has DNN-HMM
acoustic model, which we re-trained on speech utter-
ances enhanced by our models. The dataset used for
re-training the acoustic model is the same set that was
used for training the neural networks.

In the publication, the re-training was performed
on data enhanced from the adversarial model (ACSE),
but not others. We have re-trained the acoustic model
not only on ACSE, but also on baseline and CSE, as
well.

Acoustic
Model Architecture

Baseline CSE ACSE ACSE ([7])

Clean 22.88 21.89 24.18 29.44
Re-trained 19.16 18.42 14.72 18.20

Table 3. Comparison of ASR WER (%) performances
of speech enhancement models evaluated with clean
and re-trained ASR acoustic model.

As seen in Table 3, re-training an acoustic model sig-
nificantly boosts the performance, causing total rela-
tive WER reduction up to 46.86% for ACSE. Surpris-
ingly, acoustic model re-trained using ACSE-enhanced

3Kaldi ASR - https://kaldi-asr.org/

speech samples shows biggest performance improve-
ment. Similar improvements can be seen in ACSE
([7]). CSE and baseline only slightly improve the ASR
performance. The possible reason for this is that while
ACSE performs worse on a test set, it can generalize
to unseen data better, and thus be a more appropriate
candidate for re-training the acoustic model.

5.4 Summary
To summarize our work, we present a table with rela-
tive WER reductions (RWERR) to overview our achie-
ved results. The table depicts relative WER improve-
ments over noisy data. The WERs of noisy data in
our work and the publication are 27.70% and 29.44%,
respectively.

Model origin Architecture

Baseline CSE ACSE ACSE
(re-trained AM)

Our work 17.40 20.97 12.71 46.86
Publication 12.33 19.60 6.9 38.17

Table 4. Comparison of relative WER improvement
(%) of models over noisy data.

Table 4 shows that by carefully picking hyperpa-
rameters and using various NN training enhancements,
our models have performed significantly better com-
pared to [7]. The table shows relative word error rate
reduction over results obtained from data without any
form of enhancement. While the models in [7] were
evaluated using a different ASR system, the relative
WER improvement is shown over WER of noisy data
from the publication, which was 29.44%, whereas the
noisy data WER in our work was 27.70%.

6. Conclusions
The goal of this work was to apply cycle-consistency
constraint during the training process to improve the
performance of speech enhancement models. The con-
straint only alters the process of training the target
neural network, and the second neural network is not
used in the evaluation/application phase.

We evaluated multiple models, whose goal was to
enhance speech utterances using only a single channel.
We trained models with paired data to extend standard
NN with the constraint and unpaired data using a slight
modification of the CycleGAN architecture.

Our results have shown that the cycle-consistency
constraint significantly improved the performance of
the models. Training with paired data, CSE has reached
a relative WER reduction of 20.97% when compared
to noisy data, while [7] achieves 19.60% RWERR. Our

https://kaldi-asr.org/


Cycle-GAN variant, ACSE, achieved 12.71% RWERR
on unpaired data, which is a significant improvement
compared when to [7]’s 6.69 % RWERR. The models
were used to re-train the acoustic model, which was
then used to re-evaluate the ASR WER of those models.
The baseline, CSE, and ACSE has reached 30.83%,
33.50% and 46.86% relative WER improvement over
noisy data, respectively.

For future work, training features in the time do-
main, as opposed to the frequency domain, can be
considered [22, 23], as certain information can be lost
when transforming speech into higher-level features.
Temporal convolutional neural networks [24] have re-
cently been used with great success for speaker sepa-
ration [25], but have not yet been much explored for
speech enhancement.
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valuable advice, support, and guidance.

References
[1] Keisuke Kinoshita, Marc Delcroix, Sharon
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