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Abstract
In this work, we summarized research in the state-of-the-art Proof-of-Stake protocols like Algorand,
Tendermint, and LaKSA. We analyzed and summarized their features and issues. Based on
the included research we implement a new PoS protocol that mitigates issues with throughput,
scalability, and security.
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1. Introduction1

There are several interesting Proof-of-Stake protocols2

in the wild. However, they contain design problems3

that we want to resolve:4

• It is possible to DoS the leader of the round15

since he is known beforehand. An adversary6

might increase his chance of being elected as a7

leader.8

• Relatively small throughput. Tendermint and9

Algorand uses some BFT ideas. Substituting10

them could improve overall throughput.11

• Linkability of peers with their IP addresses. By12

removing this connection we can create an net-13

work anonymity of the participants.14

One of the most mature PoS blockchains is Tendermint.15

It uses a committee that uses a byzantine fault-tolerant16

algorithm in each of three phases [1]. The committee is17

fixed and well known in the network, and that inhibits18

the scalability. Due to known committee, the adversary19

can DoS each member and change the output of the20

consensus.21

Another mature PoS blockchain is Algorand. It22

aims to solve issues with Tendermint. Algorand uses23

a verifiable random function (VRF) to select in one24

1Producer of the block.

phase but in the second phase, it uses BFT like Tender- 25

mint [2]. Due to the first improved phase, the through- 26

put is significantly better. The VRF is a small leap to 27

achieve anonymity inside the consensus layer but the 28

adversary can still overcome it with low effort. 29

To enhance the current solutions, we introduce 30

three main ideas in our design: 31

1. Probabilistic selection of leaders for ensuring 32

high throughput with protection against sabo- 33

tage. 34

2. Native anonymization of protocol transactions 35

(inspired by onion routing). 36

3. Force selection function to not follow the order. 37

Our hypothesis is, that by the implementation of men- 38

tioned features, we can gain protection against DoS 39

attacks, high throughput, and anonymity of all par- 40

ticipants in the protocol. All ideas are verified by 41

experimental implementation and partially presented 42

in this paper. 43

2. Related Work 44

In this section we will describe algorithms that inspired 45

this work, such as Algorand and Tendermint. We com- 46

pared the included PoS protocols in Table 1. Finally, 47

we will describe Tor as well because it inspired us to 48

use onion routing in this work. 49
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2.1 Algorand50

Algorand is a pure Proof-of-Stake protocol and it is51

commercially used as a cryptocurrency, but it can be52

extended for other purposes. Its advantages are very53

short time to finality, high throughput, and hard to cor-54

rupt by an adversary [2]. It uses very small computa-55

tional power, no matter how many users are connected56

to the network. The consensus protocol introduced57

Byzantine Agreement (BA) that works as described58

below.59

Algorand uses verifiable random functions (VRF) [3]60

to select new leaders. VRF is a public-key version of61

a keyed cryptographic hash. Only the holder of the62

private key can compute the hash, but anyone with63

a public-key can verify the correctness of the hash.64

Algorand uses VRF to select N members of the com-65

mittee by letting the peers compute VRF of round66

randomness, selecting those with results lesser than67

certain value. Sometimes happens that the VRF will68

not produce any member of the committee in that case69

it will delay the block creation. Each new leader must70

be confirmed by the messages from all members of71

the committee (similar like BFT) which generates N72

messages. Each round has two steps:73

1. Each member of the committee multicasts can-74

didate for the next block75

2. Each member of the committee sends a message76

with a signature of the winning block.77

BA is not pur BFT but is a hybrid since BFT is used78

on a small group of nodes in the protocol and only79

one our of three stages of BFT are executed. However80

even one stage of BFT can cause a significant overhead81

limiting the throughput of the protocol. If there were82

any alternatives, it would significantly increase the83

throughput of the protocol.84

2.2 Tendermint85

Tendermint is a pure BFT proof-of-stake protocol [1].86

Unlike Algorand, it has fixed committee members. A87

block is selected in a round-robin fashion. This implies88

that the leader is known in advance to all the nodes.89

An adversary can use this information to perform DoS90

attacks against the current leader. This will prevent the91

leader from publishing a new block. Because of BFT,92

Tendermint has relatively low throughput. Each round93

consists of three steps:94

1. Propose - a proposed block is broadcasted95

2. Prevote - peer validates proposed block and96

broadcasts its willingness to commit it97

3. Precommit - After the peer receives at least 2/398

of the prevote messages, the peer signs the block99

and commits it in a special commit step.100

The last two steps significantly slow this protocol and 101

substitution of these steps would significantly increase 102

throughput. Another aspect of BFT-based protocols 103

like Tendermint is that when more than 1/3 of the 104

network is unavailable, the protocol halts itself and 105

it will wait untill 2/3 of the network can establish 106

consensus. 107

2.3 LaKSA 108

LaKSA is derived from Algorand and it adopted ideas 109

from DFINITY and Randhound [4, 5]. It is a proper 110

Proof-of-Stake protocol with some BFT ideas [6]. It 111

is not yet commercially used as the protocols above. 112

It was developed to reduce drawbacks as high reward 113

variance and long confirmation times. It enhances 114

Algorand properties such as lightweight committee 115

voting, it should be more robust and easily scalable 116

than other protocols. In LaKSA, committee members 117

are randomly and periodically sampled to vote for their 118

preferred main chain views [6]. 119

The LaKSA introduced a so-called cryptographic 120

sampling in its consensus protocol that works as fol- 121

lows. Everyone obtains the beacon from the previous 122

block. Based on this block there will be elected leaders 123

and voters. Every node will afterward obtain a num- 124

ber of the stake it can use in that round. If the node 125

has some stake to use in voting, it is called a voter. 126

Otherwise, it is called a verifier. The voters assem- 127

ble votes and broadcast them to the network. Every 128

verifier will verify the votes and put them on the pend- 129

ing list of votes directly supporting a so-called virtual 130

block. Next, every node will check if it was selected 131

as a round leader. If yes, it will create a block based on 132

the virtual block, and it will broadcast it to the network. 133

Every node that received the newly created block will 134

verify it. If the verification process was successful, 135

then it will be included in the chain. 136

This protocol has increased fairness than the Algo- 137

rand. However, the Algorand’s leader and committee 138

vary from round to round. In LaKSA it is fixed. Due 139

to this detail, the Algorand may be less secure than 140

the LaKSA. Besides that, the LaKSA is resilient to 141

nothing at stake attack because the committee must 142

accept the new block and it is very hard to create a 143

fork. 144

The overall limitations of current protocols are 145

summarized in the Table 1. 146

2.4 Tor 147

Tor project is an anonymization network project [7] 148

that implements and extends the Onion routing [8]. 149

The main idea behind the Onion routing is to use N 150

Onion routers (OR) to route a message that we want 151
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Table 1. Side by side comparison of PoS protocols and their properties.

to send through the internet. After selecting N ORs152

the sender will exchange a cryptographic key with153

them. Afterward, when the sender want’s to send the154

message it will incrementally encrypt the message with155

each key. Next, the sender will send the message to156

the first OR. The OR will decrypt the message by the157

exchanged key and route this message to the next OR158

and vice versa. When the last OR receives the message,159

it will send the message to the location the original160

sender intended. The main advantage of this principle161

is that the receiver does not know who the sender is.162

And in the opposite, the sender does not communicate163

directly with the receiver.164

3. Protocol Proposal165

This section will propose a new Proof-of-Stake proto-166

col that will have just one leader in a round. This167

leader will be elected from the randomness of the168

previous round using a verifiable random function169

(VRF). Another property that we had in mind dur-170

ing the design is that the protocol must be DoS resis-171

tant. We achieved this resilience by implementing an172

anonymization layer into the protocol itself. At the173

beginning of the blockchain must be created a genesis174

block that will hold initial stake distribution among175

nodes that will start the process of block creation. We176

assume that every node that is in the genesis block177

has every crypto-tokens invested in the stake because178

they want to participate in the protocol. When they179

get online, the first thing for them is to connect to180

at least N nodes using the anonymization layer (e.g.,181

Dandelion [9]). Afterward, they determine who is the182

first leader by using the VRF. The VRF is based on183

the probabilistic selection of a leader based on the184

stake involved. This principle is iteratively used every185
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Figure 1. Ilustration of the blockchain distributed
data structure. Our proposed protocol has extended
header with public-key of the leader that signed the
block, alternative leader count, and id of the block

round to elect a leader that will publish a block. We 186

assume that this genesis block is hard-coded in every 187

full node and thus they can retrieve and verify the full 188

blockchain retrospectively. 189

3.1 Data structures 190

The proposed protocol creates and extends its blockchain,191

an append-only structure consisting of linked blocks. 192

The block consists of aggregated transactions and a 193

block header created by the leader of the current round. 194

The block header consists of a hash of the previous 195

block header, block id (counter of the blocks), the root 196

hash of Merkle tree consisting of all transactions in 197

block body, a public key of the leader (called coinbase), 198

index of an alternative leader, the randomness of the 199

current block, and the signature made by the leader. 200

The second part of the block is so-called block 201

body. Inside is a list of all transactions that are in 202

this block. The transactions are composed of destina- 203

tion, the value that the sender wants to send, fee, and 204

signature. One may think that the transaction misses 205

the sender. However, the sender’s address will be 206

computed from the transaction itself and the signature. 207



To achieve this behavior the signing process must be208

done with a cryptographic function that can include209

the signer’s public key into the signature; for exam-210

ple recoverable ECDSA signatures [10] To store the211

transactions in the block, we use the list that is aggre-212

gated by the Merkle tree. Besides, we use in-memory213

Merkle-Patricia trie to store the balances and stakes of214

all accounts, referred to as the global state.215

3.2 Normal Operation216

The normal operation of the consensus protocol is217

described bellow. When the round starts, the node218

resets the round counter of timeout expiration. Then219

a node checks if it is the leader of the current round220

based on randomness from the previous round. If the221

node is a leader for the current round, it will create a222

new block and broadcasts it afterward.223

If the node is not a leader in this round, it will set224

a timeout timer in which the node expects to receive225

a block from the leader. When the node receives the226

block, the node will check the validity of the block,227

i.e., the block is correctly signed, it was signed by a228

leader of that round, the block round corresponds to229

the current round index. After the validation process,230

the node will execute the transactions above the node’s231

global state and reward the leader. In the end, it will232

cancel the timeout and save the block. If the node will233

not receive the block in the specified time, that means234

the leader is offline and this situation will be solved235

with increasing round index and setting up the timer236

again until we get the correct block.237

The node can receive transactions as well. In that238

situation, the node will check the signature of the re-239

ceived transaction and it will check if the source ex-240

ists in the node’s node-list and whether it has enough241

balance. In the positive case, the transactions will242

be added to the mempool and gossiped to the other243

nodes [9]244

3.3 Rewarding Scheme245

The leaders that create a new valid block will be re-246

warded. First, we must say that we designed the proto-247

col to have separated stake and balance. This solution248

is used to have a higher and lower liquidity part of the249

node’s value. To transfer the balance to the stake the250

node must create a specific transaction. The transfer251

will freeze the assets for some time to lower the liq-252

uidity and to behave like an investment that yields the253

’interest rate’. The freeze time must be long enough to254

penalize the liquidity of the node’s crypto assets. The255

leader will earn a reward value, that will be set to a256

value that will be experimentally verified. The leader257

gets the transaction fee from transactions that are in-258

cluded in the block. These fees will be transferred 259

directly to the leader’s stake. 260

3.4 Joining the Protocol 261

To join the protocol, the node has to buy the balance 262

from any of the existing nodes and then convert it into 263

the stake, which constitutes the semi-permissionless 264

design [11]. 265

3.5 Forks 266

When receiving blocks there can occur a situation 267

where the received block is valid but it is at a lower 268

height in blockchain than we currently are. If we put 269

in detail the specific height, there may be a situation 270

where the main leader was temporarily offline and the 271

alternative leader published the block. However, the 272

main leader returned back and produced a block and 273

thus created a paralel chain. This behavior is called 274

forking, and it is undesirable since up to some period, 275

the blockchain might be reverted, and thus the finality 276

is achieved only after this time. Therefore, the last few 277

blocks are not stable immediately and can be changed 278

during this time. To overcome this issue, we imple- 279

mented check-pointing in the blockchain. It means that 280

if the overturning chain is too long, we will not over- 281

turn the chain, and instead preserve the current one. 282

The parameter of the maximum chain length allowed 283

to overturn will be the subject of the experiments. 284

4. Anonymization Layer 285

The anonymization is realized at the network layer 286

and works as described in this chapter. Details of 287

joining, sending, and relying messages are shown in 288

Algorithm 1. This communication on network level 289

won’t be anonymized. It is not an issue, because it 290

will not contain any peer identifier, which makes it 291

impossible to link peer identity (public key) to the 292

node identity (IP address). 293

4.1 Joining the network 294

When node N want’s to join a network, it must do 295

following steps: 296

1. New node N gets a list of IP addresses of all 297

nodes from a directory (its trustworthiness may 298

be ensured by multiple ways, e.g. [12]) 299

2. N selects n sets of m peers 300

3. For each route: Build a circuit consisting of m 301

selected nodes (in chosen order n1,n2, ...nm). To 302

build a circuit, perform a key exchange with 303

each of the selected nodes, for example by the 304

approach proposed in [7]. 305
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4. The circuit has been established. N now shares306

secret key Ki with ni for each i. Every further307

communication will be anonymized.308

4.2 Sending the messages309

Any message P wants to send (broadcast) is sent in the310

onion routing manner, i.e.:311

1. The message is encoded so it can be received by312

the intended receivers313

2. The message M is encrypted with Ki: Ki(M)314

3. The result of the previous step is encrypted with315

K(m−x) for x = m−1 downto 1 and appended316

with IP of the (m− x+1)th peer in the circuit.317

For example (m=3): K1(p2,K2(p3,K3(M)))318

4.3 Relaying the messages319

• When a peer pn in a circuit receives a message, it320

decrypts it using the key shared with P. It discov-321

ers the identity of p(n+1) and sends the message322

(that is still encrypted by P using K(n+1)) to323

it (the message is encrypted by the transport324

layer).325

• If there is no p(n+1), the peer is an exit peer. It326

decrypts the message and gossips it [7, 8].327

5. Experiments328

We concluded multiple experiments that consists of329

running blockchain with specific properties. We can330

divide these experiments to three parts:331

• Without anonymization layer on localhost.332

• With anonymization layer on localhost.333

• With anonymization layer on separate virtual334

machines.335

Algorithm 1: Anonymization layer interface
. DECLARATION OF TYPES AND VARIABLES:

route { noden−1, noden−2, . . ., node0},
node { addr, key },
addr { IP, port },
this: the current node,
routes: list of all routes that will be used in

anonymization layer,
Message: constructor of selected messages,

function joinNetwork(n routes, m nodes)
allnodes← getNodes();
routes← pickRoutes(n routes,m nodes);
for route: routes do

for node: route do
exchangeKey(node);

for route: routes do
veri f yRouteInitialization(route);

function SendMessage(dst, msg)
for route : routes do

relay msg←Message.Relay(dst,msg);
for node : route do

ct← Σnode.key.encrypt(msg);
em←Message.Encrypted(this.addr,ct);
relay msg←

Message.Relay(node.addr,em);
gossip(route[−1],relay msg);

function RelayMessage(src, relay msg)
msg key← f indKey(nodes,src);
msg← Σmsg key.decrypt(relay msg);
transport key← f indKey(nodes,msg.dst);
ct← Σtransport key.encrypt(msg);
em←Message.Encrypted(this.addr,ct);
send(msg.dst,em);

Each part consists of multiple runs with different 336

settings that are described in Table 2. 337

First part aims to test the raw performance of the 338

consensus layer. That can be seen as blue line in Fig- 339



ure 4 and Figure 3. The peak value of transaction340

per second is 28.4 when processing 10000 transac-341

tion in 1 block. The red line shows us results when342

the anonymization layer is turned on. This exper-343

iment shows us the difference in throughput when344

anonymization layer is turned on. The Figure 4 shows345

us that the anonymization layer has a small impact on346

throughput of the protocol.347

The overall results are not that appealing and we348

found out that they are badly influenced by the imple-349

mentation constrains of the used language (Python)350

and some other architectural flaws of the application351

itself (serialization and deserialization of Json, slow352

cryptographic library). We assume when using com-353

piled language the result could be significantly better.354

Run Block Size τ

1. 10 120
2. 100 120
3. 1000 120
4. 10000 120

Table 2. Blockchain properties that are applied to a
specific run of a blockchain.
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6. Conclusions355

This paper identifies the current problems of the cur-356

rent state-of-the-art Proof-of-Stake protocols such as357

throughput, anonymity in consensus layer. It imple-358

ments proposed consensus protocol by the authors359

mentioned in Acknowledgment. To present the achieved360
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results, the proposed protocol was implemented as 361

proof-of-concept and tested in several scenarios. 362
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[6] Daniël Reijsbergen, Pawel Szalachowski, Jun-399

ming Ke, Zengpeng Li, and Jianying Zhou.400

Laksa: A probabilistic proof-of-stake protocol.401

[7] Paul Syverson, Roger Dingledine, and Nick402

Mathewson. Tor: The secondgeneration onion403

router. In Usenix Security, pages 303–320, 2004.404

[8] David Goldschlag, Michael Reed, and Paul405

Syverson. Onion routing. Communications of406

the ACM, 42(2):39–41, 1999.407

[9] Shaileshh Bojja Venkatakrishnan, Giulia Fanti,408

and Pramod Viswanath. Dandelion: Redesigning409

the bitcoin network for anonymity. Proceedings410

of the ACM on Measurement and Analysis of411

Computing Systems, 1(1):1–34, 2017.412

[10] Don Johnson, Alfred Menezes, and Scott Van-413

stone. The elliptic curve digital signature algo-414

rithm (ecdsa). International journal of informa-415

tion security, 1(1):36–63, 2001.416

[11] Ivan Homoliak, Sarad Venugopalan, Daniël Rei-417
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