
http://excel.fit.vutbr.cz

Detection of Yoga Poses in Image and Video
Jiřı́ Kutálek

Abstract
In this paper, the concept of a smartphone app detecting Yoga poses and displaying several frames
to a user is presented. The goal of this project is proving that even a simple Convolutional Neural
Network (CNN) model can be trained to recognize and classify video frames from a Yoga session. I
created an application in which the videos are manually annotated. The data, consisting of frames
captured from 162 collected videos based on the annotations, is then passed to train a CNN model.
The Dataset consists of 22000 images of 22 different Yoga poses. The frames are captured using
the OpenCV library, the training process is handled by the TensorFlow platform and the Keras API,
and the results are visualized in the TensorBoard toolkit. The Model’s multi-class classification
accuracy reaches 91% when the binary cross-entropy loss function and the sigmoid activation
function are used. Despite the experimental results are promising, the main contributions are the
dataset forming tools and the Dataset itself, which both helped to confirm the proof-of-concept.

Keywords: Yoga Poses Detection — Video Annotation Application — Training CNN for Yoga Poses
Recognition

Supplementary Material: Demonstration Video
*xkutal09@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Over the last few years, Yoga popularity is rapidly
increasing. Due to this, there are plenty of instruc-
tional videos and Yoga teaching smartphone applica-
tions available on the internet. They usually provide a
decent workout guide including useful information for
practicing Yoga on one’s own. However, they hardly
ever provide a visual workout feedback. This can be
obtained either by exercising in front of the mirror, or
by recording the session on camera and exploring the
video. Both might be quite inconvenient.

This paper introduces an idea of a smartphone app
providing the workout feedback easily, specifically by
choosing and showing just a few frames, representing
the performed Yoga poses, from the recorded work-
out session. Thanks to that, a user does not need to

manually seek frames in the video. The main problem
obviously is, how does the application know, which
of the many frames in the video to choose and display
to the user? I design a Convolutional Neural Network
(CNN) classifying the Yoga images into categories
based on the corresponding Yoga poses.

In 2016, Convolutional Pose Machines (CPMs) [1]
presented an innovative systematic design for how con-
volutional networks can be incorporated into the pose
machine framework [2] for learning image features
and image-dependent spatial models for the task of
pose estimation. CPM proposed a sequential architec-
ture composed of CNNs that directly operate on belief
maps from previous stages, producing increasingly re-
fined estimates for part locations, without the need for
explicit graphical model-style inference.

http://excel.fit.vutbr.cz
https://youtu.be/zMps4uoVxb8
mailto:xkutal09@stud.fit.vutbr.cz

An approach to accurately recognize various Yoga
poses using deep learning algorithms [3] has been
presented in 2019. A hybrid deep learning model is
proposed using CNN and LSTM [4] for Yoga recogni-
tion on real-time videos, where CNN layer is used to
extract features from keypoints of each frame obtained
from OpenPose [5] and is followed by LSTM to give
temporal predictions.

Unfortunately, these methods are not suitable for
a smartphone app as the architecture is too heavy for
the processing units currently in use. Besides that,
another paper [6] proposes a system monitoring body
parts movement and accuracy of different Yoga poses,
which aids the user to practice Yoga. However, it
uses Microsoft Kinect for human body parts real time
detection, an expensive device most people do not have
at hand.

This paper proposes a more practical solution. All
the user has to do is to record their workout session on
a camera and then run the application. After picking
the input video, several well performed Yoga images
are selected and displayed on the screen. The great
benefit is that reviewing a dozen photos is much more
accessible than watching and rewinding a whole ses-
sion video. Furthermore, a person is able to either
evaluate images by their eyes, or save them to gallery
and consult with their Yoga instructor later, which may
both lead to the exercise progression.

Up till now, I collected many Yoga videos serving
as data resources and created a custom annotation ap-
plication enabling to form the Dataset from them. For
this purpose, I wrote a script capturing video frames
by the annotations, which forms the Dataset, currently
containing tens of thousands of images. Apart form
that, I proposed a CNN model and performed many
experiments in order to tune it as well as possible.

2. Background

Convolutional Neural Networks are used for solving
the image classification problems because of their high
accuracy. The principles behind them, including an
insight into their architecture, are described in this
Section. On top of that, the tools utilized in this work
are presented at the end.

2.1 Brief Introduction to the CNNs
Using an ordinary Artificial Neural Network (ANN),
image classification problems become difficult because
2D images need to be converted to one-dimensional
vectors. This increases the number of trainable pa-
rameters rapidly, which takes storage and processing
capability. Convolutional Neural Network, a class of

neural networks, convolves the learned features with
input data, and uses 2D convolutional layers, making
this architecture well suited to processing 2D data,
such as images.

A CNN typically consists of several convolutional
and pooling layers dealing with feature extraction fol-
lowed by fully connected layers managing the classifi-
cation itself (Figure 1). An activation function plays an
important role in feature extraction allowing to classify
even non-linearly separable data. The complexity of
the features detected typically grows with the layer
depth.

INPUT
CONVOLUTIONAL

LAYER 1
POOLING
LAYER 1

CONVOLUTIONAL
LAYER 2

POOLING
LAYER 2

FULLY-CONNECTED
LAYER 1

4 feature maps 4 pooled
feature maps 6 feature maps

6 pooled
feature maps OUTPUT

A

B

+ ReLU + ReLU

Figure 1. Schematic of a Convolutional Neural
Network. The feature maps typically gradually
decrease their spatial resolution, while increasing the
number of channels. Ultimately, the CNN extracts
more and more abstract information and produces a
decision with typically very small number of outputs.

Convolution is performed on an input image using
a filter or a kernel (small matrix of values), sliding
over the image, multiplying its values with the im-
age pixel values and adding them up. The output val-
ues are passed through an activation function, adding
non-linearity to a network. A commonly used ReLU
function zeros the negative values and keeps the posi-
tive ones. The convolutional layer outputs are usually
referred to as feature maps or channels. Pooling (sub-
sampling) layer then decreases the feature map size
to reduce the number of computational parameters in
the network. For instance, max pooling, a frequently
used type of pooling, takes the maximum value in a
specified window. After a few combinations of convo-
lutional and pooling layers, the final output is flattened
and fed into a fully connected layer (a regular ANN)
for classification purposes.

In 2012, the AlexNet CNN architecture [7] (Fig. 2)
dominated the ImageNet ILSVRC challenge [8] and
started a wave of interest in CNNs as one of the first
models stacking convolutional layers directly on top
of each other without inserting pooling layers between
them. Moreover, it implements the Dropout regular-
ization method [9] to reduce overfitting in the fully
connected layers.

CNNs were starting to get deeper, and the simplest
way of improving the deep networks performance is by
increasing their size. Visual Geometry Group (VGG)
presented the VGG-16 [10], consisting of 16 weighted
layers and 136M parameters in total.

CONV2D

MAX POOL

96 11x11

3x3

CONV2D 256 5x5

3x3

CONV2D 384 3x3 CONV2D 256 3x3

CONV2D 384 3x3

3x3

DROPOUT

FLATTEN

50%FC 4096

4096

1000

INPUT

OUTPUT

ReLU

ReLU

ReLU

ReLU

ReLU

Filters Filter size Pool size

Units

Softmax

227x227

DROPOUT 50%

FC

FC

MAX POOL

MAX POOL

Figure 2. Schematic of the AlexNet Convolutional
Neural Network architecture. The model contains five
convolutional layers, whose output is passed through
the ReLU activation function, combined with three
max pooling layers together taking care of feature
extraction. During this process, the image resolution
is reduced from 227×227px to 6×6px. Then the
output is flattened and passed to the second part of the
network managing the classification by three fully
connected layers, coupled with two Dropout layers
randomly dropping 50% of outputs each. The softmax
activation function is used at the output layer to make
predictions. The network operates with more than a
56M trainable parameters.

In 2015, Microsoft Research proposed another
successful model, an extremely deep network called
ResNet [11] composed of 152 layers, known for the
introduction of residual blocks.

I made few experiments with the AlexNet and
VGG-16 CNN models. The results are presented in
Section 5.

2.2 Work Tools
I capture video screenshots through the OpenCV li-
brary [12, 13] and form a dataset from them.

The training process itself is in a full control of
the TensorFlow platform [14, 15] (v2.3 and higher)
and its associated deep learning API Keras [16]. I use
Keras for dataset loading and configuration, as well as
the CNN model definition and its subsequent training.
Thanks to the TensorFlow’s tf.summary module
I am able to write summary data and visualize them
through the TensorBoard toolkit1 (Figure 3).

All of the scripts are written in the Python2 pro-
gramming language.

3. Forming the Dataset
With the help of my supervisor, I collected 162 Yoga
videos containing three different Yoga sequences and
build a dataset from them. Unfortunately, videos cur-
rently come only from two people, which is a too small

1https://github.com/tensorflow/
tensorboard

2https://docs.python.org/3/reference/

70%

80%

90%

100%

0 20 40 60 80 100 120 140

A
C
C
U
R
A
C
Y

EPOCHS

Figure 3. Example of the training process
visualization in TensorBoard. This diagram shows
eight validation accuracy curves, each representing a
single model training process. The x-axis represents
the training epochs, while the y-axis shows the
accuracy. The TensorBoard’s Scalars Dashboard
allows a user to visualize many different accuracy or
loss curves at once, filter out the unwanted ones,
compare the wanted ones and find out additional
information about each epoch, such as its duration or
the actual accuracy value. Moreover, the curves are
updated step by step during the training process,
making it possible to monitor the training process and
react to changes.

sample size to form a truly comprehensive dataset. But
for now the goal is the proof-of-concept (verifying
the potential of the idea) and that purpose the Dataset
serves well.

3.1 Annotating Videos using a Custom Anno-
tation Application

The Dataset for the training itself consists of images,
not videos. Therefore, I created an annotation tool
(Fig. 4), where the videos are manually annotated. The
annotations define exact frames, at which the training
and validation frames are being taken.

In the video which the application takes on the
input, a person performs one of the predefined Yoga
sequences, each of them containing several Yoga poses
(Figure 5). And each of the poses exercised in the
particular sequence is represented by an annotation.
This means that when a pose is done three times during
its corresponding sequence, there is a single annotation
for each of them.

The annotations (Figure 6) consist of a pose iden-
tifier and five numerical values representing the video
frames defining the time a person is performing the
corresponding Yoga pose. In the app (Figure 4), the
frames are marked by the buttons in the bottom left
corner and the annotations are then displayed in the
video timeline.

https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://docs.python.org/3/reference/

Figure 4. Screenshot of the annotation application
workplace. In the top right corner there is a list of
annotations belonging to the currently processed
video. The annotations are created by the yellow
buttons at the bottom left and visualized by graphs in
the timeline. In addition, the application supports
video rewinding and speed changes and provides
several other features such as video seeking and
timeline zooming.

Once done and the progression is saved, a .json
file, named by the processed video file, is created.
There is a single file for each annotated video storing
all of the annotations related. The .json files storing
the annotations are passed to a script randomly taking
screenshots at the specified frames using the OpenCV
library, which forms the Dataset.

Figure 5. Examples of Yoga poses representing the
classes into which the data is classified.

3.2 Data Shape and Volume
Despite the 162 videos come from only two subjects
and the fact that each subject always exercises in a
same room, each of the videos is unique. Most of the
Yoga sessions are recorded by multiple cameras (up
to four) positioned in various angles. Furthermore,
almost for every session the subjects wear clothes of
different colors and usually change the part of a room
where practicing, so that the video background is al-
tered. The light conditions for some sessions vary too,
but care should be taken to ensure enough light and not
much shadow in a footage. Thanks to all these aspects

High Plank
BEFORE

START

BEST

END

AFTER

100
150
180
200
300

High Plank

Figure 6. Example of an annotation referring to the
High Plank Yoga pose. The graph on the right
portrays its corresponding representation in the
timeline. All of the frames between START and END
symbolize the time a person is performing the pose,
and therefore, the screenshots can be taken during this
period. The frame intervals between BEFORE and
START and between END and AFTER, as well as the
BEST frame in each annotation, are not utilized for
now, but could be useful in a future work.

the data is quite varied, although the number of people
producing the Yoga videos is very low.

The Yoga videos are split into two directories sepa-
rating the training and the validation data by 3 : 1. This
is done at this early level, because of the potential to
manually choose the source of pictures used for model
training (I am able to build both easy and hard datasets).
The frame extraction script walks through the directory
containing the video files iteratively, meaning that all
of the classes hold the same amount of data.

Currently, I work with the Dataset (Figure 7) con-
taining 44000 images (2000 per class/Yoga pose), but
thanks to the frame range defined in the annotations, I
am able to create a dataset carrying hundreds of thou-
sands of pictures. The frames are captured with the
fixed resolution 256×256px (squared) and resized at
a later stage, when the Dataset is being configured for
performance, into an appropriate shape.

However, not all of the 44000 images are used
further in the training process. The frame extraction
script serves only as a giant image collection provider
and this collection is updated only when new videos
are being integrated into the dataset forming process,
which is done occasionally. Moreover, I often alter the
Dataset size and structure and it takes more than an
hour to walk through the videos and capture frames.

Therefore, I truly work with 22000 images ran-
domly chosen from the 44000 before an every set of
experiments. As mentioned above, the training and
validation data is split by 3 : 1, which means that the
training dataset contains 16500 images (750 per pose)
and the validation dataset consists of 5500 images
(250 per pose).

Figure 7. Samples from the Dataset. The videos are
square (or trimmed to square if captured otherwise).
The subject should be visible during the whole
training. A defined set of Yoga sequences was
performed when shooting the videos.

4. Training CNN for Yoga Poses Recog-
nition

A complete workflow of how the Dataset is loaded and
configured, as well as how the actual CNN training
process looks like, is described in this Section. As
the training process is in a full control of the Tensor-
Flow platform and the Keras API, a few examples of
functions and utilities used are covered too.

4.1 Dataset Loading, Configuration and Arran-
gement

In preparation for model training, the images are loaded
off disk using the image dataset from directory util-
ity, provided by the tf.keras.preprocessing
module. The Dataset is already divided into training
data and validation data, as the videos come from two
different directories. The frame resolution remains at
the 256× 256px and the image batch size is usually
set to 32.

After loading, the data is normalized to unify the
data distribution of the pixels (the input in the [0,255]
range is rescaled to fit the [0,1] range) and then resized,
mostly to 96×96px, which is the image resolution I
mainly operate with.

To fight overfitting in the training process and in-
crease the diversity of the Dataset, I apply various aug-
mentation techniques to the images (Figure 8). These
transformations cover picture rotating, horizontal flip-
ping and several image color enhancements, namely
contrast, brightness, saturation and hue changes. The
central region of some pictures is cropped, too. Most
of the techniques are realized using the tf.image
module. For frame rotations I utilize the tfa.image
one belonging to the TensorFlow Addons repository.

All of these techniques are combined together and
applied to each image batch of the training data before

Figure 8. Augmented image samples. Each of the
pictures is taken from a different batch, as all the
transformations applied are same for the images in a
single batch. The augmentation techniques include
color changes, rotations, flipping, and a central crop.

the first training epoch starts (for each epoch there are
different transformations applied to the training data).
Lastly, the prefetch transformation creates an overlap
between the data being pre-processed and the model
execution while training, allowing the later processed
data to be prepared, while some other data is being
processed.

During the first training epoch, the loaded pictures
are kept in memory (cached) for the subsequent it-
erations to use them, in order to prevent the Dataset
becoming a bottleneck during the training process.

4.2 CNN Model Training Process
Before the actual training process starts, it is neces-
sary to build the CNN Model. I do this through the
tf.keras.Sequential class grouping a linear
stack of layers into a single model. The models I ex-
periment with consist of six to ten convolutional layers
combined with four or five max pooling layers, fol-
lowed by no more than three fully connected layers
(see Figure 9 for an example). I try to design the ar-
chitectures as simple as possible (although the highest
priority is the model efficiency of course). As for the
activation functions, I majorly use the Rectified Linear
Unit (ReLU) at the hidden layers and switch between
softmax and sigmoid at the output layer.

For model evaluation I use the categorical accu-
racy metric calculating how often predictions match
one-hot labels, as the data is represented as one-hot
Tensors (in one-hot encoding, each class is represented
by a binary feature – either 1 or 0). Since the labels are
provided in a one-hot representation, I use the categor-
ical cross-entropy loss function to compute the cross-
entropy loss between labels and predictions. However,
sometimes I replace it with the binary cross-entropy

CONV2D

MAX POOL

32 3x3

2x2

CONV2D 64 3x3

2x2

CONV2D 128 3x3

CONV2D 256 3x3

2x2

CONV2D 256 3x3

2x2 DROPOUT

FLATTEN

20%

DENSE 512

DENSE 128

DENSE 22

INPUT

OUTPUT

ReLU

ReLU

ReLU

ReLU

ReLU

Kernels Kernel size Pool size

Units

Sigmoid

224x224

MAX POOL

MAX POOL

MAX POOL

CONV2D 128 3x3 ReLU

CONV2D 128 3x3

2x2

ReLU

MAX POOL

Figure 9. Schematic presenting one of the most
successful CNN models I found during the
experiments. It consists of eight convolutional layers,
whose output is passed through the ReLU activation
function, managing the feature extraction together
with five max pooling layers, which consecutively
reduce the image dimensionality from 224×224px to
7×7px. Before the final output is flattened and fed to
the first fully connected layer, 20% of the outputs are
dropped (chosen randomly), in order to reduce
overfitting. The Model contains three fully connected
layers (called Dense in the Keras Sequential API).
The sigmoid activation function is used at the output
layer to make predictions. This Model operates with
7,7M trainable parameters. Its accuracy is shown in
Fig. 14.

loss function combined with the sigmoid activation
function at the Model output layer (see Section 5 for
more details). On top of that, I use Adam [17] as an
optimizer.

The training process happens in epochs. The batches
of training data are fed to the network one-by-one, fol-
lowed by the validation data batches every epoch. For
each batch, its samples are used to estimate the error
gradient, which is subsequently used to update the
model weights. At the end of each epoch, the learning
rate, specifying how much are the model weights being
updated, is recalculated.

Moreover, I use to visualize images from preferred
batches, in order to both explore the augmented train-
ing data and see the correct and wrong label predictions
on validation data. During each epoch, right after the
Model weights are updated for the last time, scalar
Tensor values (accuracy and loss) are written to disk
using the tf.summary file writer. By doing so, I am
able to visualize these metrics through TensorBoard
and track the model training effectively.

5. Experimental Results

I experimented with CNN model architectures (includ-
ing the AlexNet and VGG-16), data augmentation
techniques and various training parameters such as
learning rate, loss functions or setting the input image

dimensions. Some of them led to interesting findings
or helped to reach great results. In this Section, the
experiments made, as well as the results achieved are
presented.

5.1 Findings, Advancements and Model Tun-
ing

Activation Functions and Loss Functions Perhaps
the most important finding I have made is related to
activation and loss functions. Since I do the multi-
class classification, I used to work with the softmax
activation function, normalizing the network output
to a probability distribution over predicted classes, to-
gether with the categorical cross-entropy loss function.
But, after a consultation with my supervisor, I found
out that a combination of the sigmoid activation func-
tion and the binary cross-entropy loss function is more
efficient.

This finding was confirmed across many CNN
models, where all the networks implementing the sig-
moid function had about 4% higher validation accu-
racy, than the models using the softmax. From that
moment, most of the models tested use the sigmoid ac-
tivation function at the output layer instead of softmax.

Model Architectures I experimented with more than
a hundred CNN models so far. Firstly, I tested the part
of a CNN model dealing with feature extraction (con-
volutional and max pooling layers). Working with the
96×96px image resolution, I found out that the Model
should contain at least four consecutive combinations
of convolutional and pooling layers to make decent
predictions. Besides, I ascertained that a too low num-
ber of convolutional filters leads to worse validation
accuracy and more unstable results (an example of this
kind of model is shown in Fig. 10).

CONV2D

MAX POOL

8 3x3

2x2

CONV2D 16 3x3

2x2

CONV2D 32 3x3

CONV2D 64 3x3

2x2

CONV2D 32 3x3

CONV2D 64 3x3

2x2 DROPOUT

FLATTEN

20%

DENSE 64

DENSE 22

INPUT

OUTPUT

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Kernels Kernel size Pool size

Units

Softmax

96x96

MAX POOL

MAX POOL

MAX POOL

Figure 10. Schematic of a lightweight CNN model
architecture. The low number of convolutional
filters/kernels leads to very low number of trainable
parameters in the network (only 200000). However,
this fact causes about 10% worse model accuracy
compared to a similar model with more filters, and
more unstable results, as the validation accuracy curve
very fluctuates each training epoch. Therefore, using
such a low number of kernels may be inappropriate.

After that, I experimented with the number of fully
connected layers and their units. Unfortunately, the
outcomes were all quite similar to each other (the best
ones did not stand out much), meaning that this testing
brought out hardly thrilling results. I only found out
that two or three dense layers might be a reasonable
number.

Apart from all those relatively basic models, AlexNet
(Fig. 2) and VGG-16, which far outweigh the oth-
ers by complexity and number of training parameters,
were tested too. The VGG-16 model structure turned
out to be probably too complicated for my unvaried
data, as the network was not able to learn anything.
The AlexNet, having about 80M parameters less than
VGG-16, showed itself in a better light as the vali-
dation accuracy reaches up to 80% (see Figure 11).
Nevertheless, these results are still worse than the best
ones achieved by the simpler models (as seen in Fig-
ure 14).

TRAINING ACCURACY VALIDATION ACCURACY

CATEGORICAL
CROSSENTROPY

+
SOFTMAX

CATEGORICAL
CROSSENTROPY

+
SOFTMAX

BINARY
CROSSENTROPY

+
SIGMOID

BINARY
CROSSENTROPY

+
SIGMOID

Figure 11. Visualization of the experiments made
with the AlexNet CNN model. Each diagram groups
results of a few measurements together. The
horizontal axis represents training epochs, while the
vertical axis represents training or validation accuracy.
The AlexNet originally uses the softmax activation
function at the output layer, but the sigmoid
(combined with an appropriate cross-entropy loss
function) was tested out of curiosity too. The model
using the sigmoid variant reaches slightly better
results. It is clear to see that the network is trained
perfectly in just about 50 epochs, but the validation
accuracy does not exceed 80%. Apparently, it does
not generalize well at all.

Data Augmentation Techniques Data augmenta-
tion proved itself to be very useful in fighting the model
overfitting. Due to this, I widely experimented with
all the individual transformation techniques (rotations,
color changes and cropping), in order to set their pa-
rameters as precisely as possible. Firstly, I tested each

of the techniques separately, and then I combined them
together. For instance, I found out that the best results
are achieved when rotating the image by 10◦ to 20◦

degrees in both directions, or when the brightness of a
picture is changed just minimally. Another experimen-
tal results (presented in Fig. 12) showed how much
should be the image cropped in the central region.

Figure 12. A heatmap visualizing the results of an
experiment with the central crop data augmentation
technique. An image is cropped in its central region
with a given probability. The individual heatmap
values represent the average validation accuracy in the
last 40 epochs of the model. The values on the vertical
axis represent the chance of cropping all images in a
batch, while the horizontal axis represents the values
of how much are the images being cropped (1.0 stands
for no crop, while 0.5 means that the outer half of an
image in cropped out). The heatmap shows that
leaving about 70% of the original image (cropping out
30% of the outer region) brings out the best results.
Besides, it is clear to see that the crop probability does
not affect the results much.

Yoga Poses Similarity The latest experiments done
so far analyze which of the Yoga poses sees the net-
work as similar to each other. A custom confusion
matrix, showing only the wrong decision for each pose,
was designed for this purpose (see it in Figure 13). The
results show that all the three “Warrior III...” Yoga
poses are often misclassified by each other. A similar
trend can be observed by the “Thunderbolt...” poses.
Both of the High Plank and Low Cobra are quite of-
ten classified as the Four Limbed Staff pose. Besides,
the two “Warrior I...” Yoga poses seem interesting as
they are quite often classified as each other, but hardly
ever classified as the other poses.

Figure 13. A confusion matrix, but is shows only the
wrong decisions for each Yoga pose. Each value
represents the number of how many times has a pose
been misclassified by another one (the horizontal axis
shows the predicted labels and the vertical axis shows
the true labels). The aim of this visualization is only
to show the possible similarity of the poses, not to
measure how well are the poses being detected by a
model. The results show that all the three “Warrior
III...” poses are quite similar to each other and the
same holds for the “Thunderbold...” ones. High
Plank and Low Cobra are often classified as Four
Limbed Staff, while the two “Warrior I...” poses
are similar to each other, but unlike the others.

Learning Rate I experimented with the learning rate
too. I originally used constant values for every epoch
(approximately in the range of 2×10−4 to 7×10−3),
but then I started operating with several partly custom-
built algorithms updating the learning rate dynamically
at the end of each epoch. Nearly all of these brought
better results compared to the measurements made
with the static values. The learning rate is one of the
most important model hyperparameters, but finding its
optimal values is a difficult task.

5.2 Achieved Results
For most of the experiments, the frames were resized
to the 96× 96px, which is expected as a good com-
promise providing a decent image resolution and a
reasonable file size at the same time, but the best re-
sults so far were achieved using the dimensions of
224×224px.

The CNN Model, consisting of eight convolutional
and five max pooling layers in total, together with

three dense layers (Fig. 9), reached the 100% training
accuracy in a few tens of epochs, and demonstrated its
capability to detect Yoga poses by achieving the 91%
validation accuracy (as shown in Figure 14).

However, the 91% were achieved using a “hard”
dataset, into which videos were selected precisely in
order to make the model predictions as hard as possi-
ble. When testing the Model on an “easy” validation
dataset, into which videos were chosen to be similar
to the videos chosen to form the training dataset, the
validation accuracy reached 95%.

But, it is fair to say that the Model is able to detect
Yoga poses with the 91% accuracy when trained on
this particular Dataset, because the results reached
with the “easy” datasets may probably not be valid.

70%

80%

90%

100%

0 20 40 60 80 100 120 140

224×224
A
C
C
U
R
A
C
Y

EPOCHS

70%

80%

90%

100%

0 20 40 60 80 100 120 140

96×96
A
C
C
U
R
A
C
Y

EPOCHS

Figure 14. The training and validation accuracy of the
CNN Model (9) visualized through the TensorBoard
Scalar graphs. The graph on the right shows accuracy
for a slightly modified version of the Model, where
the input image dimensions are set to 96×96px,
instead of the original 224×224px (graph on the left).
Each of the graphs visualizes five independent
measurements and for each of them, both the training
and the validation accuracy are presented. Epoch
numbers are showed on the horizontal axis and the
accuracy is showed on the vertical one. The training
accuracy, showed by the “smoother” curves, reaches
the 100% value in both of the cases, meaning that the
CNN Model learned perfectly on the training data.
The validation accuracy presented reaches 91% in the
last 40 epochs for the original Model and 85% for the
lighter modification working with the 96×96px input
images. This Model was chosen as the best one
among many others tested, because of the highest
average validation accuracy during the last 40 epochs.

The sigmoid activation function coupled with the
binary cross-entropy loss function, both of them in-
volved in this measurement, confirm the fact of being
such a powerful combination, at least for working with
my Dataset.

6. Conclusions
The goal of this project was collecting Yoga videos
and forming a dataset from them, as well as making
decent predictions through a CNN on this data (Yoga
pose detection).

In this paper, the process of forming the Dataset,
including a custom video annotation tool or a frame
capturing script, was described in detail, as well as
the shape of the Dataset itself. Besides, the CNN
model building and training process along with the
techniques used was analyzed, step by step. In the
end, the experiments together with the actual results
achieved by an actual CNN model were demonstrated.

I experimented with more than a hundred CNN
models, of which the most successful one (presented
in Figure 9) detects Yoga poses with the 90% accuracy
(displayed in Figure 14). It implements the sigmoid
activation function at the output layer instead of the
softmax usually used for the multi-class classification.

However, the main contribution of this project are
the tools for a dataset forming process and the Dataset
itself. I collected 162 Yoga videos, designed an appli-
cation tool providing an efficient way of creating video
annotations and wrote a script capturing video frames
along these annotations. The Dataset that I built con-
tains 44000 Yoga images of 22 different Yoga poses.

I believe that the annotation application is a practi-
cal and functional tool that anyone can use for video
annotating if it fits their purposes. And in addition to
that, some of the findings made by experimenting with
CNN models might be also useful for somebody.

As for this project, the objective was attained. In
the future I am planning to continue increasing the
Dataset size as well as improving its diversity. Along
with that, I aim to experiment with many more CNN
models and various model parameters. Of course, any-
one can use the results achieved and try to move them
a bit further. The long-term goal remains designing
a CNN model capable of detecting Yoga poses confi-
dently even on a more complex dataset. The results
already achieved show that it might be possible. Once
done, the last step might be a smartphone app develop-
ment and the CNN model implementation.

Acknowledgements
I would like to thank my supervisor Prof. Ing. Adam
Herout, Ph.D., for guidance, motivation, the project
idea itself and, finally, needful contributions to the
Dataset forming process.

Computational resources were supplied by the project
“e-Infrastruktura CZ” (e-INFRA LM2018140) provided
within the program Projects of Large Research, Devel-
opment and Innovations Infrastructures.

References
[1] Shih-En Wei, Varun Ramakrishna, Takeo

Kanade, and Yaser Sheikh. Convolutional

pose machines. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 4724–4732. IEEE Computer Soci-
ety, 2016.

[2] Varun Ramakrishna, Daniel Munoz, Martial
Hebert, James Andrew Bagnell, and Yaser
Sheikh. Pose machines: Articulated pose es-
timation via inference machines. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014,
pages 33–47, Cham, 2014. Springer International
Publishing.

[3] Santosh Yadav, Amitojdeep Singh, Ab-
hishek Gupta, and Jagdish Raheja. Real-
time yoga recognition using deep learn-
ing. Neural Computing and Applications,
31:https://link.springer.com/article/10.1007/s00521–
019, 12 2019.

[4] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[5] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and
Y. Sheikh. Openpose: Realtime multi-person 2d
pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 43(1):172–186, 2021.

[6] M. U. Islam, H. Mahmud, F. B. Ashraf, I. Hos-
sain, and M. K. Hasan. Yoga posture recognition
by detecting human joint points in real time using
microsoft kinect. In 2017 IEEE Region 10 Hu-
manitarian Technology Conference (R10-HTC),
pages 668–673, 2017.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Sys-
tems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Com-
puter Vision (IJCV), 115(3):211–252, 2015.

[9] Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural

networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, January 2014.

[10] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778, 2016.

[12] G. Bradski. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools, 2000.

[13] Adrian Bradski. Learning OpenCV, [Computer
Vision with OpenCV Library ; software that sees].
O‘Reilly Media, 1. ed. edition, 2008. Gary Brad-
ski and Adrian Kaehler.

[14] Martı́n Abadi et al. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[15] Bharath Ramsundar and Reza Bosagh Zadeh.
TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning. O’Reilly
Media, Inc., 1st edition, 2018.

[16] François Chollet et al. Keras. https://
keras.io, 2015.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

https://keras.io
https://keras.io

	Introduction
	Background
	Forming the Dataset
	Training CNN for Yoga Poses Recognition
	Experimental Results
	Conclusions
	References

