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Counting Vehicles in Static Images
Ondřej Zemánek

Abstract
This paper addresses the problem of counting vehicles in static images with no geometric information
of the scene. Four convolutional neural network architectures were studied, implemented and
trained as a main part of this work. Also, a dataset that consists of 19 310 images in total from 12
views that captures 7 different scenes were taken as part of this work. The trained networks map
the appearance of the input sample to its corresponding vehicles density map, which can be easily
translated to the vehicle count with keeping the localization of the vehicles in the input image. The
main contribution of this work is in an application and a comparison of the state-of-the-art solutions
to the problem of object counting. Most of them were mainly designed to count pedestrians in
crowded scenes or for medicine images, so the major goal was to adapt these solutions for vehicle
counting task. The implemented models were trained on TRANCOS dataset which is a popular
benchmark for counting vehicles on annotated low quality highway pictures. Their performance is
compared and the results are discussed.
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1. Introduction1

Visual counting that aims to accurately estimate the2

number of vehicles is a hard problem. But its potential3

is huge in many applications across many industries.4

For instance, it can help truck drivers, who need to5

plan their next break, by monitoring parking capacity6

near highways. Another application can be long-term7

analysis of a traffic density on main city roads and8

highways, so road closures, detours or road expansion9

can be planned easily and smoothly. Also, solving the10

vehicle counting problem can bring a cheaper solution11

for monitoring shopping center parking lots, so instead12

of using a physical sensor for each parking space, a13

few cameras can be used to monitor the parking lot.14

The most recent state-of-the-art solutions are based15

mainly on the convolutional neural network model.16

Therefore, this work is focused only on these approach- 17

es. The best approaches can be divided into objects 18

detection approaches and density map regression based 19

approaches. 20

The first group uses classification of individual ob- 21

jects in YOLO-like (You Look Only Once) [1] style 22

to detect and count the objects in the input image. Al- 23

though these approaches can be fast and reliable in 24

trivial cases, in very dense and overcrowded scenes 25

like images with overlapping objects, low-resolution, 26

partly visible objects, images with slightly unseen per- 27

spective, the overall performance of these models is 28

limited. 29

The other group of solutions that reaches much bet- 30

ter results in the target scenarios is based on a different 31

idea. Instead of solving this problem by detection of 32
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each object in the image, these solutions transform the33

visual counting task into object density map estima-34

tion from the input image. In other words, they are35

using convolutional neural networks to transform an36

input image appearance into an object density map in37

a certain resolution. From the output of this transfor-38

mation, the object count can be easily estimated by the39

output density map integration even with keeping the40

information of the objects localization.41

The main contribution of this work is an appli-42

cation and a comparison of the existing solutions on43

parking lot dataset. To achieve this, I had to analyse44

the existing convolutional neural architectures, adapt45

these models to vehicle counting problem, create a46

large and diverse dataset for training, train them in47

with various parameters, and finally, evaluate them.48

2. Implemented Architectures49

The state-of-the-art approaches for visual counting are50

mainly built upon one of two concepts: density map re-51

gression and detection. Thus, the chosen architectures52

are designed in this way.53

First three solutions are based on Density map54

regression. So, the input image is regressed into den-55

sity map that represents spatial distribution of objects.56

Then, this map is integrated into a object count which57

corresponds to the input sample.58

The last studied approach is somewhere in the59

middle of these two concepts. It combines density map60

regression with classification. More in subsection 2.4.61

Tensorflow open source platform was used to im-62

plement these convolutional neural networks. The63

final models of the Counting CNN, the Hydra CNN64

and Spatial Division and Conquer Network were in-65

spired by the original authors implementations, that66

were implemented in the Caffe framework and the Py-67

Torch platform respectively. The authors of Stacked68

Hourglass model provides only brief description of69

the implementation, so the network implementation is70

based on this description only.71

Despite the fact that the authors shares the imple-72

mentation details, the training process implementation73

is tied its application and the dataset. Thus, the train-74

ing process for each used network has to be created75

manually based on the deep analysis of the architec-76

ture.77

2.1 From Human Pose Estimation to Visual78

Counting79

The Stacked Hourglass architecture proposed by Ne-80

well at al. [2] is a composition of multiple modules81

called hourglass. Each Hourglass module processes82

Figure 1. top: Stacked hourglass concept – input
image is passed through multiple hourglass modules.
Each hourglass model creates an intermediate
prediction to improve the final result. bottom: Output
of the multiple-level hourglass model for Human pose
estimation problem [2].

the input features on multiple scales and consolidates 83

them to best capture the object landmarks. This is 84

done by repeated up-down/bottom-up process. Also, 85

it uses an intermediate supervision process, i.e. the 86

architecture uses intermediate prediction to improve 87

the next prediction. This is done by skipping layers. 88

This model (Figure 1) aims on the problem of human 89

pose estimation, but as it is shown in the achieved 90

results (Sec. 5), it also shows good results in the visual 91

counting problem. 92

2.2 Single-Pipeline CNN with Great Results 93

The Counting convolutional neural network created by 94

Oñoro et al. [3] is a simple sequence of 6 convolutional 95

layers and two max-pooling layers, as can be seen in 96

Figure 2. The input image patch with size 72× 72 97

pixels is processed by this sequence and it returns a 98

density map with 18×18 pixels size which represents 99

the object spatial distribution in the image. Finally, 100

the object count is gathered by integrating the density 101

map. 102

Figure 2. Counting CNN architecture – sequence of 6
convolutional layers in an up-down order [3].

2.3 Even Better Results with Multi-Scale In- 103

puts 104

Next implemented architecture is called Hydra CNN, 105

like the mythological creature Hydra with nine heads 106



and a big body. It is mainly based on multiple Counting107

CNN’s that are used as the input heads of the creature108

as illustrated in Figure 3. Each head processes the109

input sample on a different scale, so the final architec-110

ture is a scale-aware solution for visual counting. The111

patch scale (crop ratio of the original sample) for head112

Hi is defined as follows,113

Hs = 1− 1
C
·Hi, (1)

where C is the number of heads. In case of the first114

level head, the input patch corresponds to the original115

sample. The heads’ intermediate outputs are fused by116

three fully connected layers, so even the input array117

contains the image in multiple scales, the output is a118

single density map like in the case of Counting CNN.119

The concept can be easily extended by adding a new120

head or simplified by removing one. The results are121

much better than in the case of the simple counting122

CNN.123

Figure 3. Hydra CNN scheme – input sample is
up-sampled multiple times and processed by the
Counting CNNs. The sub-results are merged into a
single output map by fully connected layers.

2.4 Open-Set to Closed-Set Transformation as124

the State of the Art125

Previously described methods are modeled in a regres-126

sion manner. Xiong et al. [4] proposed a new different127

approach with their Spatial Divide-and-Conquer Net-128

work (S-DCNet) that is more complex and it uses mul-129

tiple modules with different purposes. The main idea130

is spatial division of the input image into small regions,131

each with a closed set of a defined range, so they can132

transform quantity to intervals which the network can133

easily classify.134

It is based on the main idea that the visual counting135

problem is an open-set problem by nature. But only136

limited and closed set labeled counts can be observed137

in reality. So the goal is to transform the original138

problem into a close-set one.139

This is done by spatial division of the image until140

the count of every part is in a specified range. For141

example, the experimented range for vehicle counting I142

Figure 4. The architecture of Spatial
division-and-conquer network. The first 5 layers are
convolutional and follow the VGG16 concept [5].
These layers are than connected to the classifier and
division decider straight forward or preceded by
fusion with another layer. Finally, the output weights
and classification are processed to get the object
density map.

am using is [0,5]. That means the architecture spatially 143

divides the input image, until every part reaches 5 144

object at max. 145

The division decider in Figure 4 is trained to decide 146

whether it is necessary to divide the input or not. It 147

returns Wi weights in range [0,1], where greater value 148

means higher need for division. The weight is than 149

used to compute the division result DIVi. So, higher 150

resolution count maps Ci are applied if the division 151

weight Wi is higher. 152

Next, the classifier module predicts the object counts 153

Ci for each output feature map. The classification is 154

done on specified intervals in the closed-set range, i.e. 155

for each feature map, a single object count is obtained. 156

After the model prediction, following post-process 157

is applied: 158

DIVi = (1−Wi)◦avg(Ci−1)+Wi ◦Ci, (2)

where “◦” denotes the Hadamard product and avg 159

is an averaging re-distribution operator. Finally, pre- 160

dicted object count is represented by last DIVi map. 161

The i level corresponds to max division time which is 162

the value that limits the input image division. So, if 163

the i is 2, than the model takes into account up-to 2 164

times divided input image. 165



Figure 5. Toy dataset example of input sample (left)
and output density map (right).

3. Training Details166

The authors of the proposed solutions are proving167

their network performance with pretrained model that168

has been successfully trained on available benchmark169

dataset. Unfortunately, they do not always share train-170

ing details.171

For instance, the paper about proposed Spatial172

division-and-conquer architecture contains very vague173

information about the training process. Therefore, to174

train this model, it was necessary to understand the175

architecture in depth and experiment with model pa-176

rameters.177

3.1 Iterative Training Process With a Toy Da-178

taset179

To train the models on large and diverse dataset, it is180

necessary to know how the models performs with dif-181

ferent training settings and parameters. As the fastest182

approach to make the training process work in the way183

how it was designed is training on a simplified, “toy”184

dataset.185

Toy dataset, as can be seen in Figure 5 is a custom186

generated dataset which can be easily created in a short187

time. Its parameters, like Gaussian blur variance σ ,188

resolution and object shape, can be modified for each189

convolutional neural network architecture. The main190

benefit of this simple dataset is that the training process191

is much faster than training on real images.192

3.2 Output Activation and Loss Functions193

Even with a fast training process, there is another im-194

portant factor influencing training success. That is195

the combination of the last activation function and the196

loss function. The last activation function gives the197

transformation of the linear output value and the loss198

function is used to compute the trained model error.199

Unfortunately, there is no general-purpose com-200

bination of these functions. So, as the implemented201

architectures do not have the same output format, it202

was necessary to understand the model pipeline and203

decide which combination is the best for each output.204

For classification problem is common to use sig-205

moid or soft-max function as the last activation func-206

tion and some type of cross-entropy function. Also,207

Figure 6. Example of the labeling style. Scribbles are
used for high-resolution vehicles and dots for partially
visible cars or vehicles in distant.

There are multiple cross-entropy loss functions for dif- 208

ferent purpose, like multi-class or binary classification. 209

For regression problem, it is typical to use linear 210

function as the activation function and use L1-norm 211

(mean absolute error) or L2-norm (mean square er- 212

ror) as loss functions (density map). Otherwise, the 213

activation function can be set to sigmoid with use of 214

quadratic loss function so the regressed value is in 215

range [0,1] (weight, normalized output)1. 216

The Counting CNN, Hydra-CNN model and the 217

Stacked Hourglass model are using a combination of 218

linear activation function and mean square error loss 219

function. 220

The Spatial Division-and-Conquer model is much 221

more complex. The network output consist of the divi- 222

sion weights and quantity interval classifications. The 223

division weight is a regression to values between 1 and 224

0, so the combination of sigmoid activation function 225

and mean square error loss function are implemented. 226

The count interval problem is a multi-class classifica- 227

tion, so the soft-max activation function with mean 228

absolute error loss function is applied. 229

3.3 Ground Truth Labeling 230

For ground truth labels is used dotted annotation blur- 231

red by 2D Gaussian function. So, the vehicles in 232

images are labeled by only single dot in first step. 233

Then the dotted map is then blurred with Gaussian 234

blur. Even after blurring the dots out, an integration of 235

the blurred map still corresponds to the vehicle count. 236

During the training process this map is used as the 237

ground truth density map. 238

4. Diverse and Robust Training Dataset 239

To train the implemented network to count vehicles 240

in images, it is crucial to have a big enough dataset 241

1https://medium.com/@phuctrt/189815343d3f



Figure 7. Custom dataset samples.

of images with similar parameters. As the parameters242

depend mainly on the final application, it is necessary243

to define it.244

Parking lot occupancy monitoring was chosen as245

the main application. Therefore, the dataset images246

should capture parking areas or similar places like247

highways or streets with cars.248

4.1 Existing Datasets249

Currently, there are three suitable datasets for this ap-250

plication. The first one is the TRaffic ANd COnges-251

tionS (TRANCOS) [6] dataset with more than thou-252

sand labeled low-quality images from highway. The253

next dataset is called CNRPark+EXT2 and it captures254

occupancy of parking lots with roughly 4300 labeled255

images. Lastly, the CARPK3 is a collection of drone256

images of huge parking lots with 1500 annotated im-257

ages where only a part of it is suitable for our applica-258

tion.259

4.2 Newly Created Dataset260

As the main goal of this work is an robust real-world261

application for vehicle counting problem, we need262

much more diverse and robust dataset to train the net-263

works. Therefore, a new and more diverse parking lot264

dataset was collected as part of this work. Figure 7265

shows examples of this custom dataset. It consist of266

19310 images in total from 12 views that capture 7267

different scenes.268

2http://www.cnrpark.it/
3https://lafi.github.io/LPN/

Each location was captured from a similar angle 269

to the ground to simulate the common monitoring 270

cam position. The recording process took place from 271

September to March, so diverse weather and lighting 272

conditions were captured. Also, three online webcams 273

were recorded as part of the custom dataset. This adds 274

another few thousands of images to this dataset. 275

4.3 Annotation 276

The training cannot be done without the ground truth 277

labels for the dataset pictures. Several annotation 278

styles were tested to label the images, like bounding 279

box, silhouette, scribble. Although the bounding box 280

annotation is common approach for object detection 281

and silhouette annotation is even more precise, these 282

two label styles are too time-consuming and unneces- 283

sary for our application. Thus, the faster and sufficient 284

scribble and dots labeling styles were chosen as can 285

be seen in Figure 6. 286

So far, more than 3500 images were annotated as 287

part of this work and the labeling process still contin- 288

ues. 289

5. Achieved Results 290

The presented networks were trained on the TRAN- 291

COS dataset to demonstrate their performance so far. 292

The dataset contains training, validation and test sets, 293

so the results can be accurately compared on samples 294

that were not used for training. Visual comparison of 295

the trained models on TRANCOS dataset can be seen 296

in Figure 8. 297



Figure 8. Five test samples from TRANCOS dataset with trained models predictions. Top row corresponds to
the target image with ground-truth. “Hydra 2s”, “Hydra 3s”, “Hourglass 2s” stands for the Hydra CNN with 2
heads, 3 heads and the Stacked Hourglass model with 2 stacks respectively. The ground-truth counts are slightly
different because Gaussian blur was applied to the label maps.

The comparison of the used architectures on full298

TRANCOS dataset can be seen in table 1. The evalua-299

tion was done with Grid Average Mean Absolute Error300

(GAME) [7] metric defined by301

GAME(L) =
1
N

N

∑
n=1

(
4L

∑
l=1
|Cl

pre−Cl
gt |), (3)

where N denotes the number of images, Cl
pre and302

Cl
gt are the predicted and ground-truth count of the303

L-th subregion, respectively.304

The Counting CNN achieves good results in to-305

Method GAME 0 GAME 1 GAME 2 GAME 3

CCNN 12.18 16.44 20.35 22.97
Hydra 2s 10.77 14.28 17.69 21.13
Hydra 3s 11.02 14.37 17.01 20.64
SHG 2s 14.30 15.84 18.23 22.81
S-DCNet 8.56 9.357 10.40 11.83

Table 1. Trained model evaluation with GAME
metric on the TRANCOS dataset. The best
performance is in boldface. “SHG 2s” stands for the
Stacked Hourglass model with 2 stacks

tal count prediction, but in higher levels on GAME 306



metric shows some false prediction. In case of the307

Hydra CNN the results are better but the problem with308

noisy prediction is remains. The best predictions gives309

the Spatial Divide-and-Conquer Network, which has310

accurate prediction across all GAME levels, so the311

spatial prediction is very precise. Lastly, the Stacked312

hourglass model with 2 stacks shows great results in313

spatial prediction, but the total density of the predicted314

map is lower than ground-truth.315

Next step in comparison of these architectures is316

the custom dataset evaluation with the GAME metric.317

However, the training process is still in progress and I318

don’t want to present temporally results.319

6. Conclusions320

In this paper, I have shown four different architectures321

for visual counting that has been implemented, de-322

scribed the training details of these models. Also, The323

custom car park dataset with 19300 images and 3500324

already labeled pictures have been presented.325

The architectures were evaluated on the popular326

TRANCOS dataset and the results were shown in last327

chapter.328

The newly created dataset is being continually up-329

dated with new locations and more importantly it is330

being labeled.331

Also extended version of the Spatial division and332

conquer network has been recently released by the333

authors and I am finishing the implementation of this334

network.335

Finally, all the presented networks are being trained336

on the custom dataset and will be evaluated.337
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