
http://excel.fit.vutbr.cz

Detection of Boxes in Image
Adam Žitňanský*

Abstract
This work addresses the problem of cuboid detection, more specifically detection of boxes in RGB
images. The main result is the implementation of a system for detecting boxes and their accurate
localization based on the detection of cuboid primitives: corners and edge points.
The system consists of a detector of corner and edge points based on convolutional neural networks.
Such detected primitives are processed into a model of the cuboid. Our system was trained and
evaluated on a custom dataset of packaging boxes, which was created as a part of this work. The
trained model achieved PCK 90 % and recall 86 % for corners resp. 97.5 % and 96 % for edge
points on unseen data.

Keywords: Shape Model Detection — Cuboid Detection — Stacked Hourglass Network

Supplementary Material: Github repository

*xzitna02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Every day billions of euros worth of goods are packed
and transported all over the world. A lot of them
are packed in boxes. This makes boxes detection an
actual topic, which could be helpful in the process
of automation in goods transportation, packaging and
many other sectors where boxes are heavily used.

The aim of this paper is to provide a proposal and
implementation of a system for detecting boxes based
on key point detection. Unlike bounding box detectors,
which directly detect the rectangular area covering the
object, key point detectors allows to more precisely
describe the position of the box by detecting its vertices
and edges. This could be useful in applications where
orientation and dimensions of the box matters.

2. Background

This work is specialised on cardboard boxes, making
it difficult to directly compare it to existing systems. It

can be assumed that there are some proprietary systems
designed for this specific task, but when it comes to
open source and published papers, only more general
solutions are available.

The available systems suitable for this task could
be divided into two categories. The first approach is
using general purpose detectors such as RCNN [1],
YOLO [2] and SSD [3] family bounding-box regres-
sion detectors fine-tuned for detection of boxes. As
stated earlier, the main disadvantage of this approach
is that the axis-aligned bounding box representation is
missing information about orientation of the box and
dimensional information is also limited.

An alternative approach is using a general purpose
cuboid detector like the one presented by Dwibed et
al. [4]. This detector uses a convolutional neural net-
work for direct regression of cuboid corner coordinates,
and thus it fully describes the position of a cuboid sim-
ilarly to what we want to achieve. The main problem
is the absence of source code and a difference in the

http://excel.fit.vutbr.cz
https://github.com/azit99/Excel-FIT2021BoxesDetection
mailto:xzitna02@stud.fit.vutbr.cz

Figure 1. Scheme of the Stacked Hourglass Network.
The network consists of multiple hourglass modules
stacked one after another. Image taken from [6].4 Newell et al.

Fig. 3. An illustration of a single “hourglass” module. Each box in the figure corre-
sponds to a residual module as seen in Figure 4. The number of features is consistent
across the whole hourglass.

Our hourglass module before stacking is closely connected to fully convolu-
tional networks [23] and other designs that process spatial information at mul-
tiple scales for dense prediction [15, 33–41]. Xie et al. [33] give a summary of
typical architectures. Our hourglass module differs from these designs mainly
in its more symmetric distribution of capacity between bottom-up processing
(from high resolutions to low resolutions) and top-down processing (from low
resolutions to high resolutions). For example, fully convolutional networks [23]
and holistically-nested architectures [33] are both heavy in bottom-up process-
ing but light in their top-down processing, which consists only of a (weighted)
merging of predictions across multiple scales. Fully convolutional networks are
also trained in multiple stages.

The hourglass module before stacking is also related to conv-deconv and
encoder-decoder architectures [42–45]. Noh et al. [42] use the conv-deconv ar-
chitecture to do semantic segmentation, Rematas et al. [44] use it to predict re-
flectance maps of objects. Zhao et al. [43] develop a unified framework for super-
vised, unsupervised and semi-supervised learning by adding a reconstruction loss.
Yang et al. [46] employ an encoder-decoder architecture without skip connections
for image generation. Rasmus et al. [47] propose a denoising auto-encoder with
special, “modulated” skip connections for unsupervised/semi-supervised feature
learning. The symmetric topology of these networks is similar, but the nature of
the operations is quite different in that we do not use unpooling or deconv layers.
Instead, we rely on simple nearest neighbor upsampling and skip connections for
top-down processing. Another major difference of our work is that we perform
repeated bottom-up, top-down inference by stacking multiple hourglasses.

3 Network Architecture

3.1 Hourglass Design

The design of the hourglass is motivated by the need to capture information at
every scale. While local evidence is essential for identifying features like faces and

Figure 2. Single Hourglass module, each box
represents single residual module (see Fig. 3). Image
taken from [6].

purpose (and thus in the dataset). Because of this fact
we do not know the performance for cardboard boxes
specifically to make it directly comparable with our
system.

Our system is using heatmap regression for key-
point localisation which is a widely used method for
human pose estimation. In comparison with direct
keypoint regression, this approach allows for multiple
instances of the key point to be detected. This makes it
suitable for bottom-up approach to detection which my
system is using. Another reason for this choice was
that in the field of human pose estimation [5], heatmap
regression has been shown to yield better results than
direct keypoint regression and most state of the art
solutions are using it. Similarly to how human pose de-
tection systems detect different joints, which are then
connected into a model of human torso, our system
detects multiple types of corner and edge points and
use them to obtain the final output – the shape model
of the box.

3. Stacked Hourglass Network
Stacked Hourglass Network [6] is an ConvNet archi-
tecture for regression of key point heatmaps, which
was originally designed for human pose estimation.
As shown in Fig. 1, the network consist of multiple so
called hourglass modules, which are stacked one after
another. Each hourglass module (shown in Fig. 2) acts
as an encoder-decoder block with use of skip connec-
tions to preserve spatial information across different
resolutions. Stacking multiple modules together, so
that the previous module output is the next module’s
input, with the loss computed for each module’s output

256x1x1 256x3x3 512x1x1

+

batchNorm
ReLU
Conv2d

batchNorm
ReLU
Conv2d

batchNorm
ReLU
Conv2d

Figure 3. Residual module architecture. Numbers
above boxes represents parameters of the
convolutional layer (filters × kernel size × strides).

ConvNet
Stacked hourglass

for heatmap
regression

Corners and edges
heatmaps

Keypoint coordinates.
Instances separation,
FInding corners pairs,

Errors correstion

Decoder

Figure 4. Simplified scheme of the detection pipeline.
Blue boxes represent main parts of the system
pipeline. An example of input and output for each part
is also shown.

makes it possible for the network to iteratively reeval-
uate higher-order spatial relationships to improve the
prediction accuracy.

4. Proposed Detection Pipeline
As shown in Fig. 4, the detection pipeline consist of
two main parts: Stacked Hourglass Network for detec-
tion of cuboid primitives by regression of heatmaps
and the second part – decoder. The ConvNet output
consists of multiple channels, each for a different type
of corners and edges (see Fig. 5), where each channel
contains a pixel-wise score of the key point. Another
part is the decoder, which is responsible for extracting
the parametric representation of cuboid primitives, con-
necting them in order to obtain the models of the boxes
and correcting badly detected points based on cuboid
geometry and other criteria where possible. Each of
these processes and used algorithms will be addressed
in more detail in the corresponding sections later in
this article.

5. Dataset
Because there is no publicly available dataset of card-
board boxes, one of the first steps was to collect one.

Figure 5. Different types of corners by the number of
visible faces contributing to the corner and whether
the corner is on the back side (faces back) or front
side of the box (facing front). Two different edge
types are also shown denoted by color (contour edges
– black and internal edges – red).

It consist of images containing single or multiple card-
board boxes of different colors and sizes. When it
comes to the background, both simple single-colour
background and more complicated ones such as pat-
terned carpets are present. Photos were taken indoor
under both natural and artificial lightning. Each im-
age contains either one or more instances of the box.
Images are annotated with corner and edge key-point
coordinates and the corresponding class describing the
type of the key-point. Currently, the dataset contains
536 images with 3102 annotated corners and 4044
edges and I am gradually adding more.

5.1 Corner and Edge Classes
In order to capture additional information ,which could
be useful in finding out the orientation of the box or
correcting errors in predictions, I have divided corners
and edges into multiple classes. Edges are divided into
2 classes – internal and contour and corners have 6
types according to number of visible faces contributing
to the corner (1, 2, or 3) and according to whether the
corner is on the back side or front side of the box.
Practical examples of these cases are shown in Fig. 5.

Training loss

Validation Loss

Figure 6. Graphs are showing the validation and
training loss in epochs of training. We can see that
since around epoch 50, only the training loss is
improving while the validation loss started slowly
diverging indicating over-fitting.

6. Training

The model is implemented using Python with Ten-
sorFlow [7] and the implementation is based on the
Stacked Hourglass Network [6] inspired by a public
implementation1. As an optimizer the Adam opti-
mizer [8] with default TensorFlow 2 parameters was
used and when it comes to loss function, I decided to
use custom weighted euclidean loss (Section 6.2).

For training, the data were randomly split into
training, validation and test splits using 80 : 10 : 10
ratios. The training was done on a single Nvidia GTX
1060 GPU for 65 epochs which took approximately 12
hours. The best validation loss was achieved after 48
epochs (Fig. 6).

6.1 Ground-Truth Data Synthesis
Because the annotation consists of key-point coordi-
nates and class labels and the network outputs per-
pixel key-point score in 8 channels (one per class),
the ground truth annotations must be prepared for the
training. This is done for each image by creating a
128×128×8 tensor of zeros, where 8 represents the

1https://github.com/ethanyanjiali/
deep-vision/tree/master/Hourglass/
tensorflow

https://github.com/ethanyanjiali/deep-vision/tree/master/Hourglass/tensorflow
https://github.com/ethanyanjiali/deep-vision/tree/master/Hourglass/tensorflow
https://github.com/ethanyanjiali/deep-vision/tree/master/Hourglass/tensorflow

Figure 7. Example of ground truth data, showing 3
channels out of 8, one for external edge key-points
and 2 for corners (single face facing back and single
face facing front).

number of classes. Then, a 2D Gaussian is inserted for
each key-point into a corresponding channel in a way
that a peak is at a position of the key-point. The value
of the σ is fixed and was chosen experimentally to be
1 for edges and 1.5 for corners, whereas increasing
it from 1 to 1.5 for corners resulted in slightly better
model accuracy. Increasing σ for edge key-points did
not help, probably because each edge consist of multi-
ple edge points close to each other, covering a bigger
area than in the case of corners.

6.2 Loss Function
The loss function most commonly used for the regres-
sion task is Mean Square Error (MSE) and because
of that, it was also our first choice. However, early
stage experiments shown that the model had a hard
time learning Gaussians, especially for corners, and
the cause of the problem was tracked to the loss func-
tion. Because in this application, the ground truth data
contain only a few non-zero values and a multitude of
zeros, the network had the tendency to learn a trivial
solution predicting all pixels as zeros and getting stuck
in this local minimum of the loss function. To solve
this problem we used a custom loss function using
weighting of the standard MSE according to the ra-
tio of non-zero pixels (denoted as nb) and total pixels
(w×h) in ground truth. Weights are defined for each
pixel in the prediction as follows

wi j =
{ 1− nb

w·h if li, j > 0
nb

w·h otherwise , (1)

where i and j are indices of the corresponding pixel.
Then, pixel-wise squared difference between the pre-
dictions y and labels l is weighted using the weights.
Then, the loss is reduced to scalar by taking the mean
value:

E =
1

w ·h

w

∑
i=1

h

∑
j=1

(yi j− li j)
2 ·wi j. (2)

7. Processing an output of the ConvNet

Figure 8. The image shows connected components in
the predictions of outer edges and the estimation of
the bounding boxes based on that.

7.1 Separating Instances of the Boxes
As the system uses bottom-up detection approach the
network output contains key-points which may form
multiple boxes and need to be assigned to the corre-
sponding objects. In the first step, this is done by
finding bounding boxes based on external edges.

Each box has multiple external edges which are
connected and together form a polygonal area contain-
ing the box as shown in Fig. 8. Firstly, the system
identifies connected components in the thresholded
outer edge predictions. Given that the boxes do not
overlap each other, each component corresponds to
a single box and its bounding box can be obtained.
Then, for every box described by the bounding box,
every key-point outside of this area are masked before
passing it to next processing step towards constructing
the shape model of the box. As stated before, this
method fails in cases where two or more boxes overlap
each other, making their outer edges form a single con-
nected component and this case must be solved later
in the process.

7.2 From the Heatmap to Coordinates of Cor-
ners

The network produces an output consisting of 8 chan-
nels of per-pixel scores for each keypoint class. Based
on that, it is necessary to get the opposite of the process
of preparing the ground truth in Sec. 6.1 – to obtain the
key-point coordinates. The first step will be applying a
threshold (value around 0.2) to the output to suppress
pixels with very small scores, in order to avoid false
detections. After that, all separated non-zero regions
are identified where each will represent a single Gaus-
sian / an image of a corner. Then, x and y coordinates
of the keypoint are obtained by computing the center
of gravity of the region.

Figure 9. Example of correct an incorrect corner pair
(91% and 26% of non-zero edge responses under the
mask.

7.3 Finding Corner Pairs
The initial processing produces sufficient information
to find the shape model – locations of the corner and
edge key-points – but it must be assembled together
and corner pairs corresponding to the edges of the
box must be found. This process is based on the fact
that if 2 corners forms an edge, there must be edge
points on their connection. The algorithm works by
taking corner pairs and finding if there is an edge on
their connection. This is done by taking a rectangular
mask over the connection with an arbitrary chosen
width and computing the ratio of zero to non-zero
responses of the edge-detector under this mask. If this
ratio is bigger than a given threshold, the corners are
considered to form an edge which corresponds to the
edge points under the mask in the edge channel. Then
the edge responses under the mask are set to zero and
the process repeats until all edges are found.

7.4 Correction of Missing Corners
Up till now, the set of corner pairs each describing
and edge of the box – the shape model – has been
found. However, in some cases, some corners might
be missing causing errors in the shape model. What
can be done in some cases is to use a cuboid geometry
to identify and correct these errors to a certain degree.
A common example of this kind of error is when one
corner was not detected, in this case probably because
it was very close to another corner. Because of this,
the shape model is incorrect in a way that one face of
the box is forming a triangle instead of a rectangle as
shown in Fig. 10, left. This can be identified and cor-
rected by estimating location of the missing corners by
completing the triangle into a parallelogram (Fig. 10,
right).

8. Experimental Evaluation

8.1 Keypoint Localization Accuracy
To evaluate keypoint localisation accuracy, 2 metrics
were used.The first metric is widely used in human
pose estimation domain and is called PCK [9], which

Figure 10. Example of estimated position of a
missing corner by completing triangular face of the
box into a parallelogram.

refers to probability of correct keypoint. The second
one is recall of keypoint. Both metrics are evaluated
using a defined relative distance threshold, from now
denoted as α , which determines the maximal distance
to the ground-truth keypoint relative to the detected
part size for it to be considered as correct. In human
pose estimation most often head size is used as refer-
ence. In our case we used diameter of the Gaussian
in ground truth as a reference. Given Pa is the set of
all ground truth keypoints and Pd is set of all detected
keypoints the PCK is calculated as

PCK =
|Pc|
|Pa|
·100%, (3)

where Pc denotes set of correct detections (within dis-
tance α form ground-truth. The recall is then calcu-
lated as

R =
|Pd |
|Pa|
·100%, (4)

where Pd is set of detected ground-truth keypoints
(with corresponding detection in Pc within distance
α).

8.2 Bounding Box Accuracy
Although this system primary output is a shape model
of the box also bounding box evaluation is used mostly
to rate the boxes separation step. The decision whether
the bounding box is correct is based on intersect over
union (IoU), which is a standard way to do it. The pro-
cess consist of calculating the intersect and union of
ground truth and predicted bounding box and compar-
ing the intersect to union ratio with a given threshold
(most often 0.5). If it’s bigger than the threshold, pre-
diction is considered correct, otherwise it’s considered
wrong. The exact results are shown in Table 1.

8.3 Effect of Different Threshold Values
Because the CNN outputs per-pixel score for each
key point class first processing step is tresholding the
output to eliminate false positives. The choice of the

Recall @ 0.5 IoU Acc. @ 0.5 IoU # test imgs

96.82 % 76.25 % 54

Table 1. Bounding box evaluation of the first stage
box separation. This separation is done by finding
connected components in outer the edge heatmap as
described in Sec. 7.1. In this step high recall is a
priority because accuracy could be improved during
next steps.

Figure 11. The graphs show the relationship between
recall and probability of correct keypoint vs. threshold
for both edge points and corners. Increasing the
threshold leads to better accuracy as only those
keypoints where the model was more confident were
accounted for. On the other hand, increasing the
threshold too much has a negative impact on the recall
as also correct key-points are suppressed. The reason
behind low recall for corners when threshold is close
to zero is in the method of extracting coordinates from
predictions (Sec. 7.2). In cases of very low threshold,
multiple corners predictions form a single connected
component. For both evaluations α = 0.5 was used
(Sec. 8.1).

threshold value have significant impact on the perfor-
mance. The correlation between the threshold, PCK
and recall can be seen in Fig. 11.

8.4 Effect of Dataset Size
In supervised learning, the dataset size is known to
have a significant impact on the model performance.
Because our system is trained on a self-made dataset,
which I was gradually labeling during the creation
of this work, this effect was very easy to notice. The
main value of this information is that by looking on the
exact numbers in Table 2, one can assume that there is
still some hidden potential to improve the detector by
enlarging still relatively small dataset.

Table 2. Dataset size vs. corners PCK

train images # corners PCK @ 0.5 Recall @ 0.5

150 838 82 % 79 %
300 1706 87 % 85 %
436 (all) 2492 89 % 86 %

9. Conclusions
This paper presents an application of heatmap keypoint
regression, which is a widely used method in human
pose estimation in a different field – cardboard boxes
detection. I proposed and implemented a detection
system which takes RGB image as an input and outputs
shape models of detected boxes. The system have
achieved PCK 90% and recall 86% for corners and
97.5% and 96%, respectively for edge points and it
can be used as a base for box detection implementation
for automated systems in fields like transportation and
packaging.

Based on observations of the dataset size and accu-
racy relationship, which is described in Section 8.4, the
accuracy of the system could be further improved by
using more complex augmentation methods, training
on synthetic or simply larger datasets. Another idea
for further work is to experiment with top-down ap-
proach detector by combining keypoint detection with
standard region based detector for instance separation.

Acknowledgements
I would like to thank my supervisor prof. Ing. Adam
Herout, Ph.D. for his valuable advice and support dur-
ing the creation of this work.

References
[1] Ross B. Girshick, Jeff Donahue, Trevor Darrell,

and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[2] Joseph Redmon, Santosh Kumar Divvala, Ross B.
Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015.

[3] Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott E. Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[4] Debidatta Dwibedi, Tomasz Malisiewicz, Vijay
Badrinarayanan, and Andrew Rabinovich. Deep
cuboid detection: Beyond 2D bounding boxes.
CoRR, abs/1611.10010, 2016.

[5] Mykhaylo Andriluka, Leonid Pishchulin, Peter
Gehler, and Bernt Schiele. 2D human pose estima-
tion: New benchmark and state of the art analysis.
In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2014.

[6] Alejandro Newell, Kaiyu Yang, and Jia Deng.
Stacked Hourglass Networks for human pose esti-
mation. CoRR, abs/1603.06937, 2016.

[7] Paul Barham Martı́n Abadi, Ashish Agarwal et al.
TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available
from tensorflow.org.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization, 2017.

[9] Tewodros Legesse Munea, Yalew Zelalem Jem-
bre, and Halefom Tekle Weldegebriel et al. The
progress of human pose estimation: A survey and
taxonomy of models applied in 2d human pose es-
timation. IEEE Access, 8:133330–133348, 2020.

	Introduction
	Background
	Stacked Hourglass Network
	Proposed Detection Pipeline
	Dataset
	Training
	Processing an output of the ConvNet
	Experimental Evaluation
	Conclusions
	References

