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Abstract

In this work, we summarized research in the state-of-the-art Proof-of-Stake protocols like Algorand,
Tendermint, and LaKSA. We analyzed and summarized their features and issues. Based on
the included research we implement a new PoS protocol that mitigates issues with throughput,

scalability, and security.

Keywords: Blockchain — Proof-of-Stake — Anonymity — Verifiable Random Function

Supplementary Material: N/A

*xtamas01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

There are several interesting Proof-of-Stake protocols
in the wild. However, they contain design problems
that we want to resolve:

» It is possible to DoS the leader of the round'
since he is known beforehand. An adversary
might increase his chance of being elected as a
leader.

* Relatively small throughput. Tendermint and
Algorand uses some BFT ideas. Substituting
them could improve overall throughput.

 Linkability of peers with their IP addresses. By
removing this connection we can create an net-
work anonymity of the participants.

One of the most mature PoS blockchains is Tendermint.
It uses a committee that uses a byzantine fault-tolerant
algorithm in each of three phases [1]. The committee is
fixed and well known in the network, and that inhibits
the scalability. Due to known committee, the adversary
can DoS each member and change the output of the
consensus.

Another mature PoS blockchain is Algorand. It
aims to solve issues with Tendermint. Algorand uses
a verifiable random function (VRF) to select in one

IProducer of the block.

phase but in the second phase, it uses BFT like Tender-
mint [2]. Due to the first improved phase, the through-
put is significantly better. The VRF is a small leap to
achieve anonymity inside the consensus layer but the
adversary can still overcome it with low effort.

To enhance the current solutions, we introduce
three main ideas in our design:

1. Probabilistic selection of leaders for ensuring
high throughput with protection against sabo-
tage.

2. Native anonymization of protocol transactions
(inspired by onion routing).

3. Force selection function to not follow the order.

Our hypothesis is, that by the implementation of men-
tioned features, we can gain protection against DoS
attacks, high throughput, and anonymity of all par-
ticipants in the protocol. All ideas are verified by
experimental implementation and partially presented
in this paper.

In this section we will describe algorithms that inspired
this work, such as Algorand and Tendermint. We com-
pared the included PoS protocols in Table 1. Finally,
we will describe Tor as well because it inspired us to
use onion routing in this work.
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2.1 Algorand

Algorand is a pure Proof-of-Stake protocol and it is
commercially used as a cryptocurrency, but it can be
extended for other purposes. Its advantages are very
short time to finality, high throughput, and hard to cor-
rupt by an adversary [2]. It uses very small computa-
tional power, no matter how many users are connected
to the network. The consensus protocol introduced
Byzantine Agreement (BA) that works as described
below.

Algorand uses verifiable random functions (VRF) [3]

to select new leaders. VRF is a public-key version of
a keyed cryptographic hash. Only the holder of the
private key can compute the hash, but anyone with
a public-key can verify the correctness of the hash.
Algorand uses VRF to select N members of the com-
mittee by letting the peers compute VRF of round
randomness, selecting those with results lesser than
certain value. Sometimes happens that the VRF will
not produce any member of the committee in that case
it will delay the block creation. Each new leader must
be confirmed by the messages from all members of
the committee (similar like BFT) which generates N
messages. Each round has two steps:

1. Each member of the committee multicasts can-
didate for the next block

2. Each member of the committee sends a message
with a signature of the winning block.

BA is not pur BFT but is a hybrid since BFT is used
on a small group of nodes in the protocol and only
one our of three stages of BFT are executed. However
even one stage of BFT can cause a significant overhead
limiting the throughput of the protocol. If there were
any alternatives, it would significantly increase the
throughput of the protocol.

2.2 Tendermint

Tendermint is a pure BFT proof-of-stake protocol [1].
Unlike Algorand, it has fixed committee members. A
block is selected in a round-robin fashion. This implies
that the leader is known in advance to all the nodes.
An adversary can use this information to perform DoS
attacks against the current leader. This will prevent the
leader from publishing a new block. Because of BFT,
Tendermint has relatively low throughput. Each round
consists of three steps:

1. Propose - a proposed block is broadcasted

2. Prevote - peer validates proposed block and
broadcasts its willingness to commit it

3. Precommit - After the peer receives at least 2/3
of the prevote messages, the peer signs the block
and commits it in a special commit step.

The last two steps significantly slow this protocol and
substitution of these steps would significantly increase
throughput. Another aspect of BFT-based protocols
like Tendermint is that when more than 1/3 of the
network is unavailable, the protocol halts itself and
it will wait untill 2/3 of the network can establish
consensus.

2.3 LaKSA

LaKSA is derived from Algorand and it adopted ideas
from DFINITY and Randhound [4, 5]. It is a proper
Proof-of-Stake protocol with some BFT ideas [6]. It
is not yet commercially used as the protocols above.
It was developed to reduce drawbacks as high reward
variance and long confirmation times. It enhances
Algorand properties such as lightweight committee
voting, it should be more robust and easily scalable
than other protocols. In LaKSA, committee members
are randomly and periodically sampled to vote for their
preferred main chain views [6].

The LaKSA introduced a so-called cryptographic
sampling in its consensus protocol that works as fol-
lows. Everyone obtains the beacon from the previous
block. Based on this block there will be elected leaders
and voters. Every node will afterward obtain a num-
ber of the stake it can use in that round. If the node
has some stake to use in voting, it is called a voter.
Otherwise, it is called a verifier. The voters assem-
ble votes and broadcast them to the network. Every
verifier will verify the votes and put them on the pend-
ing list of votes directly supporting a so-called virtual
block. Next, every node will check if it was selected
as a round leader. If yes, it will create a block based on
the virtual block, and it will broadcast it to the network.
Every node that received the newly created block will
verify it. If the verification process was successful,
then it will be included in the chain.

This protocol has increased fairness than the Algo-
rand. However, the Algorand’s leader and committee
vary from round to round. In LaKSA it is fixed. Due
to this detail, the Algorand may be less secure than
the LaKSA. Besides that, the LaKSA is resilient to
nothing at stake attack because the committee must
accept the new block and it is very hard to create a
fork.

The overall limitations of current protocols are
summarized in the Table 1.

2.4 Tor

Tor project is an anonymization network project [7]
that implements and extends the Onion routing [8].
The main idea behind the Onion routing is to use N
Onion routers (OR) to route a message that we want
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Table 1. Side by side comparison of PoS protocols and their properties.

to send through the internet. After selecting N ORs
the sender will exchange a cryptographic key with
them. Afterward, when the sender want’s to send the
message it will incrementally encrypt the message with
each key. Next, the sender will send the message to
the first OR. The OR will decrypt the message by the
exchanged key and route this message to the next OR
and vice versa. When the last OR receives the message,
it will send the message to the location the original
sender intended. The main advantage of this principle
is that the receiver does not know who the sender is.
And in the opposite, the sender does not communicate
directly with the receiver.

This section will propose a new Proof-of-Stake proto-
col that will have just one leader in a round. This
leader will be elected from the randomness of the
previous round using a verifiable random function
(VRF). Another property that we had in mind dur-
ing the design is that the protocol must be DoS resis-
tant. We achieved this resilience by implementing an
anonymization layer into the protocol itself. At the
beginning of the blockchain must be created a genesis
block that will hold initial stake distribution among
nodes that will start the process of block creation. We
assume that every node that is in the genesis block
has every crypto-tokens invested in the stake because
they want to participate in the protocol. When they
get online, the first thing for them is to connect to
at least N nodes using the anonymization layer (e.g.,
Dandelion [9]). Afterward, they determine who is the
first leader by using the VRF. The VREF is based on
the probabilistic selection of a leader based on the
stake involved. This principle is iteratively used every

Block N-2
BlockHeader N-2
Hash: Oxabcd1234

Previous Block
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Block N-1
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Figure 1. Ilustration of the blockchain distributed
data structure. Our proposed protocol has extended
header with public-key of the leader that signed the
block, alternative leader count, and id of the block

round to elect a leader that will publish a block. We
assume that this genesis block is hard-coded in every
full node and thus they can retrieve and verify the full
blockchain retrospectively.

3.1 Data structures
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The proposed protocol creates and extends its blockchain, 91

an append-only structure consisting of linked blocks.
The block consists of aggregated transactions and a
block header created by the leader of the current round.
The block header consists of a hash of the previous
block header, block id (counter of the blocks), the root
hash of Merkle tree consisting of all transactions in
block body, a public key of the leader (called coinbase),
index of an alternative leader, the randomness of the
current block, and the signature made by the leader.
The second part of the block is so-called block
body. Inside is a list of all transactions that are in
this block. The transactions are composed of destina-
tion, the value that the sender wants to send, fee, and
signature. One may think that the transaction misses
the sender. However, the sender’s address will be
computed from the transaction itself and the signature.
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To achieve this behavior the signing process must be
done with a cryptographic function that can include
the signer’s public key into the signature; for exam-
ple recoverable ECDSA signatures [10] To store the
transactions in the block, we use the list that is aggre-
gated by the Merkle tree. Besides, we use in-memory
Merkle-Patricia trie to store the balances and stakes of
all accounts, referred to as the global state.

3.2 Normal Operation

The normal operation of the consensus protocol is
described bellow. When the round starts, the node
resets the round counter of timeout expiration. Then
a node checks if it is the leader of the current round
based on randomness from the previous round. If the
node is a leader for the current round, it will create a
new block and broadcasts it afterward.

If the node is not a leader in this round, it will set
a timeout timer in which the node expects to receive
a block from the leader. When the node receives the
block, the node will check the validity of the block,
i.e., the block is correctly signed, it was signed by a
leader of that round, the block round corresponds to
the current round index. After the validation process,
the node will execute the transactions above the node’s
global state and reward the leader. In the end, it will
cancel the timeout and save the block. If the node will
not receive the block in the specified time, that means
the leader is offline and this situation will be solved
with increasing round index and setting up the timer
again until we get the correct block.

The node can receive transactions as well. In that
situation, the node will check the signature of the re-
ceived transaction and it will check if the source ex-
ists in the node’s node-list and whether it has enough
balance. In the positive case, the transactions will
be added to the mempool and gossiped to the other
nodes [9]

3.3 Rewarding Scheme

The leaders that create a new valid block will be re-
warded. First, we must say that we designed the proto-
col to have separated stake and balance. This solution
is used to have a higher and lower liquidity part of the
node’s value. To transfer the balance to the stake the
node must create a specific transaction. The transfer
will freeze the assets for some time to lower the lig-
uidity and to behave like an investment that yields the
“interest rate’. The freeze time must be long enough to
penalize the liquidity of the node’s crypto assets. The
leader will earn a reward value, that will be set to a
value that will be experimentally verified. The leader
gets the transaction fee from transactions that are in-

cluded in the block. These fees will be transferred
directly to the leader’s stake.

3.4 Joining the Protocol
To join the protocol, the node has to buy the balance
from any of the existing nodes and then convert it into

the stake, which constitutes the semi-permissionless
design [11].

3.5 Forks

When receiving blocks there can occur a situation
where the received block is valid but it is at a lower
height in blockchain than we currently are. If we put
in detail the specific height, there may be a situation
where the main leader was temporarily offline and the
alternative leader published the block. However, the
main leader returned back and produced a block and
thus created a paralel chain. This behavior is called
forking, and it is undesirable since up to some period,
the blockchain might be reverted, and thus the finality
is achieved only after this time. Therefore, the last few
blocks are not stable immediately and can be changed
during this time. To overcome this issue, we imple-
mented check-pointing in the blockchain. It means that
if the overturning chain is too long, we will not over-
turn the chain, and instead preserve the current one.
The parameter of the maximum chain length allowed
to overturn will be the subject of the experiments.

The anonymization is realized at the network layer
and works as described in this chapter. Details of
joining, sending, and relying messages are shown in
Algorithm 1. This communication on network level
won’t be anonymized. It is not an issue, because it
will not contain any peer identifier, which makes it
impossible to link peer identity (public key) to the
node identity (IP address).

4.1 Joining the network
When node N want’s to join a network, it must do
following steps:

1. New node N gets a list of IP addresses of all
nodes from a directory (its trustworthiness may
be ensured by multiple ways, e.g. [12])

2. N selects n sets of m peers

3. For each route: Build a circuit consisting of m
selected nodes (in chosen order n;,n,,...n,,). To
build a circuit, perform a key exchange with
each of the selected nodes, for example by the
approach proposed in [7].
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Figure 2. Ilustrated consensus

4. The circuit has been established. N now shares
secret key K; with n; for each i. Every further
communication will be anonymized.

4.2 Sending the messages

Any message P wants to send (broadcast) is sent in the
onion routing mannet, i.e.:

1. The message is encoded so it can be received by
the intended receivers

2. The message M is encrypted with K;: K;(M)

3. The result of the previous step is encrypted with
K(m —x) forx =m— 1 downto 1 and appended
with IP of the (m —x+ 1)th peer in the circuit.
For example (m=3): K1(p2,K2(p3,K3(M)))

4.3 Relaying the messages

* When a peer pn in a circuit receives a message, it
decrypts it using the key shared with P. It discov-
ers the identity of p(n+1) and sends the message
(that is still encrypted by P using K(n+1)) to
it (the message is encrypted by the transport
layer).

* If there is no p(n+1), the peer is an exit peer. It
decrypts the message and gossips it [7, 8].

We concluded multiple experiments that consists of
running blockchain with specific properties. We can
divide these experiments to three parts:

* Without anonymization layer on localhost.

* With anonymization layer on localhost.

* With anonymization layer on separate virtual
machines.

Algorithm 1: Anonymization layer interface

> DECLARATION OF TYPES AND VARIABLES:
route { node,_1, node,_», ..., nodeg},
node { addr, key },
addr { IP, port },
this: the current node,
routes: list of all routes that will be used in

anonymization layer,

Message: constructor of selected messages,

function joinNetwork(n_routes, m_nodes)
allnodes < getNodes();
routes <— pickRoutes(n_routes,m_nodes);
for route: routes do
for node: route do
L | exchangeKey(node);

for route: routes do
| verifyRoutelnitialization(route);
function SendMessage(dst, msg)
for route : routes do
relay_msg < Message.Relay(dst,msg);
for node : route do
ct < Zpode key-encrypt(msg);
em < Message.Encrypted(this.addr,ct);
relay_msg <«
Message.Relay(node.addr,em);

| gossip(route[—1],relay_msg);
function RelayMessage(src, relay_msg)
msg_key < findKey(nodes,src);

msg < Lyq key-decrypt(relay msg);
transport _key < findKey(nodes,msg.dst);
ct < Ztmnsporljce_v~encrypt(msg);

em < Message.Encrypted (this.addr,ct);
send(msg.dst,em);

Each part consists of multiple runs with different
settings that are described in Table 2.

First part aims to test the raw performance of the

consensus layer. That can be seen as blue line in Fig- 3:
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ure 4 and Figure 3. The peak value of transaction
per second is 28.4 when processing 10000 transac-
tion in 1 block. The red line shows us results when
the anonymization layer is turned on. This exper-
iment shows us the difference in throughput when
anonymization layer is turned on. The Figure 4 shows
us that the anonymization layer has a small impact on
throughput of the protocol.

The overall results are not that appealing and we
found out that they are badly influenced by the imple-
mentation constrains of the used language (Python)
and some other architectural flaws of the application
itself (serialization and deserialization of Json, slow
cryptographic library). We assume when using com-
piled language the result could be significantly better.

Run | Block Size| ©

1. 10 120
2. 100 120
3. 1000 120
4. 10000 {120

Table 2. Blockchain properties that are applied to a
specific run of a blockchain.
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Figure 3. My first autogenerated plot.

This paper identifies the current problems of the cur-
rent state-of-the-art Proof-of-Stake protocols such as
throughput, anonymity in consensus layer. It imple-
ments proposed consensus protocol by the authors
mentioned in Acknowledgment. To present the achieved

Transaction/sec according to Block Size
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Figure 4. My first autogenerated plot.

results, the proposed protocol was implemented as
proof-of-concept and tested in several scenarios.
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