
http://excel.fit.vutbr.cz

Applying Code Change Patterns during Analysis of
Program Equivalence
Petr Šilling*

Abstract
For some software projects, it might be crucial to ensure semantic stability of their core components
between multiple release versions. Nowadays, semantic stability may be checked automatically
even on large real-world projects using scalable tools, e.g., DIFFKEMP, which focuses on checking
semantic equivalence of different versions of the Linux kernel. However, while these tools are
highly scalable, they do tend to report some false-positives. Therefore, in this paper, we propose
a static analysis method for matching patterns of recurrent changes between different versions
of code. The proposed solution introduces a novel pattern matching algorithm based on gradual
comparison of instructions according to their control flow and a method for encoding code change
patterns into the LLVM intermediate representation. The proposed analysis has been implemented
as an extension of DIFFKEMP, where we demonstrate how it may eliminate a substantial amount of
non-equivalence results, which would generally require manual inspection.

Keywords: DIFFKEMP — LLVM — GNU/Linux kernel — Pattern Matching — Semantic Equivalence

Supplementary Material: DIFFKEMP GitHub Repository

*xsilli01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

When modifying code that should ideally remain sta-
ble and consistent for extended periods of time (e.g.,
for the lifetime of a major software release version),
it might be vital to know which parts of the program
will get impacted, or, perhaps even more importantly,
how will the changes affect semantics. To ease the
process of finding unintentional side-effects, develop-
ers may want to utilize automated static analyzers of
semantic equivalence to compare different program
versions. Unfortunately, this is typically not possible
since current techniques for sound checking of seman-
tic equivalence generally depend on computationally
intensive formal methods. Consequently, the applica-
bility of such analyzers to large-scale projects is fairly
limited, forcing developers to rely almost entirely on
an especially time-consuming and error-prone manual
analysis instead.

Nevertheless, analyzers that concentrate on scala-
bility and usability on large projects are slowly emerg-
ing as well. One such analyzer is DIFFKEMP [1], a

tool for checking semantic equivalence of different ver-
sions of large C projects, which—due to a particular
interest of Red Hat—focuses primarily on the Linux
kernel. DIFFKEMP tries to find the middle ground
between formal methods, which are sound but heavy-
weight, and simplified light-weight methods (often
based on plain text similarity)—it introduces a highly
scalable technique that usually produces only a small
number of false non-equivalence results.

To further reduce the number of false-positives
reported by DIFFKEMP, and to introduce the option
to selectively hide already reviewed semantic changes
(e.g., security fixes), we propose to extend DIFFKEMP

with support for custom patterns of code modifications.
These patterns enable users to specify which kinds
of changes should get ignored during the semantic
comparison.

In particular, we summarize the contributions of
this paper as follows:

• First, we introduce the idea of so-called code
change patterns (CCPs) and prepare a repre-

http://excel.fit.vutbr.cz
https://github.com/viktormalik/diffkemp
mailto:xsilli01@stud.fit.vutbr.cz

sentation of CCPs that can be easily parsed by
DIFFKEMP.

• Second, we propose a method for detecting
CCPs in compared programs. The proposed
matching method is based on the subgraph iso-
morphism problem and leverages the LLVM
infrastructure—in particular, the fact that LLVM
functions are represented as control-flow graphs
(CFGs).

• Finally, we evaluate the extension on multiple
past versions of the Linux kernel, demonstrat-
ing how it can help eliminate false-positive or
potentially undesirable non-equivalence reports.

Before describing the contributions in detail, we
first present the basic concepts behind DIFFKEMP.

2. Comparing Programs with DIFFKEMP

In recent years, several projects on static analysis of
semantic equivalence have emerged, creating a widely
studied field of program analysis. The tools imple-
mented based on these projects, such as LLREVE [2],
typically rely on costly formal methods, which—while
completely eliminating false-positives common for
more relaxed techniques—suffer greatly from scalabil-
ity issues. Application on large enterprise projects,
such as the Linux kernel, is therefore not feasible.
More scalable alternatives (e.g., based on abstract
syntax tree comparison [3]) exist as well. However,
such tools can generally process only the most sim-
ple semantics-preserving changes, which might also
be insufficient for larger projects. A more complete
overview of analyzers of semantic differences can be
seen in [1].

DIFFKEMP can be categorized as a sophisticated
light-weight tool for checking semantic equality be-
tween two C programs. It aims to provide an accurate
overview of semantic differences between the com-
pared programs while retaining the high scalability
typical for light-weight analyzers. To give a concrete
example, DIFFKEMP is able to automatically compare
two versions of the Linux kernel in the order of min-
utes. And while [1] does show that the results may
contain a small number of false-positives, their vast
majority tends to be correct. Using DIFFKEMP drasti-
cally lowers the amount of manual work required when
reviewing changes, which is something that would not
be achievable with formal approaches, at least not on
projects with the size of the Linux kernel. DIFFKEMP

achieves this using three major concepts: (1) the trans-
lation of compared programs into the LLVM interme-
diate representation [4], (2) a specialized definition

of function equality based on so-called synchronisa-
tion points, and (3) an analysis that tries to compare
programs instruction-to-instruction.

2.1 Representation of Compared Programs
During its analysis, DIFFKEMP utilizes control-flow
graphs (CFGs). In particular, DIFFKEMP translates the
compared C programs into a low-level code representa-
tion called LLVM IR—the intermediate representation
of Clang/LLVM. In LLVM IR, each function corre-
sponds to a single CFG and may be perceived as one.
The following definition of CFGs is inspired by the
notion of CFGs presented in LLVM IR and by [1].

A CFG is a directed graph in which nodes are basic
blocks and edges represent program branches. Each
basic block is composed of a sequence of instructions.
An instruction performs an operation over a (possibly
empty) list of operands and may store its result into
a local variable. Each operand is either a variable
(global or local), a constant, or a function. All variables
and constants are typed. The type system and the
operations associated with different kinds of LLVM
instructions are defined by [5]. Additionally, each
CFG must satisfy the static single assignment (SSA)
property, meaning that each variable must be assigned
to at most once.

Each internal instruction of a basic block has ex-
actly one successor (the instruction immediately fol-
lowing it). A basic block ends by a branch instruction
or by a terminator instruction. Each branch instruction
has either one or two successors, all of which must be
initial instructions of basic blocks. Branch instructions
with one and two successors are called unconditional
and conditional branches, respectively. A terminator
instruction has no direct successors as it terminates the
function, possibly returning a result.

2.2 Definition of Function Equality
DIFFKEMP analyses programs that are translated into
LLVM IR by their CFGs (i.e., by LLVM functions).
Since checking semantic equality of entire functions at
once would be complicated, DIFFKEMP achieves it by
splitting each function into the same number of blocks
that can be compared separately. These blocks are de-
limited by so-called synchronisation points. For each
block of code located between a pair of succeeding
synchronisation points in the first compared function,
the block of code between the pair of corresponding
synchronisation points in the second compared func-
tion must be semantically equal.

Intuitively, two blocks of code may be considered
semantically equal if they both terminate and produce
the same output for the same input, or if they both do

Function f1

1 define i32 @f1(i32 %x) {
2 %1 = add i32 %x, 42
3 %2 = add i32 %1, %1
4 %3 = add i32 %2, %1
5 ret i32 %3
6 }

Function f2

1 define i32 @f2(i32 %x) {
2 %1 = add i32 %x, 42
3 %2 = mul i32 %1, 3
4 ret i32 %2
5 }

S1

i1

i3
i4

S2

i1
i2
i3

smap

Figure 1. Two compared functions f1 and f2 with the associated smap and varmap mapping functions. For
n ∈ {1,2,3,4}, instructions from both functions are represented in order by in. For a parameter x, f1 and f2 are
semantically equal, as they both calculate the result of 3× (x+42). Instructions that should be synchronized are
connected by arrows, and variables that should be mapped share the same colour in both functions.

not terminate. Input is defined by the values of the
input variables and the initial state of memory (i.e.,
both the stack and the heap), and output by the output
variables and the final state of the memory. A more for-
mal definition of semantic equality is beyond the scope
of this paper. However, the general idea of the defi-
nition presented in [1] is based around two mapping
functions smap and varmap, where smap represents
a bijective mapping between sets of synchronisation
points from both compared functions, and varmap
represents a similar mapping between variables. A
graphical example of both mapping functions can be
seen in Figure 1.

2.3 Algorithm for Checking Function Equality
The top-level comparison algorithm builds on the idea
introduced above. For two compared functions f1 and
f2, it tries to find appropriate sets S1 and S2 of syn-
chronisation points and the mapping functions smap
and varmap such that all blocks of code between cor-
responding pairs of synchronisation points are seman-
tically equal. A simplified version of the algorithm
is presented in Algorithm 1. The full version of the
algorithm can be found in [1].

Algorithm 1 starts by taking two functions f1 and
f2 and running traditional semantics-preserving code
transformations on them (e.g., dead code elimination).
This is important because individual instructions are
generally quite simple to compare (they should per-
form the same operations on the same operands or
on operands that can be mapped to each other using
varmap). Applying these transformations makes it
much more likely for synchronisation points to get
placed per instruction, which greatly improves the per-
formance of the algorithm on functions that are not
syntactically the same.

Then, the initialisation of synchronisation sets and
maps takes place. At first, only the first instructions in
the entry basic blocks of functions f1 and f2 are con-
sidered synchronized (Lines 2–3). These are denoted

Input: Compared functions f1 and f2
Result: true if f1 and f2 are equal, false otherwise

1: perform code transformations of f1 and f2
// Initialise synchronisation sets and maps

2: S1 := {i1in}, S2 := {i2in}
3: smap(i1in) := i2in // Map the entry instruction pair
4: add parameter and global variable mappings in varmap

// Primary comparison loop
5: Q := {(i1in, i2in)} // Initialise the main queue
6: while Q 6= /0 do
7: take any pair (s1,s2) from Q
8: p := detectPattern(s1,s2)
9: foreach (s′1,s

′
2) ∈ succPairp(s1,s2) do

10: if (s1,s′1) is semantically different to (s2,s′2) then
11: return false

// Update synchronisation sets and maps
12: S1 := S1∪{s′1}, S2 := S2∪{s′2}
13: smap(s′1) := s′2
14: update varmap according to p
15: insert (s′1,s

′
2) into Q

16: return true
Algorithm 1: Semantic comparison of functions

by i1in and i2in for f1 and f2, respectively. Furthermore,
a mapping between pairs of parameters and pairs of
global variables is created as well (Line 4). Parameters
of f1 and f2 are mapped based on their order, while
global variables that get used in f1 and f2 are mapped
according to their names.

Afterwards, the main comparison loop begins, op-
erating until the queue Q of pairs of synchronisation
points is empty. Initially, only the first synchronized
pair of instructions (i1in, i

2
in) is queued up for analysis.

At the start of each iteration, a single pair (s1,s2) is
taken from the queue. Then, each pair (s1,s2) gets
analysed by the function detectPattern, which checks
whether some supported semantics-preserving change
pattern (SPCP) could be applied to it. SPCPs are stati-
cally defined patterns of recurrent code modifications,
which—if detected in a block of code—are known to
preserve program semantics (e.g., shifts in enumera-
tion values).

Subsequently, the function succPairp retrieves all
possible successor pairs following (s1,s2). These are
typically placed at the instructions immediately fol-
lowing s1 and s2. However, if a SPCP gets detected,
pattern-specific successors might get selected instead.
For all possible successor pairs (s′1,s

′
2), the algorithm

utilizes instruction comparison and synchronisation
maps to check whether the blocks of code between
the corresponding pairs of synchronisation points are
semantically equal (Line 10). If so, the algorithm con-
tinues, updating the synchronisation sets and maps,
and queueing up (s′1,s

′
2) for analysis (Lines 12–15).

Finally, if the queue Q is successfully emptied,
the functions f1 and f2 are proclaimed semantically
equal (Line 16), and the comparison of the next pair
of functions may begin.

3. Code Change Patterns
Code change patterns (CCPs) are descriptions of re-
current software modifications [6]. They are especially
important for DIFFKEMP since not all functions can
be compared instruction-to-instruction, which is why
DIFFKEMP already supports many CCPs in the form
of built-in SPCPs. However, since the total number of
existing CCPs is theoretically unbounded, using stati-
cally predefined SPCPs for all of them is not feasible.

Additionally, a lot of commonly repeating patterns
of changes alter the semantics but are known to be safe
(e.g., security fixes and safety assertions). Therefore,
it might be desirable to filter out such changes from
comparison results. With respect to that and to our
own experiences with the Linux kernel, we analyse
two kinds of CCPs:

a) Semantics-preserving patterns, also known as
refactoring patterns, i.e., patterns that modify
code in a way that preserves its observable be-
haviour [7]. Some of these, e.g., the addition
of a new value into an enumeration type, are al-
ready handled by built-in SPCPs already present
in DIFFKEMP [1].

b) Semantics-altering patterns, corresponding to
changes that cause semantic differences. For
example, they might add, remove, or rewrite a
conditional expression in an attempt to fix pro-
gramming mistakes [8].

By carefully examining the differences reported by
DIFFKEMP when comparing multiple versions of the
Red Hat Enterprise Linux (RHEL), we were able to
confirm the occurrence of both kinds of CCPs within
the kernel of RHEL. Since built-in SPCPs might be im-
practical in this scenario (especially when semantics-

altering patterns are concerned), we propose to reduce
the number of pattern-related differences shown in
the results using CCPs encoded into LLVM IR. En-
coded CCPs may then get dynamically loaded into
DIFFKEMP.

3.1 Code Change Pattern Definition
Before presenting the pattern encoding method, we
formally define CCPs. The definition, as well as the
rest of this paper, assumes that DIFFKEMP is used to
compare two versions of the same program. Then, a
code change pattern p can be understood as a tuple

p = (co,cn, imap,omap)

where

• co and cn are the code fragments associated with
the older and newer versions of the compared
programs, respectively, and

• imap and omap are mapping functions that map
the input of co to the input of cn, and the output
of co to the output of cn, respectively.

Each code fragment c is composed of input, output,
and its main body, which describes how to transform
input into output. To simplify the presentation, we
introduce functions in(c) and out(c) to obtain the input
and the output of c, respectively.

3.2 Code Change Pattern Representation
Since DIFFKEMP utilizes the LLVM infrastructure,

we propose to encode CCPs using LLVM IR, as doing
so does not require any new libraries or parsing tools.
On the other hand, larger LLVM IR patterns may be
rather hard to create manually (LLVM IR is a very
low-level language). However, that is not our primary
concern since, in the future, LLVM IR patterns might
get produced automatically.

Because LLVM IR directly describes blocks of
code, CCPs can get encoded in a very straightforward
way. In particular, we represent co and cn of each code
change pattern p by two LLVM functions, prefixed by
diffkemp.old and diffkemp.new, respectively.
The functions (i.e., code fragments) have the following
properties:

• Their inputs are encoded by function parameters.
The corresponding imap mapping is generated
based on the order of the parameters.

• The outputs get specified by calls to the func-
tion @diffkemp.mapping. All arguments
of such calls get mapped in order, creating omap.

For RHEL 8.1
1 define void @diffkemp.old.fragment(i32) {
2 %2 = icmp sle i32 %0, 30
3 call void @diffkemp.mapping(i1 %2)
4 ret void
5 }

For RHEL 8.2
1 define void @diffkemp.new.fragment(i32) {
2 %2 = load i32, i32* @node
3 %3 = icmp sle i32 %0, %2
4 call void @diffkemp.mapping(i1 %3)
5 ret void
6 }

Figure 2. Representation of an LLVM IR pattern extracted from differences reported by DIFFKEMP during the
comparison of two versions of the RHEL kernel. The pattern describes a substitution of an integer macro (older
version) for a global constant @node (newer version).

• The instructions inside each function represent
the corresponding code fragment body and need
to get matched in the compared programs in
order to detect the pattern.

An example of a CCP that has been encoded into
LLVM IR can be seen in Figure 2.

4. Pattern Matching Extension
The extension proposed in this work builds on the no-
tions introduced in Algorithm 1. In particular, it also
uses the LLVM infrastructure to analyse programs by
their CFGs, and it builds its own mapping of variables.
However, compared to the top-level algorithm, the ex-
tension does not aim at finding instructions that are
semantically different. Instead, it searches for instruc-
tions that can be matched to those present in code
fragments of the selected patterns.

Since the instruction matching is performed on
CFGs, the process can be reduced to the subgraph iso-
morphism problem. We note that there are many well-
known algorithms focusing on this problem, such as
Ullmann’s algorithm [9]. However, these approaches
would be rather hard to integrate into the robust LLVM
architecture since they typically aim at general graphs
and not specifically at CFGs. Therefore, we have de-
cided to implement our own matching algorithm. How-
ever, we do use certain heuristics that are mentioned
in previous works (e.g., the pruning of graph nodes
based on the number of neighbours), although these
have been omitted for brevity.

The pattern matching process is shown in Algo-
rithm 2. Since pattern matching should serve as the
final validation step before declaring two functions
as semantically different, the algorithm should be run
after the blocks of code (s1,s′1) and (s2,s′2), compared
on Line 10 of Algorithm 1, get determined as not equal.
In particular, the algorithm needs to be evaluated twice
for each loaded pattern until a match is found or all
patterns are exhausted. In the first evaluation, the al-
gorithm expects to receive the first instruction idp from

Input: Instruction idp from one of the compared programs p
Code fragment c from one of the loaded patterns

Result: r, which is true if matched, false otherwise
I, the set of input match pairs
O, the set of output match pairs

1: I := {}, O := {}
2: initialize varmapc with shared global variables
3: Q := {(ibc , idp)}
4: while Q 6= /0 do
5: take any pair (ic, ip) from Q
6: if ic can be matched to ip then

// Process input and output
7: foreach oc ∈ ops(ic) do
8: if oc ∈ in(c) then
9: op := o ∈ ops(ip) s.t. oc matches o

10: I := I∪{(oc,op)}
11: if ic ∈ out(c) then
12: O := O∪{(ic, ip)}
13: varmapc(ic) := ip

// Queue up the following instruction pair
14: foreach (i′c, i

′
p) ∈ succInstPair(ic, ip) do

15: insert (i′c, i
′
p) into Q

16: if all instructions in c have been matched then
17: return (true, I,O)
18: else
19: return (f alse,{},{})

Algorithm 2: CFG-based pattern matching

the older program version that has been compared as
semantically different and the pattern code fragment c
corresponding to the program version p that contains idp
and (s1,s′1)—which, for the first evaluation, would be
the older version. For (s2,s′2) and its program version,
the second evaluation is analogical.

Each evaluation starts by creating the set I, which
provides information about how to map the input of c
to the operands of instructions from p, and the set O,
which analogically describes how to map the output of
c to the instructions from p. Both I and O are initially
empty. Additionally, a mapping between global vari-
ables that are used within both c and p and that share
the same name is established (Line 2).

Then, the primary pattern matching loop begins.
The loop works similarly to Algorithm 1—it relies on

Input: Currently analysed instructions ic and ip
Result: Tuple of successor instruction pairs

succInstPair (ic, ip):
1: if ic can be matched to ip then

// Use the default successor calculation
2: return succPair(ic, ip)

3: else if ip has a single successor then
// Try to match ic to the next program instruction

4: return (ic,succ(ip))

5: else
6: yield error

Algorithm 3: Calculating successor instructions

the queue Q, operating until Q is emptied. However,
since pattern matching is always done instruction-to-
instruction, instructions are always queued up in the
same sequence as they are present in the underlying
LLVM IR code. Therefore, synchronisation points and
the corresponding mapping function are not necessary.
Initially, only the instruction pair (ibc , i

d
p) is queued up

for matching, where ibc denotes the first instruction in
the main body of c.

At the beginning of each iteration, a single pair of
instructions (ic, ip) gets taken from Q, and the algo-
rithm checks whether ic can be matched to ip. Sim-
ilarly to the top-level algorithm, the matching of in-
dividual instructions is based on simple instruction
comparison.

If the matching succeeds, the algorithm iterates
over all operands oc of ic (instruction operands are re-
trieved using the function ops). For each such operand
that is also the input of c, a pair of operands (oc,op) is
placed into I (Line 10), where op denotes the operand
of ip that has been matched to oc. In other words, a
pair where the first element is an input of c used as an
operand of ic, and the second element is the matching
operand of ip is inserted into I.

Additionally, Lines 11–12 perform a similar anal-
ysis concerning the output of c. However, it is the
instructions themselves (or, more specifically, the vari-
ables created by them) that may get used as part of the
output of c (i.e., not their operands). Therefore, if c
specifies ic as its output, the analysed instruction pair
(ic, ip) itself gets placed into O. After the input and the
output are processed, a variable mapping between ic
and ip is created (Line 13). This mapping is used to
match instructions of c and p within Algorithm 2.

Afterwards, the function succInstPair—a special-
ized variant of succPair—retrieves all instruction pairs
(i′c, i

′
p) that should get queued up after (ic, ip). The

implementation of succInstPair is displayed in Al-
gorithm 3, which operates on the currently analysed
instructions ic and ip. If a match between ic and ip

has been established, succInstPair behaves analogi-
cally to succPair. Otherwise, if ip has a single suc-
cessor, succInstPair indicates that the matching algo-
rithm should try to match ic to the instruction that
immediately follows ip. In other words, the match-
ing algorithm allows to skip instructions of p when
searching for suitable instructions matching the pattern
code fragment. The function succ retrieves the single
successor of the given instruction. If the number of
immediate successors of ip is different, succInstPair
yields an error, failing the pattern matching process,
as it either cannot continue (ip has no successors) or
would branch out (ip has two successors).

Finally, if the queue Q is emptied and all of the
instructions in the main body of c have been matched,
Algorithm 2 returns true and the resulting sets I and O
(Line 17). Otherwise, the algorithm returns false and
two empty sets since the matching failed.

Additionally, if both evaluations of Algorithm 2
are successful for a given pattern, the resulting sets of
input match pairs and output match pairs should be
validated with respect to the input mapping function
imap and the output mapping function omap of the
pattern. However, this validation goes beyond the
scope of this work.

5. Evaluation on the Linux Kernel
In order to verify that our extension is able to eliminate
reported differences associated with CCPs, we per-
formed a series of experiments. As the target of our ex-
periments, we chose Red Hat Enterprise Linux (RHEL)
due to its popularity and emphasis on stability—its
kernel contains a list of functions, a so-called Kernel
Application Binary Interface (KABI), that should ide-
ally remain semantically stable for the lifetime of each
major release of RHEL. During the experiment, we se-
lected three pairs of the most recently released versions
of RHEL. For each pair of versions we performed the
following sequence of actions:

1) The KABIs of both versions were compared by
DIFFKEMP without using patterns.

2) All reported differences were manually exam-
ined for the existence of CCPs. In particular,
in each pair of versions, we—to the best of our
abilities—searched for the five most repetitive
CCPs.

3) All of the identified CCPs were encoded into
LLVM IR.

4) The selected RHEL versions were compared
again, this time with all of the created LLVM IR
patterns being loaded into DIFFKEMP.

Table 1. A comparison of pairs of RHEL versions with and without custom LLVM IR patterns

RHEL versions KABI functions Not equal results Runtime (mm:ss)
without patterns with patterns without patterns with patterns

8.0/8.1 471 85 75 03:40 03:36
8.1/8.2 521 154 139 03:57 03:55
8.2/8.3 628 177 168 05:38 05:28

5) The results of both comparisons were analysed
in terms of execution time and the number of
KABI functions proclaimed semantically differ-
ent (i.e., not equal). Additionally, we manually
verified that only the differences related to the
included LLVM IR patterns were eliminated.

The results of our experiments can be seen in Ta-
ble 1. Each experiment was repeated five times, and the
runtimes were calculated as averages of the time spent
on comparing KABI functions compiled to LLVM IR
on a 6 core, 2.80 GHz Intel Core i5 Coffee Lake ma-
chine with 16 GB of RAM. The compilation time is
not included.

For all pairs of the compared versions of RHEL,
the results show that by applying patterns, the total
number of KABI functions evaluated as not equal
can be lowered, although the amount of eliminated
non-equal results varies considerably. However, these
fluctuations are caused by the differences in the repet-
itiveness of the CCPs found in each pair of versions
and not by any potential issues with the extension.

Additionally, the results reveal one rather interest-
ing fact—after applying patterns, the version compar-
ison was consistently faster by a few seconds. That
may come as a surprise since our extension only intro-
duces a new pattern analysis (i.e., the execution time
should generally rise). However, by lowering the num-
ber of non-equal functions, DIFFKEMP does not need
to locate the corresponding differences in the original
C code nearly as often as before. Since difference
localisation is one of the most demanding operations
performed by DIFFKEMP, the total execution time may
be lower even when analysing patterns.

Based on the findings presented above, we were
able to confirm that our extension can help improve
the results reported by DIFFKEMP (at least for the eval-
uated versions of RHEL) since many false-positives
can be linked to a particular CCP. Moreover, the re-
sults indicate that, generally, the usage of patterns
might have a slightly positive impact on runtime per-
formance. Since the proposed pattern representation is
generic, these findings also suggest that the extension
should be broadly applicable to C projects other than
the kernel of RHEL.

6. Conclusion
In this paper, we have proposed a pattern matching
extension for DIFFKEMP, an analyzer of semantic dif-
ferences between C programs. With the extension,
we have introduced an encoding of patterns of recur-
rent software modifications based on LLVM IR, and
a pattern matching algorithm that utilizes the LLVM
infrastructure in a way similar to DIFFKEMP. Last,
we have evaluated the proposed extension on multi-
ple versions of the RHEL kernel, showing that with
a proper set of patterns, it can eliminate specific non-
equivalence results reported by DIFFKEMP, possibly
further limiting the amount of work required to check
semantic stability between different versions of the
same program.

Future work could improve on these ideas, for ex-
ample, by (a) lowering the complexity of the matching
algorithm, e.g., by adding more heuristics, or (b) sup-
porting more user-friendly (ideally fully automated)
ways of generating LLVM IR patterns. Since our exper-
iments do not show any issues regarding time complex-
ity, it might be most optimal if future enhancements
focus on, e.g., generating patterns directly from the
C source of the compared programs.

Acknowledgements

I would like to thank my supervisor Viktor Malı́k for
his help with understanding DIFFKEMP.

References
[1] Viktor Malı́k and Tomáš Vojnar. Automatically

checking semantic equivalence between versions
of large-scale C projects. Proceedings of the 2021
14th IEEE Conference on Software Testing, Ver-
ification and Validation (ICST), pages 329–339,
2021.

[2] Moritz Kiefer, Vladimir Klebanov, and Mattias
Ulbrich. Relational program reasoning using
compiler ir. Journal of Automated Reasoning,
60(3):337–363, September 2017.

[3] Iulian Neamtiu, Jeffrey S. Foster, and Michael
Hicks. Understanding source code evolution using
abstract syntax tree matching. In Proceedings of

the 2005 International Workshop on Mining Soft-
ware Repositories, volume 30 of MSR ’05, pages
1–5, New York, NY, USA, 5 2005. Association for
Computing Machinery.

[4] Chris Lattner and Vikram Adve. Llvm: A com-
pilation framework for lifelong program analysis
& transformation. In Proceedings of the Interna-
tional Symposium on Code Generation and Opti-
mization: Feedback-Directed and Runtime Opti-
mization, CGO ’04, pages 75–86, Palo Alto, CA,
USA, 3 2004. IEEE Computer Society.

[5] LLVM Project. Llvm language reference
manual. [online], January 2021. Re-
vised 15. 1. 2021 [cit. 2021-03-24]. Available
at: https://releases.llvm.org/11.0.
1/docs/LangRef.html.

[6] Matias Martinez, Laurence Duchien, and Martin
Monperrus. Automatically extracting instances of
code change patterns with ast analysis. In Proceed-
ings of the 2013 IEEE International Conference on
Software Maintenance, ICSM ’13, pages 388–391,
Washington, DC, USA, 9 2013. IEEE Computer
Society.

[7] Martin Fowler. Refactoring: Improving the Design
of Existing Code. Addison-Wesley Professional,
Boston, MA, USA, 2 edition, November 2018.

[8] Kai Pan, Sunghun Kim, and E. James White-
head. Toward an understanding of bug fix patterns.
Empirical Software Engineering, 14(3):286–315,
June 2009.

[9] J. R. Ullmann. An algorithm for subgraph isomor-
phism. Journal of the ACM, 23(1):31–42, January
1976.

https://releases.llvm.org/11.0.1/docs/LangRef.html
https://releases.llvm.org/11.0.1/docs/LangRef.html

	Introduction
	Comparing Programs with DiffKemp
	Code Change Patterns
	Pattern Matching Extension
	Evaluation on the Linux Kernel
	Conclusion
	References

