
http://excel.fit.vutbr.cz

Gathering knowledge about devices in local
networks by analyzing service discovery protocols
Ondřej Sedláček*

Abstract
Network monitoring plays a big part in network management, and considering the growing
percentage of encrypted traffic, we find ourselves looking for new useful sources of data. This
project practice focuses on the utility of service discovery protocols in this regard. It aims to find
whether service discovery data can be extracted and used for network mapping, both alone and
in combination with other measurements. We aim to collect as much relevant data as possible
from a couple of selected service discovery protocols and to assign basic labels to devices. The
collection is done using the NEMEA module Ipfixprobe and plugins we add to support our selected
protocols. This data is then processed using an aggregating python module named SDP Analyzer.
The result of our effort allows us to see what kinds of services devices query for and what kinds
they advertise. We can also extract the device hostname, operating system and sometimes even
get information about the specific device model. With some additional monitoring of the network,
this information can be used to classify most devices in your network. This paper goes through the
protocols used and details the interesting data that can be extracted. It also shows the aggregation
and basic analysis of the data and it might bring use to anyone curious about what is happening on
their local network.

Keywords: SSDP — DNS-SD — NetBIOS — Network monitoring — Service discovery

Supplementary Material: N/A

*xsedla1o@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Passive network monitoring improves network visibil-
ity [1], which is useful when measuring the existing
traffic, troubleshooting problems, or mapping what
kinds of devices are connected through our network,
e.g. for reference in case of anomalies. Such is the
motivation behind the ADiCT1 project, created precise-
ly with the goal of monitoring and classifying network
actors and making further correlations and analysis
over that data. The ADiCT project needs many differ-
ent data sources and this project practice focuses on
finding such data in service discovery protocols.

We develop a solution for the extraction of useful
data from selected service discovery protocols. We

1Asset Discovery, Classification and Tagging

choose to focus on Simple Service Discovery Protocol
(SSDP) and DNS-based Service Discovery (DNS-SD),
later followed by NetBIOS Name Service (NBNS).
Useful in the context of network monitoring means
usable to classify a device, to know what kinds of
communications we should be expecting from it. We
also try to extract some additional data about the de-
vice’s OS or identifiers such as hostname whenever
possible. We do not attempt to decipher the configura-
tion of the device nor to create a map of which devices
communicated with each other yet, even if that may be
the goal of future modules.

1.1 Existing solutions
When exploring the existing solutions in the network
monitoring space, we find a wide range of scale. Dis-

http://excel.fit.vutbr.cz
mailto:xsedla1o@stud.fit.vutbr.cz

cerning whether a proprietary solution utilizes SD
protocol data is complicated, as most of the proprietary
solutions we find center their presentation around the
end product, not the underlying mechanisms.

As an example of a commercial solution that ex-
tracts data from SD protocols, we selected Rumble
Network Discovery [2], a network scanning tool using
a larger number of protocols for its asset identification,
including mDNS, SSDP, and NetBIOS.

Once we narrow our scope to the actual data collec-
tion, which is much more comparable with our work,
we find that many simple open-source command-line
utilities exist but actively engage with the network,
which classifies them as active monitoring. These
utilities also focus on the services available, providing
no summary on MAC or IP address basis.

Avahi-browse [3] is a command-line utility that is
part of the Avahi package. It enables us to enumerate
all the services advertised through DNS-SD on our
network. It does so by periodically sending a special
”find all services” query and printing the responses.

The Metasploit Framework console [4] includes
many tools that allow for scanning both the DNS-SD
and SSDP space. Once again, the basis is similar, the
tools send a query requesting all available services and
display any replies.

When looking at the problem at hand from a slight-
ly different perspective, another open-source solution
presents itself. Wireshark [5] is one of the world’s most
widely-used network protocol analyzers. It enables
the live capture and offline analysis of network traffic,
inspection of hundreds of protocols including our select
SDP, and does match our passive monitoring criteria.
Wireshark does not have ambitions of being an SDP
data extraction centered tool and does not support
specific record aggregation. Despite that, it is still
worth mentioning, as we use the TShark utility, which
is at Wireshark’s core, as the first step in our initial
prototype.

1.2 Our solution using NEMEA framework
For our solution, we choose to use the NEMEA [6]
framework, leveraging the existing interfaces and using
the module Ipfixprobe to turn traffic in packets into
flow data [7]. We create plugins for Ipfixprobe, which
enrich the flow data with all the useful service discovery
protocols. Enriched flow data is passed to a NEMEA
module named SDP Analyzer, which performs the
aggregation and basic tagging of devices, and passes
the output to the ADiCT database.

With our solution, we achieve the proposed goals
of data extraction, unifying the protocols under our
format and passing the data to the rest of ADiCT’s

system. Our solution extracts services each device
queried for and advertised, allowing us to categorize it
by its capabilities. Provided the device communicates
enough, we also get information about the device’s OS
and hostname.

2. Summary of used service discovery
protocols

The main motive behind service discovery is simplici-
ty. The goal is to simplify the configuration required
for using the services available on the local network to
the point that there is none, hence the associated term
zero-configuration networking [8]. Both SD protocols
we worked with have two basic capabilities: To query
for a specific kind of service and to advertise any
services the device is providing to the network. Most
communication within the protocols is done using
multicast. We will shortly discuss the specifics when
we come to describe each protocol.

The data that has to be transferred to enable these
capabilities is also similar for both protocols. Every
service is discovered under a name that can be used
for its identification. It also has to exist somewhere in
the network, so each name must have an associated IP
address and a port that it runs on. Then we can start
looking for additional information. In both protocols,
we can find data about operating systems. Both enable
communicating service details or device models and
configurations, but we decided not to focus on that
data in this project practice, as our ultimate aim is to
categorize these devices for further monitoring, adding
the context of what the device appears like on the
service discovery plain, and extracting every possible
detail would not aid that goal.

2.1 Simple Service Discovery Protocol

Control point

Service is required

UPnP device

Mulitcast response to port 1900
containing type of service and

service location

Mulitcast search to port 1900
containing type of service

Figure 1. SSDP service discovery workflow.

SSDP [9] is a protocol managed by UPnP, created
based on the structure of HTTP messages [10]. The
packet structure consists of a start-line followed by
message header fields. There are two main kinds
of messages in SSDP: Notify and M-Search. Notify
messages are used for service advertisement, M-Search

for querying. Both message types include header fields
(e. g. NTS or MAN) that provide greater communica-
tion context. As we do not utilize these fields in our
solution, we will not go into greater detail here either.

Services are identified using URNs2, which can be
standard or vendor-defined. Standard service types are
denoted by urn:schemas-upnp-org:service: followed
by a unique name assigned by a UPnP forum working
committee, colon, and an integer version number [9].
Vendor defined services have a custom domain in place
of schemas-upnp-org.

A few examples of URNs:
schemas-upnp-org:service:ConnectionManager:1
dial-multiscreen-org:service:dial:1.

2.2 DNS-based Service Discovery

PTR, SRV, TXT, A, AAA
with service details

multicast response to port 5353

PTR <instance>.<service>.<domain>
multicast response to port 5353

PTR for service instance
multicast query to port 5353

Client

Service is required

Server

PTR <service>.<domain>
multicast query to port 5353

Figure 2. DNS-SD service discovery workflow.
The PTR record serves as a level of indirection to the
actual service details.

DNS-based Service Discovery [11] is a specifi-
cation of mechanisms allowing clients to discover
instances of services using standard DNS queries. It is
one of the main pillars upon which all implementations
of Zeroconf are built, such as Bonjour or Avahi [8]. It
is compatible but not reliant on mDNS [12].

Service Instance Names used in DNS-SD have the
following format: <Instance>.<Service>.<Domain>.
The <Domain> portion is always ”local.” in services
on local networks. <Service> consists of a pair of
DNS labels, as set by convention for SRV records,
describing the service and the utilized application proto-
col. Each label begins with an underscore. <Instance>
then acts a user-friendly name for the service.

Examples of Service Instance Names:
LG webOS TV 7E6D. hap. tcp.local
Spotify - Withings Aura C6. spotify-connect. tcp.local

Service discovery using DNS-SD can be broken
down into two parts - service browsing and service

2Uniform Resource Name

instance resolution. Service browsing is done via
sending PTR requests for a particular service, which
results in the enumeration of PTR records giving Ser-
vice Instance Names of such services on the network.
To enable the contact of a particular service instance,
the client queries for SRV and TXT records of that
name. SRV records contain the target host and port
where the service can be found, TXT records are used
for addi-tional information about the service.

2.3 NetBIOS Name Service
NetBIOS Name Service, while not a service discovery
protocol, has been included in our implementation for
the simplicity of processing it using our pipeline.

NBNS implements name registration and resolu-
tion for NetBIOS names, which are required for com-
municating using NetBIOS. When the name is deter-
mined by a higher-level protocol [13], a convention
is recommended to use the last byte of the NetBIOS
name as a suffix that carries additional context within
the NetBIOS namespace.

3. Extraction and labeling of data from
SSDP, DNS-SD and NBNS

In this section we will explore what concrete fields
were chosen for extraction from each protocol. We
will also cover our approach to adding labels to devices
in our module.

3.1 SSDP data extraction
Based on the gathered knowledge about SSDP through
an examination of specifications [9] and network traffic
samples, we propose the following steps for data ex-
traction. We will determine the message type based on
the start-line, looking either for M-Search or Notify.
The message type gives us a good-enough idea of what
to expect in the rest of the message.

We find that only a few fields include information
relevant to our use-case, and we will go over them
briefly now. Services are identified via URNs, the
format is the same for both searching and advertising,
and are found in fields NT3 and ST4. For each service
advertised, there is an IP address and port where it is
running. The field LOCATION contains this informa-
tion. We decide to keep only the port from the field,
as we do not intend to track IP addresses. When
considering advertisements, the SERVER field also
proves itself valuable. The SERVER field contains
the description of the device that is offering a service,

3Notification Type
4Search Type

Table 1. Summary of SSDP header fields and DNS-SD records used in data extraction for each label.

Message type

Label name SSDP M-Search SSDP Notify DNS-SD query DNS-SD response

SSDP service NT, LOCATION
SSDP query ST
DNS-SD service SRV
DNS-SD query PTR
Hostname SRV
OS USER AGENT SERVER TXT, HINFO
TXT TXT

including the OS, used version of UPnP, and the prod-
uct responsible for the service. It should be mentioned
that we find the SERVER field to be quite irregular
in its format in the captured traffic, and its parsing
ends up being based more on our captured traffic data
than the official specification. The last field we utilize
is USER AGENT, which is specified when searching.
While the USER AGENT field is officially optional,
we observe it widely used, and since it, again, includes
the OS, UPnP version, and the responsible product, we
include it in our extraction.

3.2 DNS-SD data extraction
When it comes to DNS-SD, we use a pre-existing
structure for parsing DNS packets, as will be men-
tioned in the next section, and therefore, we will not
go into the details of packet parsing here. Instead, we
will look at the DNS records used and the relevant
information inside them.

The PTR record queries sent when searching for a
service include the service name, giving us the identifi-
er we are looking for. The responses then include
SRV, TXT, and other records. An SRV record contains
the service name, hostname (as srv target), and the
service port. We find working with TXT records tricky,
as their content is specific to the individual services.
Despite the irregularity, the information found is often
substantial for us, and we will get to how we handle
parsing them later. Finally, we get to the A and AAAA
records that contain IP addresses. We decide not to
collect IPs, so we discard them. The very last would be
HINFO records, which contain the host-specific data,
more precisely the OS and CPU type, which is useful,
even though very rarely found in traffic.

3.3 NBNS data extraction
NBNS is added after the successful implementation
of the previous protocols and does not continue the
trends set by them. Its packet format is identical to
DNS. The information found within is NBNS names
and potentially NetBIOS suffixes. Both parts are ex-

tracted for clarity.

3.4 Device labeling
We approached labeling of devices with tags and cate-
gories in mind, but throughout the development, our
view changed to be more general in the scope of what
could be passed as a label. The labels that we create
include services both advertised and queried for, host-
names, operating systems, and TXT labels. The term
label then denotes any output field of the module. The
data sources for each label are aforementioned. For a
summary, see Table 1.

TXT labels, taken from DNS-SD TXT records,
deserve a bit more detailed description. These key-
value pair records can contain very useful information,
such as OS, device models, and more, but are specific
to every single service, and many contain a significant
amount of encoded data or detailed configurations that
aren’t interesting for our use-case.

Our solution is to enable the end-user to configure
the collection of these records. This way, new useful
records, unknown to us at the time of completing the
module, can be added to the configuration. Our module
can now also be repurposed for a different use-case
involving collecting different kinds of values.

4. Early prototype used by ACID module

In the very early stages of this project practice, a
prototype was required to provide input for the ACID
module [14], which was being developed at the time.
The ACID module needs SDP data, as well as other
inputs, for its activity detection algorithms. Our module
receives a PCAP file as input and delivers SDP data
in the format of a standard JSON file. For each MAC
address, we include associated IPv4 and IPv6 addresses,
hostnames, and operating systems. A simple MAC to
vendor functionality is also implemented as part of the
prototype. As for the SDP data, we deliver records of
offered services for both SSDP and DNS-SD, mapping
each service name to a port of its availability, and

also records of service queries made by the device.
Additionally, we have special fields for each protocol.
DNS-SD includes a field containing TXT records we
collect, SSDP is enriched by user-agents and server
fields.

Our prototype is written in python, chosen for
its flexibility. We choose to use pyshark, a TShark
wrapping module, to process the input data, because it
enables us to work with a pre-processed representation
of packets, allowing us to skip ahead to developing our
solution. We also filter the input data based on whether
packets contain protocols mDNS or SSDP using the
pyshark module.

Inside the prototype, we aggregate the data based
on MAC addresses, as many devices have multiple
IP addresses assigned, e.g. when a device supports
IPv4 and IPv6. For each packet, we save the sender
IP address and update our SDP records processing the
packet’s content on a very basic level. We use python’s
sets and dictionaries to ensure the uniqueness of our
records. The packet processing then consists mostly
of string parsing to isolate the interesting parts of data.

After aggregating all packets into our representa-
tion, the prototype goes over all the collected data,
during which we run hostname and operating system
detection and vendor lookup. Hostnames are detected
based on DNS-SD SRV records. Detection of operating
systems uses both protocols, SSDP containing OS in
the SERVER field in Notify messages and DNS-SD
service ’OSX Device Info’ indicating MacOS X.

The prototype served as a decent input stub during
the development of the ACID module, and it allowed
us to explore both protocols in quick succession. Creat-
ing it before working on the real module gives us an
overview of what issues we have to deal with and some
basic expectations of our data extraction results.

5. Extracting data from SDP using a
NEMEA pipeline

The NEMEA framework is used to transform raw
network traffic to flow data and communicate between
the modules. Ipfixprobe module plugins that extract
necessary information from each of our selected proto-
cols have been implemented. The protocol at hand
is detected based on destination or source ports. All
plugins have a data structure with extracted information,
attached to each flow record, and have a callback to
export it when the flow is finalized.

SSDP is detected by matching the destination port
to 1900. Afterward, the packet payload is parsed,
expecting SSDP structure. The parser settings are
decided based on the message start-line, where we

identify whether the message is a query or an advertise-
ment. Parsing is implemented as looking for desired
headers in the payload and saving their values when
found. Most values are saved as a list of strings without
change, the only exception being the service location,
from which we parse only the service port.

Parsing DNS-SD begins by checking the destina-
tion or source ports for value 5353. We reuse the
functions that handle parsing DNS packets in the exist-
ing DNS plugin. After matching the port, all of the
packet’s sections are parsed. From queries, we keep
PTR requests unrelated to IP addresses. In case the
packet is an answer, we save SRV, TXT, and HINFO
records. To avoid duplicates, we only keep the records
that are unique in our collection. The values are saved
as lists of strings. For export, we concatenate the
strings with semicolons.

As mentioned in Section 3, we implement config-
uration of TXT record collection. The implementation
is done through whitelist-like configuration files both
for the DNS-SD plugin and for SDP Analyzer. We
give control of what keys, linked to which services,
are to be collected, and on the SDP Analyzer level, we
require naming each service-key combination that is
to be extracted.

DataPoint

dns_sd: DNS_SD

ssdp: SSDP

nbns: NBNS

labels: dict

time: TimeInterval

DNS_SD

hostname: set

hinfo: set

queries: set

services: defaultdict(set)

txt: defaultdict(set)

SSDP

user_agents: set

servers: set

queries: set

services: defaultdict(set)

TimeInterval

t1: int

t2: int

NBNS

name_with_suffix: set

Figure 3. Class diagram for DataPoint object

NBNS is parsed after matching source or destina-
tion port to 137. NBNS names must be compressed
because each byte of the original name is split into two
bytes in the packet. We only save one name per flow.

After processing the traffic using Ipfixprobe with
the above-described plugins, we get the output on three

SSDP flow data
Ipfixprobe

SDP flow data
Merger

ADiCT DataPoints

Configured format

SDP Analyzer

ADiCT API
DNS-SD flow data

NBNS flow data

SSDP plugin
DNS-SD plugin
NBNS plugin

Network traffic

Local output

Figure 4. Final pipeline diagram showing the transformation and flow of data.

UNIX sockets, one for each plugin’s flow, communi-
cated in the NEMEA UniRec format. We use another
module called Merger to join these streams of flow
data into one. As a part of merging the flows, we
also remove fields that will not be aggregated later,
such as the number of bytes transferred, protocol, or
TCP flags. The merged flow data is then available
on a single socket, the name of which we pass to
SDP Analyzer as an argument. To communicate with
the NEMEA interface we utilize the pytrap module,
which handles converting the incoming flow records
to python objects.

A dictionary with MAC addresses as keys and
DataPoint class objects as values is used to store the
data. One DataPoint object stores data about one
device. The data is separated into child objects, one
for each protocol, a time interval of the data collection,
and a dictionary of additional labels. For the class
diagram of the final solution see Figure 3. With each
incoming flow record, the DataPoint stored for that
particular MAC address is updated.

After all flow records are processed, labels are
assigned based on collected data. The hostname is
propagated without adjustments from the DNS-SD
layer, the OS label is added as a combination of ex-
tracted OS in DNS-SD and SSDP. TXT record labels
are based on SDP Analyzer’s configuration.

Finally, the aggregated and labeled data is passed
out from the module. The format of the local output
is configurable with the module’s launch arguments.
As SDP Analyzer is meant to be an input module
for the ADiCT system, an API endpoint can also
be configured. Then the output will be sent to that
endpoint in the ADiCT format using POST requests.

SDP Analyzer has been deployed in a VM setup
used for testing of the NEMEA framework. Analyzed
traffic data comes from few selected offices at the
faculty and is saved to files based on date and time.
SDP Analyzer is then run periodically every hour,
using the newest traffic file as input. A testing API
endpoint is set up on ADiCT’s development server,
and it is used for the module’s output so the platform
can use it for further analysis. The final pipeline is
visualized in Figure 4.

The network traffic in the form of PCAP files
or captured directly from the network is fed into the

Ipfixprobe module. Ipfixprobe opens a UNIX socket
for each plugin, where it then outputs the processed
flow data. The Merger module is then used to merge
the flow steams into one of our specifications, which is
passed to the SDP Analyzer. The final output is printed
to standard output in one of the selected formats (ADiCT
DataPoints, JSON, plain text) and sent to ADiCT’s
database.

5.1 Pipeline evaluation
Comparing the current pipeline to the prototype, we
can see the total run-time shorten about twenty-fold,
measured on multiple larger PCAP inputs. Based
on the improvement of run-time we can confirm the
positive effect of using the NEMEA framework for
pre-processing the raw traffic data before aggregation.

One negative side effect of the pipeline change is
the process management that is now required to run the
analysis. For easier use of SDP Analyzer, we provide a
shell script that handles running the NEMEA pipeline.
Using the script is a solution for a one-time use of the
module. It should be noted that for use on live local
traffic, setting up a network-capturing pipeline would
be required to run the prototype, and the NEMEA
framework takes care of it nicely.

Thanks to the module deployment for testing, we
have been able to extract data from service discovery
protocols on the selected local networks. The ADiCT
system, to which we send the aggregated results, is
currently under development. Due to limitations of the
system’s functionality, the collected data is currently
hardly accessible and it is difficult to judge its ultimate
usefulness. Nevertheless, use-cases for the collected
data are still being explored, and it will be interesting
to see its analysis when combined with other data
sources.

6. Conclusions
This project practice was focused on data extraction
from SDP. We have studied the structure of our selected
service discovery protocols, showing what data is pos-
sible to extract from them. A simple prototype was
implemented to prove our findings and used during
the development of the ACID module. The prototype
was followed by a more advanced implementation
using the NEMEA framework. Plugins for Ipfixprobe

were created to extract data from SSDP, DNS-SD, and
NetBIOS. A NEMEA module called SDP Analyzer
that aggregates and processes the SDP data from Ipfix-
probe was created. A basis for a more advanced SDP
data analysis was built by creating an output interface
for the ADiCT system database API. The solution was
deployed on development servers for NEMEA and
ADiCT to prove its functionality on data from real
network traffic.

Our solution relied only on passive monitoring,
allowing us to run our module remotely, using only
recorded traffic captures. Our solution extracted the
services advertised and queried for by each device, the
device’s hostnames, operating systems, and other data
found in DNS-SD’s TXT records.

As was mentioned before, SDP data extraction
was done to provide data for further analysis, some of
which is already taking part while writing this project
practice paper. Our solution provided a new data
category to the ADiCT system, widening the possibil-
ities for analysis. The overall utility of SDP data
showed promising, and we will be building on top of it
inside the ADiCT system, looking to find relationships
between service discovery data that could be used to
categorize the devices, and possibly comparing our
findings with those based on other data sources.

Acknowledgements

I would like to thank my supervisor Martin Žádnı́k and
my technical supervisor Václav Bartoš for their advice
and other helpful input during the project practice and
writing of this paper.

References
[1] Cisco. Using passive monitors, 2020.

https://www.cisco.com/c/en/
us/td/docs/net_mgmt/cisco_
netmanager/1-1_voice/user/guide/
CnMuguide/10_pmonitors.pdf.

[2] Inc Rumble. Rumble network discovery, 2020.
https://www.rumble.run/.

[3] Lennart Poettering and Trent Lloyd. Avahi, 2015.
https://www.avahi.org/.

[4] Rapid7. Metasploit framework, 2020. https:
//www.metasploit.com/.

[5] Gerald Combs and contributors. Wireshark, 2020.
https://www.wireshark.org/.

[6] Tomas Cejka, Vaclav Bartos, Marek Svepes,
Zdenek Rosa, and Hana Kubatova. Nemea:
A framework for network traffic analysis. In

12th International Conference on Network and
Service Management (CNSM 2016), 2016.

[7] B. Claise, B. Trammell, and P. Aitken.
Specification of the ip flow information export
(ipfix) protocol for the exchange of flow
information. STD 77, RFC Editor, September
2013. http://www.rfc-editor.org/
rfc/rfc7011.txt.

[8] Stuart Cheshire and Daniel H. Steinberg. Zero
Configuration Networking: The Definitive Guide.
OREILLY MEDIA, 2005.

[9] Andrew Donoho, Bryan Roe, Maarten
Bodlaender, John Gildred, Alan Messer,
YoonSoo Kim, Bruce Fairman, and Jonathan
Tourzan. Upnp device architecture 2.0. Technical
report, Open Connectivity Foundation, Inc.,
2015.

[10] Roy T. Fielding, James Gettys, Jeffrey C. Mogul,
Henrik Frystyk Nielsen, Larry Masinter, Paul J.
Leach, and Tim Berners-Lee. Hypertext transfer
protocol – http/1.1. RFC 2616, RFC Editor, June
1999. http://www.rfc-editor.org/
rfc/rfc2616.txt.

[11] S. Cheshire and M. Krochmal. Dns-based service
discovery. RFC 6763, RFC Editor, February
2013. http://www.rfc-editor.org/
rfc/rfc6763.txt.

[12] S. Cheshire and M. Krochmal. Multicast
dns. RFC 6762, RFC Editor, February
2013. http://www.rfc-editor.org/
rfc/rfc6762.txt.

[13] Microsoft. [ms-brws]: Common internet file
system (cifs) browser protocol. Technical report,
Microsoft Corporation, 2018.

[14] Jan Neužil. Network devices and services
identification using passive monitoring. Master’s
thesis, Factulty of Information Technology CTU
in Prague, 2020.

https://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_netmanager/1-1_voice/user/guide/CnMuguide/10_pmonitors.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_netmanager/1-1_voice/user/guide/CnMuguide/10_pmonitors.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_netmanager/1-1_voice/user/guide/CnMuguide/10_pmonitors.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_netmanager/1-1_voice/user/guide/CnMuguide/10_pmonitors.pdf
https://www.rumble.run/
https://www.avahi.org/
https://www.metasploit.com/
https://www.metasploit.com/
https://www.wireshark.org/
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.rfc-editor.org/rfc/rfc6762.txt

