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Abstract
Biometric-based authentication systems are getting broadly adopted in many areas. However, these
systems do not allow participating users to influence the way their data are used. Furthermore,
the data may leak and can be misused without the users’ knowledge. In this paper, we propose
a new authentication method that preserves the privacy of individuals and is based on a generative
adversarial network (GAN). Concretely, we suggest using the GAN for translating images of faces
to a visually private domain (e.g., flowers or shoes). Classifiers, which are used for authentication
purposes, are then trained on the images from the visually private domain. Based on our experi-
ments, the method is robust against attacks and still provides meaningful utility.
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1. Introduction

Biometric-based authentication systems are being used
by millions of people daily. Every modern smartphone
is equipped with facial recognition hardware. However,
information about faces may end up in an unreliable
place and users cannot influence that.

This opens a question of trust because the privacy
of an individual should be always protected unless
there is a public interest in revealing it. Most of the
time, it is sufficient to lean towards obfuscating images
by blurring, masking, applying pixel-level modifica-
tions [1], or introducing additional noise [2, 3]. But,

these techniques do not provide much utility.
Recently, a few researchers started to advocate

the usage of more robust techniques. Chen et al. [4]
and Sirichotedumrong and Kiya [5] used a generative
adversarial network (GAN) to translate input images
into a visually protected domain. Similarly, Ito et al.
[6] proposed a transformation neural network that is
trained in a way so that the generated images reduce
the loss value of a final classification model. All these
mechanisms closely relate to the method proposed in
this paper. However, none of them considers a sce-
nario where both the server and clients are mutually
distrustful and the communication between them is not
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curated by a trusted third party.
In this paper, we aim our attention to defining

a novel method for preserving privacy by utilizing
a GAN. The GAN is used to translate images of faces
to a visually private domain (e.g., flowers or shoes),
totally unrelated to the domain of faces. Thus, the
privacy is assured solely by the GAN and the learnt
mapping function between the domains.

Overall, our contributions are twofold. First, we
proposed a method that does not require any extra
transformation to perform a translation to a visually
private domain, as opposed to the previous works. Sec-
ond, we carried out experiments on multiple target do-
mains and successfully validated the proposed method
on real-world binary classification tasks, representing
a centralized authentication use case.

2. Generative Adversarial Networks
A Generative Adversarial Network (GAN) consists of
two neural network models: a generator and a dis-
criminator. The generative model generates fake sam-
ples and the discriminative model strives to determine
whether a sample comes from the real data distribution
or the generative model distribution. Both of these
models are trained simultaneously and they play the
two-player minimax game.

During the training, the discriminator is fed with
real and generated samples. The output of the discrim-
inator is recorded during the backpropagation and the
weights of the discriminator and generator are then
updated correspondingly [7].

GANs can be used for image-to-image translation
tasks where the goal is to learn the mapping between
two or more distinct domains. The mapping function
represents the generative model within the framework.
Once there is discovered such mapping, we can trans-
fer styles or textures from one domain to another.

2.1 Common Architectures
The standard GAN objective is not robust enough. For
many trainings, the generative models may fail to con-
verge or lead to mode collapse. To deal with this
problem, additional losses have to be introduced to the
training schema. For example, CycleGAN [8], Dual-
GAN [9], and DiscoGAN [10] use cycle-consistency
or reconstruction loss. The authors of these frame-
works opted for introducing two mapping functions,
i.e., for translating images from a first domain to a sec-
ond domain, and vice versa. These two mapping
functions (generators) together aspire to minimize the
cycle-consistency or reconstruction loss.

Models using the loss function considering only

cycle-consistency can unnecessarily prefer an easily
invertible mapping function. Such behaviour is not
appropriate when the mapping function should be
rather complex. Furthermore, generators must learn
invertible mappings which need to be each other’s
inverses. Due to this limitation, some frameworks
suggest bringing back the idea of having a single gen-
erator and thus circumventing cycle-consistency con-
straints or their derivations. GcGAN [11] attempts to
approximate just one mapping function by employing
geometry-consistency loss. TraVeLGAN [12] utilizes
a third siamese network in addition to the discriminator
and generator to capture high-level semantics between
translated domains.

On the other hand, combining cycle-consistency
loss with other losses adds benefits to the training pro-
cess significantly. SPA-GAN [13] trains the model by
leveraging the standard GAN loss, cycle-consistency
loss, and feature map loss. Here, a so-called attention
mechanism embedded directly to the GAN architec-
ture is utilized to allow the model to focus more on the
most distinctive regions in images. U-GAT-IT [14] is
a GAN framework that uses an improved version of
the standard GAN loss (the loss introduced in LSGAN
[15]), cycle-consistency loss, identity loss, and class
attention maps loss. In style transfer tasks, U-GAT-IT
outperforms other GAN frameworks by a large margin.

3. Privacy Aspects of Machine Learning

All the frameworks introduced in the preceding section
operate in a setting where a single model is trained on
a centralized dataset.

3.1 Centralized Learning
Centralized learning refers to a usual way of machine
learning where a neural network has access to a whole
dataset. But, a collection of photos, speech, or videos
gathered from multiple individuals poses tremendous
privacy risks. The users from whom the data were col-
lected can neither control how the data will be used nor
delete them. Moreover, researchers are often allowed
to perform deep learning only on datasets belonging
to their institutions. This can result in an overfitted
model that has reduced utility on other inputs [16].

Some of the issues can be resolved via differential
privacy (DP). DP ensures that when an item is added
or removed from a database, it does not affect the out-
come of a query [17]. With GANs, it is possible to
synthesize private datasets before dispatching them to
an insecure environment by introducing noise to the
learning procedure. GANobfuscator [2] is a differen-
tially private GAN that adds carefully designed noise



to the gradients during the training. PPGAN [18] di-
rectly perturbs the objective function instead. These
techniques can be used for anonymizing input datasets.

On the contrary, homomorphic encryption (HE)
offers better privacy. HE is a form of encryption that
supports computations on encrypted data without de-
crypting them first. Therefore, it is not required to
possess a secret key to execute computations on the
receiver’s side. However, HE calls for extensive refac-
torization of existing systems and the high computing
complexity is still an open problem even though the
efficiency of HE schemes is continuously improving.
In comparison, employing HE in machine learning is
much more complicated than using DP.

3.2 Collaborative Learning
There is also an option to incline towards methods
that do not require users to share their datasets. Such
techniques take advantage of collaborative learning
(a.k.a., federated learning), where training data does
not leave users’ devices.

Shokri and Shmatikov [16] designed a system that
allows multiple parties to jointly learn local neural net-
work models. They exploited the fact that stochastic
gradient descent (SGD) can be parallelized and exe-
cuted asynchronously. The system works as follows.
Enrolled parties train their local models concurrently
and independently while selectively sharing some of
the model parameters, namely gradients. The param-
eter sharing approach enables the parties to benefit
from each other because the parameters obtained from
different users avoid the local models being stuck in
local minima. In this system, DP is used to preserve
the privacy of individuals by applying noise to the
parameters sent by the participants.

Although DP provides protection, it is crucial to
use it properly. Hitaj et al. [19] investigated the system
proposed by Shokri and Shmatikov and found out that
the level of granularity was not defined correctly for
DP. They successfully performed an attack that con-
sisted of an active adversary which could influence the
learning process. Because of that, the genuine partic-
ipants were leaking data from their private datasets
during the training.

Setting user or device-level DP should be efficient
against the active attack devised earlier according to
Lim et al. [20]. Lim et al. also noted that it is neces-
sary to have a curator that aggregates and randomly
selects a group of participants who train a model for
each iteration. In this case, a malicious participant
should not be able to extract information about other
participants since it is unclear who has participated in
a single training round. Yet, the authors of the paper

[21] were able to recover data even when the learning
procedure used the user-level DP.

4. Proposed Method

Despite recent progress, collaborative learning still
faces many challenges. A serious bottleneck is commu-
nication. Because of that, it is required to implement
communication-efficient protocols that iteratively send
small amounts of data through the network. Other is-
sues relate to the system and statistical heterogeneity.
Every participant within the system can have differ-
ent computational capabilities and data points across
devices may vary significantly [22].

Centralized learning provides fewer opportunities
for adversaries in comparison to collaborative learning.
But, at the cost of privacy. To tackle the privacy prob-
lem, we propose replacing sensitive data from a private
domain with data from a safe domain. In particular,
the translation to the safe domain can be performed by
a GAN. Then, the centralized model is trained purely
on the outputs of the GAN and is therefore unaware of
sensitive data points from the original distribution.

This means that we can use the translated images
for authentication purposes. For instance, we assume
scenarios in which users authenticate themselves with
images of flowers or shoes without revealing their ac-
tual identities, like depicted in Figure 1. As opposed to
standard biometric-based systems, here, the classifiers
are learnt how to identify users concerning the features
posed by images of flowers or shoes instead of real
faces.

By combining centralized learning and the pre-
sented authentication method, we expect that the pri-
vacy of individuals should be protected against active
and passive adversaries. Passive adversaries that cap-
tured synthetic images should not be able to recon-
struct face images that resemble real users. Equiva-
lently, active adversaries should not be able to create
a reverse mapping from a visually private domain back
to a domain of faces by harassing the learning process.
Eventually, such active attacks often lead to model
poisoning which can be detected on both the server
and client sides [23].

The privacy protection is provided by a GAN which
resides on the user’s device and is trained on arbitrary
datasets. In general, users will likely train their GAN
models on a private dataset backed by public datasets.
Once an adversary gains access to the user’s device,
GAN, and datasets, the privacy may be violated. The
adversary can then insert a new inverse GAN into
the training framework, freeze the layers of the user’s
GAN, and start learning the reverse mapping. In the



end, the adversary has a generator capable of generat-
ing the actual faces of the user.
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Figure 1. A GAN-based authentication system. Face im-
ages of users are translated to images of flowers which are
then used for authentication purposes.

5. Performed Experiments
To validate the proposed method, we decided to per-
form multiple experiments. First, we conducted a study
of appropriate datasets required for training GANs.
Then, we evaluated the performance of binary classi-
fiers on synthetic images produced by the GANs. And
finally, we devised a plan for attacking our privacy-
protecting procedure.

5.1 Datasets
Assuming that the input data for the translation task
are always images of faces, one of the best publicly
available datasets is the CelebA dataset [24]. The
images cover large pose variations, different skin tones,
and face shapes. Such diversity is a prerequisite for
good generalization properties.

Choosing a satisfying output domain was tricky.
We have determined that many datasets are very het-
erogeneous and asymmetric to the domain of faces.
Ultimately, the following datasets were considered for
further evaluation: shoes [25], textures [26], cars [27],
flowers [28], and food [29].

All these datasets, except for one, provide good
variability across the classes. In the dataset of shoes,

further augmentations need to be employed since the
images are captured just from one angle.

5.2 Used Architectures
There are plenty of GAN frameworks suitable for trans-
lating images from one domain to another. We have
selected only four of them for our intention: Cycle-
GAN, DiscoGAN, TraVeLGAN, U-GAT-IT.

In the experiments, CycleGAN performed worst.
When trained on the datasets of shoes and textures, the
loss values of the discriminators rapidly converged to
zero causing immediate mode collapse after no more
than 20 epochs (half day) of training. We suppose
that this behaviour is linked to the disadvantages of
cycle-consistency loss, as we stated in Section 2.1. On
the other hand, proper hyper-parameters tuning, like
setting different weights for the loss functions, could
resolve such a problem. Yet, we found this hyper-
parameters tuning time consuming and disregarded
CycleGAN for additional experiments.

The DiscoGAN framework worked better on all
datasets. But, even after introducing feature matching
loss [30] to the training process, the model could not
learn to generate sharp and crisp images. The inability
to generate plausible images led us to experiment with
the loss established in the WGAN-GP paper [31]. Also,
we tried to use spectral normalization [32]. Overall,
these adjustments did not improve the final results. The
generated images looked best only when the model
was trained on the dataset of shoes.

TraVeLGAN has shown the most satisfactory re-
sults out of all tested frameworks. Except for the tex-
tures and cars datasets, the model performed well on
the rest of the datasets. The models which were trained
on the datasets of textures and cars were not producing
reasonable outputs and the generative model was jump-
ing between modes for the same input faces through
the training. Images generated by TraVeLGAN are
demonstrated in Figure 2. It is important to emphasise
that the translations to flowers were only slightly af-
fected by zooming or additional background changes
during the experiments.

We also tried to evaluate the performance of U-
GAT-IT. In this case, the resulting synthetic images
were fairly plausible for the dataset of shoes. However,
we were not able to exploit the real performance of
U-GAT-IT because the full model requires 32 GB of
memory on a single GPU. Furthermore, training the
light model for 50 epochs on a dataset that consisted
of 10,000 samples took more than 4 days on NVIDIA
Tesla T4 GPU.
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Figure 2. Outputs produced by TraVeLGAN. The model
was trained on 8,000 cropped CelebA images with removed
background. The output domain represents images of flow-
ers.

5.3 Classification
According to the experiments, we believe that TraV-
eLGAN trained on the flowers dataset is a sufficient
solution to our problem. The framework correctly iden-
tifies the key features of images and translates them to
a visually private domain (as shown in Figure 2).

To classify the images of flowers, it is necessary to
ensure that the model generates undoubtedly similar
images for the same individual. Unfortunately, the
face images of a single individual contained within
the CelebA dataset often do not resemble each other.
Because of that, we had to augment the images with
StarGAN [33]. The required precondition for the clas-
sification purposes could be afterwards verified (see
Figure 3).

Regarding the augmentation, we noticed that differ-
ent skin tones contribute to a simple colour change of
flowers. On the contrary, facial expressions, as well as
hairstyles, affect the translation process significantly,
leading to generating flowers of completely different
shapes.

We tested the usability of our method on binary
classification problems. In the beginning, we selected
93 celebrities from the CelebA dataset and augmented
the images of their faces. The number of images
ranged from 10 to 20 per selected individual. Next, we
translated the augmented images and another random
2,000 images from the CelebA dataset to the images of
flowers with TraVeLGAN. Then, we trained 93 binary
classifiers.

To evaluate the efficiency of the classifiers, we
also studied the performance drop in comparison to
standard classification models trained on images of
faces. In order to make the conditions for both scenar-
ios similar, we used the same pre-trained MobileNet

Input Output Input Output

Figure 3. Flowers generated by TraVeLGAN for same iden-
tities. Minor head rotations do not influence the outcome of
the translation.

V2 (MNv2) model1 and adjusted the last output layers
for binary classification. Moreover, we performed 5-
fold cross-validation and used the following metrics:
accuracy, precision, recall, and F1 score.

In Table 1, there are shown average scores of the
classifiers. The values were averaged over distinct
classes (i.e., identities) across the folds. The recall
score has revealed that the classifiers trained on the
synthetic flowers did not identify almost 30% out of
all positive examples when the layers of MNv2 were
frozen. On the other hand, the classifiers were able
to identify more than 86% out of all examples when
fine-tuning was enabled.

The experiments ensured us that our method can
be still used for authentication since the overall per-
formance drop did not exceed 6% when the models
had the same architecture. Hyper-parameters tuning
and further architectural changes should decrease the
difference even more.

5.4 Attack Model
Suppose attackers determine the used GAN framework,
e.g., TraVeLGAN and public datasets. A trivial attack

1https://tfhub.dev/google/imagenet/
mobilenet_v2_100_128/feature_vector/4
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Table 1. Actual scores of the evaluated classifiers. The ac-
ceptance threshold for the classifiers was set to 0.7. The clas-
sifiers were trained for 15 epochs in two settings: (1) with
frozen MNv2 layers, (2) with trainable MNv2 layers.

Frozen MNv2 Trainable MNv2

Metric Faces Flowers Faces Flowers

Accuracy 0.9998 0.9976 0.9992 0.9974
Precision 0.9139 0.8353 0.8810 0.8594
Recall 0.9148 0.7086 0.9117 0.8627
F1 Score 0.9143 0.7667 0.8961 0.8611

consisting of switching the input and output domains
and straightforwardly learning the reverse mapping
function is not effective. Based on our observations,
the generated faces looked like those depicted in the
teaser image.

A more sophisticated attack suggests training the
GAN the same way as the victim did. The attack-
ers then freeze the trained model and insert a new
model into the framework. The new model is trained
to discover a reverse mapping from the visually private
domain back to the domain of faces more efficiently
due to the presence of a correct pair set. This attack is
also referred to as an inverse transformation network
attack (ITN-Attack) [6].

We tried to perform an ITN-Attack by embedding
a pre-trained TraVeLGAN model into the framework.
A couple of reconstructed samples are presented in
Figure 4. From the samples, it is possible to determine
sex or hair style, but not the real identity.

Original Reconstructed Original Reconstructed

Figure 4. Images estimated by an inverse transformation
network. The network was trained on a correct pair set
provided by a TraVelGAN network trained on the datasets
of faces and flowers.

Ignoring the fact that the user’s models are always
initialized with random weights and that the user can
govern the hyper-parameters, the attackers may end up
having almost identical mapping function from the do-
main of faces to a visually private domain. Otherwise,
there is no guarantee that the attack is going to be suc-
cessful. Apart from that, the user can utilize DP during

the training which results in reduced chances for the
attackers as well, yet at the cost of the classification
model accuracy. Furthermore, the protection is given
by the properties of the chosen datasets. Transforming
images between asymmetric datasets back and forth
causes losing the information about initial data distri-
bution. We noticed this behaviour when we trained
DiscoGAN on the shoes dataset. In a dual setting, the
images of faces were accurately translated to the im-
ages of shoes, but the opposite did not apply. Mostly,
the synthetic images of faces looked unrealistic and
blurred (see Figure 5).

Input Output Reconstructed

Figure 5. Outputs of DiscoGAN. The model was trained
on 20,000 padded CelebA images. The output domain
represents images of shoes. As shown in the last column,
DiscoGAN could not properly learn the reverse mapping in
a dual setting.

6. Conclusions
In this paper, we presented a novel approach for em-
ploying a GAN for privacy preservation in biometric-
based authentication systems. Specifically, the GAN
is used to translate face images of individuals to a vi-
sually private domain (e.g., flowers).

The rationale behind the protection of users’ pri-
vacy lies in the fact that a GAN creates a mapping
function that is hard to invert since the target domain is
heterogeneous to the domain of faces. Another protec-
tion is given by the implicit way of how the GAN can
be trained, meaning that different starting point often
leads to a different optimal translation. Employing
DP with correctly set granularity during the training
process naturally increases privacy as shown in many
other works [34].

We trained multiple GAN frameworks on different
datasets and found out that TraVeLGAN fits best to
our problem without any further changes to the archi-



tecture. The U-GAT-IT framework has shown to be
a good candidate as well, but due to the long train-
ing times and high computational requirements, we
decided to leave more experiments for future work.

We validated the proposed approach on practical
binary classification tasks. The experimental results
demonstrated that the images generated by the GAN
still provide a reasonable utility.

To conclude, our method has just two disadvan-
tages: (1) users are required to train GANs on their
own which can be time-consuming and (2) some mod-
els may end up generating almost identical images
for different identities which can result in bad classi-
fiers’ performance. On the other hand, the proposed
method is not restricted to a specific GAN framework
or dataset and does not require training classifiers on
the server from scratch since many pre-trained classi-
fication networks can be utilized. Therefore, the sec-
ond disadvantage may be alleviated by using another
dataset or a GAN when the problem occurs.

For future work, we will focus on improving the
quality of synthetic images as well as the performance
of classifiers. We also consider implementing an up-
date procedure allowing users to submit new synthetic
images after changing the visage. This could be done
by caching the generated images and when the change
within a given threshold is detected, the user’s device
messages the server to consider the new images for
authentication.
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