
http://excel.fit.vutbr.cz

Wi-Fi attacks using ESP32
Richard Stehlı́k*

Abstract
This work explores possibilities of Espressif’s ESP32 SoCs in combination with its official devel-
opment framework ESP-IDF in terms of implementing well-known Wi-Fi attacks on them. Using
ESP32 for such attacks may allow attackers to scale their malicious intentions more easily and cut
cost and complexities of Wi-Fi attack executions to minimum. Being low powered device also opens
ways to minimize size of necessary hardware for Wi-Fi attacks and can easily operate on battery
while maintaining a low weight.
Proposed solution presented in this work covers attacks on WPA/WPA2 authentication and their
variations like station deauthentication, WPS PIN brute-force attack or PMKID capture. An universal
Wi-Fi penetration tool for ESP32 was introduced, that provides easy way to implement new attacks
and their variants in the future. It shows how these attacks can be implemented purely by using
ESP-IDF’s public API or by bypassing closed source Wi-Fi Stack Libraries that have incorporated
protection against misusing ESP32 for sending forged frames.
The outcome supports the need to mitigate some vulnerabilities in currently widely used Wi-Fi
security features and give them more attention with higher priority.

Keywords: ESP32 — ESP-IDF — Wi-Fi attacks

Supplementary Material: Demonstration Video — Git Repository

*xstehl16@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

While Wi-Fi networks and its underlying 802.11 stan-
dard is widespread all around the world and today its
usage is even more supported by raise of IoT devices
and demand for portability, it still has its flaws in orig-
inal design that were not yet fully mitigated. Besides
some of the longtime well-known attacks like deau-
thentication attack that are exploiting parts of original
802.11 standard, new attacks are appearing even now,
more than 20 years later after initial 802.11 standard re-
lease back in 1997. Some of them are exploiting newly
found vulnerabilities like KRACK attack described in
2017 [1] or describing vulnerabilities themselves like
KR00K first disclosed in 2020 [2]. There are also new

methods being discovered that simplifies previously
described attacks like attack on PMKID that greatly re-
duces requirements for classic handshake capture and
brute force attack to crack network passphrase to gain
access to target network or session Pairwise Transient
Key to decrypt captured communication [3, 4].

Most of these attacks are already implemented and
integrated in tools that usually rely on services pro-
vided by underlying operating system. One of the
mostly referred tool for this kind of attacks is aircrack-
ng1 that operates on Windows, Linux, OS X and other
UNIX based operation systems. They also require
some insight into the topic and require specific hard-

1https://www.aircrack-ng.org/

http://excel.fit.vutbr.cz
https://youtu.be/9I3BxRu86GE
https://github.com/risinek/esp32-wifi-penetration-tool
mailto:xstehl16@stud.fit.vutbr.cz
https://www.aircrack-ng.org/


Figure 1. An example of ESP32 DevKitC board connected to a Li-Pol accumulator that altogether weights
around 17 grams. Czech 5-koruna coin included for scale. This demonstrates how using ESP platform can be
useful in terms of downsizing hardware requirements. It can be easily downsized further by using ESP32
module directly, voltage regulator and smaller accumulator to a really small piece of hardware that is easy to
hide or transportable for example with small remotely controlled drone.

ware like Wi-Fi adapter with promiscuous mode and
frame injection capability. Even though most of these
systems are able to run on small computers like Rasp-
berry Pi, in order to go further with reducing hardware
size, weight and price needed for the attack, these op-
erating systems are usually a limitation by themselves.
By reducing hardware size and price, it can unleash
new attack vectors that can lead to attacks in places,
that for example were considered secure by physical
measures. It can also simplify the overall usage for
users by preprogrammed chips that then work in a
plug and play way. Microcontrollers manufactured
by Espressif Systems with integrated Wi-Fi interface
are perfect adepts to be used for Wi-Fi penetration
considering also their well documented Espressif IoT
Developement Framework (ESP-IDF). ESP32 is cur-
rently their latest and most evolved MCU they produce.
Figure 1 demonstrates one of the many possibile ways
how to wire and operate ESP32 in a compact way.

Motivation behind this work is to explore possi-
bilities of ESP-IDF and demonstrate that ESP32 plat-
form is capable of executing malicious Wi-Fi attacks
just by utilising ESP-IDF itself. Executing attacks on
ESP32 can be an efficient alternative to existing so-
lutions running on Raspberry Pi Zero W or similar
micro-computers. Direct comparison with Raspberry
Pi Zero W, that can be considered a closest competitor
to ESP32, is presented in Table 1. As ESP32 requires
low power and allows some low level configurations
with Wi-Fi interface on MAC layer, it creates space
for experimentation and may open new possibilities in
attacker’s scenarios.

This work explores capabilities of ESP-IDF and
propose ways how to implement different well-known
Wi-Fi attacks. It also takes advantage of existing
projects, that already solved some of the obstacles in-

troduced by ESP-IDF design and developer decisions
and builds complex attacks on top of them. Practical
outcome of this work is an universal Wi-Fi penetra-
tion tool that is easily extensible by adding new attack
types and their methods and also includes some of
the proposed attacks implementations to prove this
concept.

1.1 Contribution
The main contribution of this work is proposal of im-
plementations of various widely known Wi-Fi attacks
using ESP-IDF and ESP32 platform. New approach
to execute deauthentication attack by creating cloned
rogue access point exploiting native behaviour defined
in 802.11i standard is proposed that allows deauthenti-
cation attack even without frame injection capability.
Some of these implementations are then realised by
implementing a new tool to consolidate various at-
tacks into one place that makes executing them simple
alongside with easing addition of new attacks and their
variants. To demonstrate usability, deauthentication at-
tacks for denial of service attacks and for WPA/WPA2
handshake capture were included in the tool.

2. Common Wi-Fi attacks
Even though 802.11 standard was first introduced more
than 20 years ago and is being actively amended by
IEEE organisation, there are still vulnerabilities deep
in its design that are hard to mitigate without rework-
ing whole concept. These vulnerabilities are drawing
attention of various attackers with all kinds of inten-
tions. Attacks and exploits taking advantage of these
vulnerabilities are being well described and are imple-
mented in various forms. This section briefly describes
common Wi-Fi attacks that have a potential to be im-
plemented on ESP32 platform.



Table 1. Comparison of ESP32 with Raspberry Pi Zero W

ESP32 Raspberry Pi Zero W

Monitor mode native requires custom firmware [5]
Frame injection limited, can be unblocked requires custom firmware [5]
Average current draw ∼100mA ∼150mA [6]
Boot current draw <100mA up to 200mA [6]
Voltage 3.3V or 5V 5V [6]
OS — e.g. Kali Linux
Weight 3.5g (module) 9g [6]
Dimensions 25.2x18x2.8mm (module) 65mm x 30mm x 5.4mm [6]
Price ∼80 CZK (module) ∼300 CZK
Other caveats requires SD card

often out of stock

2.1 Deauthentication attack
Deauthentication attack exploits a behaviour described
in 802.11 standard, which allows access point (also
referred to as AP in this work) or station (STA) to inter-
rupt authenticated session by sending deauthentication
management frame to its counterpart. If the station or
access point receives this kind of frame, it will stop
further communication with opposite side until STA
authenticates itself again. In original version of 802.11
standard management frames are not encrypted nor
they are authenticated [7], so potential attacker within
the reach of target network can forge deauthentication
frames and broadcast them to his vicinity. Due to lack
of authentication or encryption of these frames, sta-
tions and access points cannot differentiate between
forged and genuine frames and will assume they are
valid — resulting into deauthenticating themselves
from the network.

Even though this exploit was addressed in 802.11w
amendment in 2009 by forcing encryption of sub-
set of management frames including deauthentication
ones [8], it is not widely used and most of now-days
APs does not have this feature enabled by default or
even not available at all [9]. Hence this type of attack
is one of the most used and is often a precondition of
many other attacks.

2.2 WPA handshake brute-force attack
Due to a way how session keys for authenticated ses-
sions are being established in WPA/WPA2, it’s pos-
sible to brute force network passphrase from the ini-
tial handshake exchange if captured. During hand-
shake both involved parties are exchanging parame-
ters from which they later calculate same Pairwise
Transient Key — PTK in format PTK = PRF (PMK,
ANonce, SNonce, MAC(AA), MAC(SA)).
These parameters are random AP nonce, random STA
nonce and both their MAC addresses as can be seen on
figure 2. All of these parameters are not encrypted and

802.1X
Supplicant

Key installation

802.1X
Authenticator

EAPoL-Key (ANonce)

EAPoL-Key (ANonce, MIC, GTK)

EAPoL-Key (SNonce, MIC)

EAPoL-Key (acknowledgement, MIC)

Calculates PTK

Calculates PTK

Known PMK,
SNonce

Known PMK, 
ANonce

Key installation

Figure 2. Simplified sequence diagram of
WPA/WPA2 handshake exchange where both sides
exchange four messages with parameters for
calculating same Pairwise Transient Key that is then
used for frame encryption. From the sequence
diagram it’s clear that only secret here is Pairwise
Master Key that is used to calculate PTK and is not
being transmitted over network. Hence PMK is main
target of handshake capture and following brute-force
attack

can be easily eavesdropped. The unknown part here
is Pairwise Master Key — PMK, that both sides know
in advance and is never transmitted over network. But
as PMK format is as following — PMK = PBKDF2(
Passphrase, SSID, 4096, 256), the only re-
ally unknown part is the network’s passphrase. This
is visualized on Figure 3. Once STA or AP has cal-
culated PTK, it starts calculating Message Integrity
Code – MIC using the PTK over subsequent messages
and includes it in the message itself. Having all these
information from captured handshake, attacker can
brute-force the passphrase by assembling PMK with
guessed passphrase, then calculating PTK that is then



Pass-
phrase SSID 4096 256

PMK ANonce SNonce MAC AP

PMK/PSK

PTK MAC STA

Figure 3. Hierarchy of keys used in WPA
authentication. Blue color visualises fields, that are
known to attacker as they are transmitted over wireless
medium without any encryption. Orange color
visualises the secrets, that are unknown to attacker.

used to calculate MIC and finally comparing it to ac-
tual MIC captured from original handshake message.
If they match, the passphrase was found. This kind
of brute-force attack can be automated by using for
example password recovery tool Hashcat2.

As this type of attack require some genuine sta-
tion to join network at the time when the capture is
happening, it’s usually combined with deauthentica-
tion attack. This, in combination with an automatic
rejoin feature that tries to connect device again to the
network if it was disconnected, speeds up whole pro-
cess of obtaining WPA/WPA2 handshake from target
network.

2.3 PMKID capture and brute-force attack
Relatively new attack described in 2018 [3] aims on
capturing PMKID from access point. The format
of PMKID is as following PMKID = HMAC-SHA1(
PMK, "PMK Name", MAC AP, MAC STA).
Again, the only unknown secret here is the PMK. The
PMKID is usually being send by APs with roaming
feature enabled in the first message of WPA handshake.
Hence it can be brute-forced by checking calculated
PMKIDs against the original one similarly to the brute-
force attack on PMK in classic WPA/WPA2 handshake
brute-force attack described in section 2.2. In contrast
to classic WPA/WPA2 handshake capture and brute
force attack, this approach does not require any STA
to be active on the network.

2.4 WPS PIN attack
Another common attack that is still applicable on many
networks is taking advantage of the poor design of Wi-
Fi Protected Setup [10]. WPS was introduced by Wi-Fi
Alliance in 2007 to ease setting up WPA2 secured net-
works and connecting new stations for non-technical
users. When station is successfully authenticated, AP
transmits WPA/WPA2 passphrase to station so it can
then automatically proceed with WPA/WPA2 authenti-

2https://hashcat.net/hashcat/

check-
sum#2 #3 #4 #5 #6 #7#1

First part Second part
WPS PIN

Figure 4. WPS PIN consists of eight digits, where the
last digit is a checksum of the first seven digits.
During WPS authentication where AP is in Enrollee
role, AP is validating PIN in two phases. First it
checks first four digits and only if they are correct, it
moves forward to validate next three digits.
Checksum is calculated over the first seven digits.

cation as if user would provide passphrase manually.
Besides other methods, it allows authentication by PIN
code that is provided by AP and is the only method
that does not require physical access to some authenti-
cation authority (for example physical push button or
NFC reader) [11].

Although WPS PIN method can be considered se-
cure in theory, the implementation of it, especially the
PIN verification phase makes it vulnerable to brute-
force attack. By design the eight-digits long PIN code
is split in half. In a first authentication phase, AP
validates first four digits and if they are not correct, au-
thentication fails with NACK message from AP. When
the first four digits are correct, it proceeds with valida-
tion of second half. Second half of PIN is split even
further — last digit is checksum of first seven digits of
the PIN. This division is visualised on Figure 4.

This validation flow drastically reduces complexity
of brute-force attack as instead of 108 possible combi-
nation (if the full length of the PIN is not predictable
and validation is done in a single run) it now requires
only 104 + 103 = 11000 attempts to exhaust whole
space of possible combinations, making this type of
attack very efficient. If AP is not protected against this
attack by some cool-down period after given number
of authentication failures, it may take up to approxi-
mately 4 hours to find the correct PIN [10].

2.5 KRACK attack
KRACK (which is an abbreviation of Key Reinstalla-
tion Attack), first described in 2017, exploits behaviour
of stations after receiving third message of WPA hand-
shake [1]. By design of 802.11i standard which is
underlying protocol for WPA/WPA2 standard, when
station receives third handshake message, it should
install PTK calculated after receiving first handshake
message from AP [12] — this can be seen as Key instal-
lation event on Figure 2. This event also resets session
parameters like packet nonce or replay counter [1].
Due to presence of Message Integrity Code and packet
nonce and replay counter in handshake messages, they

https://hashcat.net/hashcat/


cannot be simply captured and replayed later. Man in
the Middle (MitM) attack has to be setup to postpone
third handshake message from AP with valid relay
counter and MIC for later re-transmission to actual
STA. At the time of this vulnerability disclosure, the
vulnerability severity was multiplied by a bad design
of Linux’s wpa supplicant in versions 2.4 and 2.5
used in Linux and Android distributions. This imple-
mentation caused reinstallation of all-zero key instead
of the original PTK generated after first handshake
message [1]. As a result, all following communica-
tion was encrypted by cryptographically weak all-zero
key. This issue was addressed since version 2.6 of
wpa supplicant and hence only outdated devices
may still be prone to this kind of attack [1]. There
is still a space for cryptoanalysis considering reused
parameters are being used, but those are out of scope
of this work.

2.6 Kr00k attack
One of the most recent vulnerabilities discovered in
Wi-Fi networks called Kr00k and disclosed in 2019,
takes advantage of vulnerability in Broadcom and Cy-
press Wi-Fi chips design [2]. These chips implement
transmit buffer from which some frames may be trans-
mitted encrypted by all-zero key [2]. This occurs,
when the vulnerable station is disassociated from AP
and clears it’s encryption key before all frames are
transmitted from transmit buffer [2]. This is not an
attack on its own, but if the disassociation is forced
intentionally by for example deauthentication attack
and frames encrypted by all-zero key are captured, it
may target on specific victim on the network and can
be considered an attack. Although this was patched
on most of the affected chips, it can still be a possible
attack vector on some outdated devices.

3. Possibilities of ESP-IDF
ESP-IDF provides powerful API for controlling em-
bedded Wi-Fi interface. In this section the actual im-
plementations of attacks briefly introduced in section 2
are proposed and for some variations are discussed. It
also discusses existing projects that may be utilised
for attack implementations. This section also covers
ESP-IDF limitations that creates some unnecessary
obstacles to implement these types of attacks.

3.1 Limitations
Main limitation for working with Wi-Fi interface on
ESP32 are closed source Wi-Fi Stack Libraries3. These

3https://github.com/espressif/esp32-wifi-
lib

libraries incorporate a blocking mechanism that pre-
vents sending arbitrary frames of specific types like
deauthentication frames due to various undisclosed
reasons. Based on posts from Espressif’s employees
on official Espressif forum, one of the reasons may
be a potential risk of abusing this functionality for
deauthentication attacks [13, 14].

Another limitation may be the fact, that ESP32
does not have sufficient power to run offline brute-
force attack on captured WPA handshake or PMKID
in efficient time. To compensate this limitation, further
processing of captured handshake can be reduced by
providing captured data directly in a format that is
consumable by some third party password recovery
tool. For example it can be HCCAPX4 format, that can
be directly passed to well-known password recovery
tool Hashcat.

3.2 Existing solutions
The idea of utilising Espressif’s micro-controllers for
Wi-Fi attacks is not new and it was already done
on ESP8266, which is predecessor of ESP32. Even
though it’s different platform incompatible with ESP32,
it may still be beneficial to observe their implementa-
tion and take advantage of their findings while imple-
menting similar attacks on ESP32 platform.

One of the most activate and well-maintained Wi-
Fi attack project on ESP8266 platform is Spacehuhn
Tech’s ESP8266 Deauther5. This project implements
various attacks, mostly by sending forged frames like
deauthentication, probe or beacon frames. This project
is limited by ESP8266 platform itself, as it is able
to capture frames in promiscuous mode only up to
112 bytes and strips the rest [15]. Hence it cannot
implement proper handshake capture.

First try to get better insight into Wi-Fi Stack Li-
braries on ESP32 was demonstrated in project by Jeija
esp32free802116. Author of this project partially de-
compiled Wi-Fi Stack Libraries and was able to fig-
ure out a function, that could send raw frames from
buffer. Even though in project documentation it’s be-
ing said that it may allow sending deauthentication
packet, it was probably never possible as the blocking
mechanism was still in place by Wi-Fi Stack Libraries.
Espressif’s developers also made limited sending func-
tion esp wifi 80211 tx publicly available in ESP-
IDF, hence this project is not maintained anymore.

4https://hashcat.net/wiki/doku.php?id=
hccapx

5https://github.com/SpacehuhnTech/
esp8266 deauther

6https://github.com/Jeija/esp32free80211

https://github.com/espressif/esp32-wifi-lib
https://github.com/espressif/esp32-wifi-lib
https://hashcat.net/wiki/doku.php?id=hccapx
https://hashcat.net/wiki/doku.php?id=hccapx
https://github.com/SpacehuhnTech/esp8266_deauther
https://github.com/SpacehuhnTech/esp8266_deauther
https://github.com/Jeija/esp32free80211


STAGenuine AP Rogue AP

Class 2 or 3 frame Class 2 or 3 frame

Deauthenticaton frame

Authenticated communication

STA is not authenticated 
nor associated with this AP

Figure 5. By utilising ESP-IDF option to change
MAC address of interface used for AP, duplicated AP
can be created that will act as common AP responding
to stations that are sending frames to them. If
unauthenticated (from AP point of view) station sends
class 2 or class 3 frame with matching MAC address
(BSSID), AP responds with deauthentication frame
and appropriate reason as designed in 802.11 standard.
For station receiving this deauthentication frame it’s
impossible to differentiate between genuine AP and
rogue AP and accepts it as valid one disconnecting
itself from network.

More recent project from GANESH ICMC/USP or-
ganization esp32-deauther7 published in 2019 demon-
strated a working solution that bypasses the block-
ing mechanism in Wi-Fi Stack Libraries by overriding
function definition at compilation time. They were able
to decompile Wi-Fi Stack Libraries and get a declara-
tion of function that checks validity of frame in trans-
mit buffer — ieee80211 raw frame sanity -
check. Then by using linker flag -z muldefs [16]
during compilation this method can be simply overrid-
den and always return value 0, that allows transmission
of frame in transmit buffer. Despite the name of the
project, this solution actually allows sending not only
deauthentication frames, but anything stored in trans-
mit buffer without further validation by Wi-Fi Stack
Libraries.

3.3 Deauthentication using ESP-IDF libraries
without modifications

To not rely on bypassing Wi-Fi Stack Libraries block-
ing mechanism by overriding guarding function ex-
plained in section 3.2, it’s possible to utilise features
provided by ESP-IDF only. Native behaviour of ac-
cess points can be used to send deauthentication frames
to stations that try to communicate with genuine AP
within it’s a range. This is demonstrated in Figure 5.

The main feature that supports this approach is an

7https://github.com/GANESH-ICMC/esp32-
deauther

option to change MAC address of Wi-Fi interface of
ESP32. If MAC address of target AP is obtained (it is
usually BSSID that is present in most of the frames go-
ing through network), it can be configured to ESP32’s
Wi-Fi interface. If then also SSID is obtained, for
example by using built in scanning functionality of
esp wifi component, it’s possible to create exact
copy of targeted AP. Considering an ongoing authenti-
cated communication between targeted AP and some
authenticated station, whenever ESP32 AP receives
frame from this STA of class 2 or 3, it will automati-
cally respond with deauthentication frame [12]. This
is because from ESP32 AP point of view this station
is not authenticated and have to authenticate first.

Deauhentication attack can be used for example
to exploit Kr00k vulnerability or many other attacks
where deauthentication of station is a prerequisite.
This approach can be also used on various other sys-
tems, where Wi-Fi network interface has no frame
injection capability. This approach requires only MAC
spoofing option.

3.4 Capturing PMKID
Another possible attack that utilises ESP-IDF only
without any modification is PMKID attack. To capture
PMKIDs, only the first message of handshake has to be
captured. This can be triggered by connecting to target
AP with ESP32 in station mode. WPA handshake is
always initiated by AP, so if AP has PMKIDs available,
it will send them in the first message of the handshake
without any prior authentication from the station.

3.5 WPS PIN brute-force attack
Running WPS PIN attack requires working WPS Reg-
istrar logic to be implemented on ESP32. In WPS
Registrar mode, STA is authenticating itself using pre-
shared PIN code provided by AP [11]. Unfortunately
ESP-IDF provides only WPS Enrolee mode, hence
to run WPS PIN attack, WPS Registrar mode has to
be implemented first. This can be done by utilising
esp32-deauther project introduced in section 3.2, that
unblocks sending arbitrary 802.11 frames. It can be
used to send all messages until the first part of PIN is
confirmed by AP and then proceed with second part
and finally get the WPA credentials. Even though the
official documentation does not mention WPS Regis-
trar mode in WPA supplicant component, source code
exists for this mode in wpa supplicant compo-
nent8 and can be used to implement WPS Registrar
mode.

8https://github.com/espressif/esp-idf/
blob/master/components/wpa supplicant/src/
wps/wps registrar.c

https://github.com/GANESH-ICMC/esp32-deauther
https://github.com/GANESH-ICMC/esp32-deauther
https://github.com/espressif/esp-idf/blob/master/components/wpa_supplicant/src/wps/wps_registrar.c
https://github.com/espressif/esp-idf/blob/master/components/wpa_supplicant/src/wps/wps_registrar.c
https://github.com/espressif/esp-idf/blob/master/components/wpa_supplicant/src/wps/wps_registrar.c


Genuine AP Rogue MitM
AP

STA

channel X channel Y

Figure 6. Visualisation of rogue AP in Man in the
Middle position. Rogue AP fully duplicates genuine
AP using MAC spoofing and using same SSID but
operating on different channel. If some STA tries to
connect to rogue AP, for example because it has better
signal strength, rogue AP is able to manipulate and
relay communication between genuine AP and this
STA.

3.6 Man in the Middle AP
Wi-Fi interface channel of ESP32 can be switched by
using ESP-IDF’s function esp wifi set channel.
In combination with spoofing MAC address of gen-
uine AP, this allows creation of rogue AP clone on
different channel. By utilising esp32-deauther project
mentioned in section 3.2, it’s possible to forward and
manipulate whole communication between genuine
STA and AP. MitM position is demonstrated on Fig-
ure 6.

MitM AP can be used for example for KRACK at-
tack described in 2.5. It can be used to postpone trans-
mission of third handshake message that will cause
key re-installation event later on STA.

3.7 Bypassing MAC filtering
Even though MAC filtering is not considered a proper
security method alone, it’s often used as another layer
of security creating additional obstacle for potential
attacker trying to break into the target network. Al-
though changing MAC address of Wi-Fi interface is
commonly available on laptops, it’s often not possible
on mobile devices. ESP32 can be used to provide an
open AP giving any station nearby access to the target
network even if they doesn’t support changing of their
Wi-Fi interface MAC address. ESP-IDF provides a
function esp wifi set mac that allows changing
MAC address of interface. By taking advantage of
promiscuous mode, automatic capture of connected
STA MAC can be implemented and assuming the tar-
get network passphrase is already known, it can con-
nect to network by spoofing captured MAC address.

Target AP

ESP32 STA

ESP32 AP

NAT router
project

Device

Spoofed
MAC

Any
MAC

Figure 7. Visualisation of ESP32 configuration used
to bypass MAC filtering on AP and open access into
target network to devices without MAC changing
capability. This approach assumes that the passphrase
for target network is already known.

Deauthentication attack proposed in section 3.3 can be
used to disconnect genuine stations of which MAC ad-
dress is being used by ESP32. To setup an AP that then
provides access to the target network, existing project
ESP32 NAT Router9 can be utilised. This configuration
is visualised on Figure 7.

Direct comparison of what modifications different
attacks are dependent on can be seen in Table 2.

4. ESP32 Wi-Fi Penetration Tool project
As it came out of the proposed implementations in sec-
tion 3, various different attacks can be implemented
on ESP32. This fact led to an idea to create a universal
tool that would wrap shared logic and ease addition of
new attack types and their methods to create a compre-
hensive but lightweight solution for Wi-Fi penetration
testing. In this section I will introduce ESP32 Wi-Fi
Penetration Tool that realizes this idea.

To demonstrate how attacks proposed in section 3
can be actually executed on ESP32, deauthentication
attack was picked for that purpose and were imple-
mented using both proposed methods. First method is
by utilising esp32-deauther project that allows send-
ing arbitrary frames including deauthentication ones.
Second method is by creating duplicated rogue AP
exploiting native behaviour standardised in 802.11i,
where AP should automatically send deauthentication
frames whenever it receives class 2 or 3 frame from
unauthenticated station.

4.1 Project structure
The project is build on top of the components that ESP-
IDF provides and recommends to use [17]. This way,

9https://github.com/martin-ger/
esp32 nat router

https://github.com/martin-ger/esp32_nat_router
https://github.com/martin-ger/esp32_nat_router


Table 2. Attack dependencies

Attack Dependent on

Deauth ESP-IDF only (using rogue AP) or
WSL bypassing (forging deauth frames)

WPS PIN bruteforce WPS Registrar mode
KRACK MitM AP and WSL bypassing
Kr00k Deauth attack
MAC filtering bypasser ESP-IDF only (can utilise esp32-nat-router)

shared parts like Wi-Fi controller or frame analyzer are
being implemented in standalone components that can
be easily reused either directly in this project or even
in other project by simply copying them and reusing
them out of the box. ESP32 Wi-Fi Penetration Tool
project consists of following components:

Wi-Fi controller Component that handles all Wi-Fi
interface related operations and provides sim-
plified interface. It’s used to initialize Wi-Fi
interface, to control access point and station
configurations, to switch Wi-Fi interface into
promiscuous mode and other similar operations.

Frame analyzer Main purpose of this component is
to parse frames captured by Wi-Fi controller and
do an analysis of these frames. For example it
does parsing of PMKIDs from EAPOL pack-
ets, detected encrypted frames, filter frames by
BSSID and passes the results into event pool. It
also provides a parsing functionality for other
components like HCCAPX serializer.

WSL Bypasser This component is used to unblock
raw frame transmission by overriding blocking
function in Wi-Fi Stack Libraries. This com-
ponent is based on an existing project ESP32-
deauther.

Webserver Webserver component provides an UI to
control the tool itself and allows configuration
of available attacks. It’s build on top of ESP-
IDFs HTTP server component. Sample of user
interface is shown on Figure 8.

PCAP and HCCAPX serializers These two small
components fromat captured frames into a com-
mon formats like PCAP for further analysis in
Wireshark or other tools or HCCAPX for direct
use with password recovery tool Hashcat.

Main The main component groups all the attack types
and variations alongside with a universal attack
handler, that takes care of timeouts, configura-
tions and other shared operations.

4.2 Attack wrapper
The attack logic itself lives inside Main component. It
handles shared attack operations like attack timeout

Figure 8. User interface for universal ESP32 Wi-Fi
penetration tool that shows scanned APs in ESP32
surrounding and allows configuration of the attack
itself by choosing attack type, method and timeout.

and abort calls. It obtains configuration via Webserver
component from user input in JavaScript powered web
client and executes appropriate attacks and their meth-
ods based on this configuration. When the attack fin-
ishes, it returns results of the attack to the client that
displays them to user.

When adding new attack type or method, all the
programmer have to do is add this new attack into enu-
meration of available attack types and methods in main
component and in JavaScript client. Then it’s a matter
of calling appropriate functions from components that
do required operations and implementing what is not
already included.



4.3 General use-case scenario
To execute available attacks on surrounding APs with
this tool, when user powers the ESP32, management
AP is automatically started when ESP32 boot com-
pletes. User then can connect to this management AP
using for example his cellphone. He’s provided with a
web application, that allows him to pick a target AP in
his vicinity and choose attack type he wants to execute.

When the automated attack finishes, web applica-
tion shows a result of this attack to user, from where
he can for example download PCAP or HCCAPX files
or see a reason for attack failure. This depends on
specific attack type implementation.

4.4 Evaluation
ESP32 is not sufficient to run brute-force attacks so this
has to be done on external machine with reasonable
power. However this is not efficient even on standard
laptops or computers. Brute-force cracking can be
outsourced to some cloud service like AWS EC2 P3
instances10.

ESP32 with ESP32 Wi-Fi Penetration Tool can
reliably run deauthentication attacks. Some devices
may ignore broadcast deauthentication frames or be
protected against some types of attacks. It can be
solved by combining different approaches when at-
tacking against given network which is supported by
this tool by its design. There was not detected any
significant frame loss. Handshakes and PMKIDs were
always captured.

Flashing this project onto ESP32 can be done by
running simple binary included in ESP-IDF toolchain
or by using standalone flashing tool with graphical
user interface11. It can also be distributed pre-flashed,
ready to work out of the box. In both cases it doesn’t
require almost any domain knowledge from the user.
The attacks themselves are automated and everything
the user has to do is choosing target AP/network and
the type of attack he wants to run.

ESP32 as an ultra-low power platform can be ef-
ficiently powered by batteries, or smartphone which
makes the solution portable and inconspicuous. Being
less noticeable in the public by controlling the attacks
using for example a smartphone can open new attack
vectors to the attacker. Also thanks to the small dimen-
sions and light weight of the ESP32-WROOM module
alone, it makes it easily attachable to a small drone by

10https://aws.amazon.com/ec2/instance-
types/p3/

11Windows OS application — https://
www.espressif.com/en/support/download/other-
tools

which attacker can reach otherwise physically unreach-
able networks12.

By experimental measurement while executing at-
tacks implemented in Wi-Fi Penetration Tool, ESP32
consumes from 90 to 110 mA of power. Considering
two standard Li-ion batteries 18650 with capacity of
2600 mAh, this allows approximately 24 hours13 of ac-
tive attack. That is enough to run long running online
brute-force WPS attack proposed in section 3.5 taking
up to 4 hours[10]. For practical example, on Figure 1,
I have used a Li-Pol accumulator with capacity of 220
mAh, that is able to provide enough power for about
two hours of active usage.

5. Conclusions
In this paper I have explored possibilities of portability
of common Wi-Fi attacks to ESP32 platform. It was
demonstrated that attacks mentioned in this work are
possible to be implemented and executed on ESP32
thanks to capabilities like changing Wi-Fi interface
MAC address, configuring access points and stations,
promiscuous mode with an optional bypass of Wi-Fi
Stack Libraries. An universal ESP32 Wi-Fi Penetra-
tion Tool was introduced which acts as a wrapper for
further attack implementations.

Outcome of this work supports arguments why
current Wi-Fi vulnerabilities has to be taken seriously
as they are easily executable on cheap and accessi-
ble hardware. Considering that resources for Wi-Fi
attacks may be really lightweight both in terms of
price, weight and size it allows anyone with minimal
knowledge about the topic — often referred to as script
kiddie — to run potentially harmful attacks against Wi-
Fi networks in their vicinity. It may raise awareness
of how easily some of the attacks can be implemented
and why one should not rely on obsolete 802.11 imple-
mentations and outdated security features and should
upgrade their hardware (routers, cellphones and other
Wi-Fi capable devices) and software to include latest
security measures like WPA3 or 802.11w amendment.

As an demonstration of utilising official ESP-IDF
framework for Wi-Fi attack implementations I have
implemented deauthentication attack with handshake
frames capture by creating rogue access point that du-
plicates genuine one and rely on native AP behaviour
defined in 802.11 standard. I have also implemented
other variants of these attack by assembling and send-
ing deauthentication frames directly from code and
an PMKID capture attack by simply connecting to

12e.g., networks in some buildings behind fence or in higher
floors in office buildings that cannot be accessed by public

13excluding step-up voltage regulator power consumption

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://www.espressif.com/en/support/download/other-tools
https://www.espressif.com/en/support/download/other-tools
https://www.espressif.com/en/support/download/other-tools


target AP and parsing PMKIDs from first handshake
message.

This work provides a tool for further extensions
and experimentation with Wi-Fi attacks on cheap and
low powered ESP32 SoC. It shows that attacks can be
done on small hardware powered with small battery
which opens new ways how the attackers can execute
attacks. Components structure in the project provides
reusability and may simplify further researches of new
attacks. Next steps may be implementation of WPS
attack or use ESP32 to bypass MAC address filtering
on AP.

ESP32 Wi-Fi Penetration Tool was published as
an open-source project on GitHub14. The repository
includes also more detailed description of the compo-
nents and overall functionality available also in form
of GitHub Pages15.

Acknowledgements

I would like to thank my supervisor Ing. Jan Pluskal
for his valuable inputs during my work.

References
[1] Mathy Vanhoef and Frank Piessens. Key reinstal-

lation attacks: Forcing nonce reuse in wpa2. In
Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS ’17, page 1313–1328, New York, NY, USA,
2017. Association for Computing Machinery.

[2] Róbert Lipovský, Svorenčı́k, and Miloš Čermák.
Kr00k - cve-2019-15126. We live security,
page 9, 2020.

[3] New attack on wpa/wpa2 using pmkid.
online, https://hashcat.net/
forum/thread-7717-post-
41427.html#pid41427.

[4] Michael Asante and Kwabena Akomea-Agyin.
Analysis of security vulnerabilities in wifi pro-
tected access pre shared key (wpa psk/ wpa2 psk).
International Research Journal of Engineering
and Technology (IRJET), 6(1):537 – 545.

[5] Kody. Enable monitor mode & packet in-
jection on the raspberry pi. online, https:
//null-byte.wonderhowto.com/how-
to/enable-monitor-mode-packet-
injection-raspberry-pi-0189378/.

14https://github.com/risinek/esp32-wifi-
penetration-tool

15https://risinek.github.io/esp32-wifi-
penetration-tool/

[6] RASPBERRY PI FOUNDATION. Faqs.
online, https://www.raspberrypi.org/
documentation/faqs.

[7] IEEE Standard for Information Technology-
Telecommunications and Information Exchange
Between Systems- Local and Metropolitan Area
Networks- Specific Requirements- Part 11. New
York, USA, 1999 ed. edition, 2003.

[8] IEEE Standard for Information technology -
Telecommunications and information exchange
between systems - Local and metropolitan area
networks - Specific requirements. Part 11. USA,
2009 ed. edition, 2009. 802.11w.

[9] Hans Matthé. 802.11w – does it work? online,
https://www.boostyourwifi.be/
2018/07/04/802-11w-does-it-
work/.

[10] Stefan Viehböck. Brute forcing wi-fi protected
setup. 2011.

[11] Wi-Fi Protected Setup Specification,
1.0h edition, 2006. online, https:
//www.wi-fi.org/discover-wi-fi/
wi-fi-protected-setup.

[12] IEEE Standard for information technology-
Telecommunications and information exchange
between systems-Local and metropolitan area
networks-Specific requirements-Part 11. New
York, USA, 2004 ed. edition, 2004. 802.11i.

[13] Angus Gratton. esp wifi internal. on-
line, https://www.esp32.com/
viewtopic.php?t=586.

[14] Ivan Grokhotkov and Jeroen Domburg.
Please open source this library. online,
https://github.com/espressif/
esp32-wifi-lib/issues/2.

[15] ESP8266EX, 6.6 (2020.10) edition, 2020. online,
https://www.espressif.com/sites/
default/files/documentation/0a-
esp8266ex datasheet en.pdf.

[16] ld(1) - Linux man page. online, https://
linux.die.net/man/1/ld.

[17] ESP32, 2020. online, https:
//www.espressif.com/sites/
default/files/documentation/
esp32 technical reference manual en.pdf.

https://hashcat.net/forum/thread-7717-post-41427.html#pid41427
https://hashcat.net/forum/thread-7717-post-41427.html#pid41427
https://hashcat.net/forum/thread-7717-post-41427.html#pid41427
https://null-byte.wonderhowto.com/how-to/enable-monitor-mode-packet-injection-raspberry-pi-0189378/
https://null-byte.wonderhowto.com/how-to/enable-monitor-mode-packet-injection-raspberry-pi-0189378/
https://null-byte.wonderhowto.com/how-to/enable-monitor-mode-packet-injection-raspberry-pi-0189378/
https://null-byte.wonderhowto.com/how-to/enable-monitor-mode-packet-injection-raspberry-pi-0189378/
https://github.com/risinek/esp32-wifi-penetration-tool
https://github.com/risinek/esp32-wifi-penetration-tool
https://risinek.github.io/esp32-wifi-penetration-tool/
https://risinek.github.io/esp32-wifi-penetration-tool/
https://www.raspberrypi.org/documentation/faqs
https://www.raspberrypi.org/documentation/faqs
https://www.boostyourwifi.be/2018/07/04/802-11w-does-it-work/
https://www.boostyourwifi.be/2018/07/04/802-11w-does-it-work/
https://www.boostyourwifi.be/2018/07/04/802-11w-does-it-work/
https://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://www.esp32.com/viewtopic.php?t=586
https://www.esp32.com/viewtopic.php?t=586
https://github.com/espressif/esp32-wifi-lib/issues/2
https://github.com/espressif/esp32-wifi-lib/issues/2
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://linux.die.net/man/1/ld
https://linux.die.net/man/1/ld
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf

	Introduction
	Common Wi-Fi attacks
	Possibilities of ESP-IDF
	ESP32 Wi-Fi Penetration Tool project
	Conclusions
	References

