
http://excel.fit.vutbr.cz

Approximation of Sound Propagation by Neural
Networks
Son Hai Nguyen*

Speeds of SoundWave Sources

Inputs

Wavefield

Neural
Solver

Outputs

Solves the
Helmholtz PDE.

Abstract
Neural solvers have been increasingly explored with the aim of replacing computationally ex-
pensive conventional numerical methods for solving PDEs. This work focuses on solving the
time-independent Helmholtz equation for transcranial ultrasound therapy. Most of the popular
methods for modeling physics systems are based on U-net. However, convolutional neural networks
require the data to be sampled on a regular grid. In order to try to lift this restriction, we propose
an iterative solver based on graph neural networks. Unlike Physics-informed neural networks, our
model needs to be trained only once, and only a forward pass is required to obtain a new solution
given input parameters. The model is trained using supervised learning, where the reference
results are computed using the traditional solver k-Wave. Our results show the model’s unroll
stability despite being trained with only 8 unroll iterations. Despite the model being trained on the
data with a single source, it can predict wavefields with multiple sources and generalize to much
larger computational domains. Our model can produce a prediction for sub-pixel points with higher
accuracy than linear interpolation.

Keywords: Neural solver — Helmholtz equation — Graph neural network — Transcranial ultra-
sound — PDE

Supplementary Material:
*xnguye16@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The transcranial ultrasound therapy has been recently
approved by Food and Drug Administration (FDA)
for essential tremor, and Parkinson’s disease treat-
ment [31]. Currently, there are experimental treat-
ments using ultrasound to create microbubbles, which
enable targeted drug delivery for Alzheimer’s disease
and brain tumors treatment [16].

The ultrasound transmitter positioning requires

a simulation of the ultrasound propagation through
a skull, which depends on solving the Helmholtz equa-
tion. The waves have to be focused in the area of
interest in order to make thermal ablation, and other
treatments [12] possible. The simulation using tradi-
tional solvers requires a lot of computational resources.
With a focus on reducing the simulation time, approxi-
mators based on neural networks have been proposed
— neural solvers.

Most neural physical systems adopt Convolutional

http://excel.fit.vutbr.cz
mailto:xnguye16@stud.fit.vutbr.cz

Speed of SoundWave Sources

En
co
de

Residual

INPUTS GRAPH NETWORK WAVEFIELD

Pr
oc
es
s

De
co
de

10x

Acts as an
iterative solver.

Inputs are
sampled on a
regular grid.

All nodes within
a given radius
are connected.

Solves the Helmholtz
equation using only

a forward pass.

Figure 1. Proposed system is based on a graph neural network (GNN) used as an iterative solver. Given the
speed of sound, wave sources, and residual (Equation (10)) of a wavefield prediction from the previous iteration,
the model outputs a refined prediction of the unknown wavefield. Unlike PINN methods, our model does not
require to be trained for each new set of PDE parameters.

Neural Networks (CNN) [34, 36] or Physics-informed
neural networks (PINN) [26, 17, 7, 32, 10]. The first
family of methods works only with data sampled on
a regular grid. On the other hand, the latter group
of methods is mesh-independent. However, the net-
works need to be retrained for each new set of PDE
parameters.

Our method tackles these problems by employ-
ing Graph Neural Networks (GNN) [30, 11], allowing
more variable mesh than CNNs. We use graph edges to
control the message passing between the nodes, which
correspond to the samples in a space. The network is
structured as an iterative solver [27]. Only a forward
pass of the model is required to solve a Helmholtz
equation for a new set of parameters.

and is able to solve the Helmholtz equation for
a new set of parameters using nothing but a forward
pass.

1.1 Governing Equations
This work focuses on equations used in sound-waves
modeling. Wave equation describes the propagation of
waves through space:

∂2u(x, t)

∂t2
= c2∇2u(t,x), (1)

where u : Rn → C is a wavefield, n ∈ Z+ denotes
the dimensionality, t, c ∈ R+ is a speed of sound
(SOS), and x ∈ Rn stand for time variable and spatial
coordinate, respectively.

However, in transcranial focused ultrasound ther-
apies [16, 12, 31], the focused ultrasound beam is
applied for a period of time exceeding the time re-

quired to reach a steady state. Consequently, the time-
independent Helmholtz equation is used in this work
to model the propagation of waves (Figure 2).

SourceWavefieldSpeed of
Sound (SOS)

Figure 2. In this work, a speeds of sound c contains
only a model of a skull, which has a different speed of
sound than the surrounding medium. Source values ρ
are zero, except at the location of a source, where the
value is set to the source amplitude. Inverse problem
is not contemplated in this work. Thus the wavefield u
is the only unknown in the equation.

Helmholtz equation The Helmholtz equation is a
result of the separation of variables in the Wave equa-
tion (Equation (1)). Although a simulation of ultra-
sound propagating through the skull involves nonlinear,
shear, and other effects, Stanziola et al. [34] present
that these effects can be added after computing the
wavefield modeled by Helmholtz equation. Thus, we
focus on modeling a simplified model of wave propa-
gation described by the Helmholtz equation subjected
to the Sommerfield radiation condition at infinity [33]:[

∇2 +

(
ω

c(x)

)2
]
u(x) = ρ(x), (2)

Domain Ω PML
Attenuates all

incoming waves to
prevent reflections
from the borders.

For each point x
there is defined

a speed of sound c(x).

Figure 3. To satisfy Sommerfield condition
(Equation (3)), an artificial layer (PML) is wrapped
around the domain Ω to attenuate all incoming waves.
Adapted from Stanziola et al. [34].

s.t. lim
|x|→∞

|x|
n−1
2

(
∂

∂|x|
− i

ω

c0

)
u(x) = 0, (3)

where n ∈ Z+ is the number of dimensions, ω ∈ R
stands for the angular velocity of the source, x ∈ Rn

is a spatial coordinate, c : Rn → R+ is the inho-
mogeneous speed of sound (SOS) at a certain given
point x, ρ : Rn → C denotes the forcing term, and
u : Rn → C is the unknown acoustic wavefield. The
inhomogeneous SOS is considered only within a do-
main of interest Ω, for the rest of the domain ∂Ω the
speed of sound is homogeneous with a value equal
to c0. Graphical example of the components of the
Helmholtz equation are shown in Figure 2.
Perfectly Matched Layer In order to satisfy the
Sommerfield radiation condition in a finite domain Ω,
a boundary condition such as Perfectly Matched Layer
(PML) [4] can be applied. PML is an artificial layer
surrounding the domain Ω attenuating all incoming
waves to prevent reflections from the domain’s border.
Consequently, PML simulates an infinite domain, as
shown in Figure 3.
By employing a PML, an absorption term is introduced
into the derivative operators:

∂

∂η
→ 1

γη

∂

∂η
, (4)

where η = x1, x2, . . . , xn, xj corresponds to the j-th
spatial dimension, and where

γη =

1, η ∈ Ω

1 +
i

ω
σ(η), otherwise

(5)

where ω is the angular velocity from Equation (2), Ω
is the domain of interest, and the absorption profile σ

is defined by the following equation:

σ(η) = σmax

(
1− η̂

∆L

)2

, (6)

where σmax is maximum PML absorption parameter,
∆L defines the width of a PML and η̂ is the spatial
distance from the domain border in a give dimension.

2. Related Works
In recent years, more emphasis has been put on re-
searching neural operators. The main objective of
these approximate solvers is to estimate the solution
of a given PDE faster or lift restrictions created by
conventional numerical solvers.

We consider PDEs of the following form:

(Lau)(x) = f, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(7)

where a represents parameters of a differential operator
L, and u, f are functions on the spatial domain. f
represents a forcing term, whereas u is the solution in
the forward simulation.

Although k-Wave [37] belongs to the conventional
solver family, it uses k-space pseudospectral method [5,
6, 22, 35], which allows sparser discretization than
FEM [13] and FDM [23]. Unlike traditional solvers,
neural solvers utilizes a neural network. In recent
years, CNNs [34, 36] has become one of the most
common approaches to model physical systems. How-
ever, these systems suffer by requiring input data to be
sampled on a regular grid. Nonetheless, CNNs yield
impressive results.

R = Lau− f (8)

Authors of Helmnet [34] pursue the identical objec-
tive as our work — solving the Helmholtz equation
(Equation (2)). Helmnet is structured as an iterative
solver based on U-net [27], instead of passing the PDE
parameters directly, the authors discovered that incor-
porating these parameters into the residual term R
(Equation (8)) eases the network learning the mapping
from the parameters of a PDE a to a solution u. Al-
ternatively to the other approaches [36], Helmnet is
trained using only a physics loss.

Recently, there has been growing interest in mesh-
independent methods. Various Physics-informed neu-
ral network (PINN) methods [10, 32, 7, 26, 17] use
multilayer perceptron (MLP) to map a spatial coor-
dinate x directly to solution u(x). In contrast with
previously mentioned methods, PINN methods learn
to represent the solution instead of computing one. The

networks need to be trained again for each new set of
PDE parameters a. Nevertheless, querying a new posi-
tion x requires only a forward pass of a model, making
it mesh-independent. PINN methods utilize an auto-
matic differentiation to compute the spatial derivatives
used in a physics loss. Thus, PINN methods enforce
strong form of the governing PDE.

Every physics system can be modeled using a
graph, as samples produced by spatial sampling can
be represented as nodes in a graph. Sanchez-Gonzalez
et al. [28] connect nodes in a certain radius, whereas
Pfaff et al. [24] operates directly with edges produced
by mesher. These two methods networks [24, 28] are
based on the Encode – Process – Decode architec-
ture defined under the Graph Network framework [3].
However, the mentioned methods predict only the time
evolution of time-dependent PDEs. Methods such as
Li et al. [18], Anandkumar et al. [2] have shown a
capability to solve time-independent PDEs. Graph
Kernel Network (GKN) [2] learns the Green’s func-
tion of a given PDE directly by encoding it in the
model’s weights. Unfortunately, the number of edges
grows quadratically with the number of nodes. Fourier
Neural Operator (FNO) [18] extends GKN by replac-
ing the integral kernel with convolution in the Fourier
space. A layer transforming data in the Fourier space
and transforming it back to the physical space is called
Fourier Layer.

3. Proposed Solution
To solve the Helmholtz equation, we propose an itera-
tive solver defined by the following equation:

uk+1 = fθ(v, e, uk, Rk), (9)

where uk and Rk are wavefield prediction and residual
at k-th iteration, fθ, v and e denote neural network,
node features and edge features, respectively. The
neural network fθ is described more extensively in
Section 3.2.

Unlike Helmnet [34], our solution employs super-
vised learning, thus a reference solution u∗(x) is re-
quired. The following section provides a more detailed
description the used dataset.

3.1 Skull Dataset
We use the method proposed by Stanziola et al. [34]
for synthetic skulls as sound speed maps. The shape of
the idealized skulls is created by summing circular har-
monics with random amplitude and shape. Since the
whole work considers normalized units ω = 1 rad/s
and background speed of sound of 1m/s, the skull
thickeness ranges from 2 to 10m with sound speed

varying from 1.5 to 2m/s. We set the grid size to
384 × 384 with 0.25m grid spacing to allow later
downsampling if needed

We employed k-Wave [37] to generate ground-
truth solutions for each sample. For each skull, three
random wave source positions are generated. Based
on the linearity of the Helmholtz equation, solutions
can be summed in order to create a new, more complex
solution with multiple sources (Figure 5). Training,
validation, and test sets contain 24000, 3000, and 3000
wavefields samples, respectively. The dataset is avail-
able on a public repository1.

3.2 Model Architecture
Figure 4 depicts used neural network, which is based
on Graph Network [3] with Encode – Process – Decode
structure [24, 28].

All parts of the process block ϕe, ϕv, both en-
coders ϵv, ϵe and decoder δv are implemented using
a two-layer MLP with ReLU activation function [1]
and a residual connection. The latent and output size
is 64, except δv, whereas the output size equals to the
model’s output size. The MLP is depicted in Figure 6.

All parameters from the Helmholtz equation, such
as SOS map, source map, or spatial coordinate, are
used as an input along with the prediction and its resid-
ual from a previous iteration. All nodes are sampled
on a uniformly spaced grid, where all nodes within a
radius r = 0.02 are connected.

Encode Encoder consists of two separate MLPs ϵv,
ϵe for nodes and edges, respectively. These encoders
transform input features (procesess each node and each
edge separately) into latent vector of size 64. Each
node feature vi with a spatial position xi is composed
of SOS mapc(xi), wave source distribution ρ(xi) and
PML absorption term σ(xi). The distance information
|xij| and xi−xj between connected nodes is encoded
in the edges.
The SOS map is sampled using 96× 96 regular grid.
Thus the data is downsampled using a factor of 4.
Connections between nodes are created using radius
r = 0.02, node coordinates are normalized to range
[0, 1].
Additionally, we use connections between every n-th
node (hop connection), increasing the model’s recep-
tive field (Figure 7). The hop connections can be seen
as a multi-resolution graph [19, 25] and should enable
the network to predict larger area in less unroll itera-
tions. Our model contains hop connections between
every 3-th, 5-th and 10-th node.

1https://sc-nas.fit.vutbr.cz:10443/
xnguye16/ssw-dataset

https://sc-nas.fit.vutbr.cz:10443/xnguye16/ssw-dataset
https://sc-nas.fit.vutbr.cz:10443/xnguye16/ssw-dataset

ENCODE PROCESS DECODE

10x
Encodes node
features into

a latent vector.

Encodes edge
features into

a latent vector.

Updates edge
features using
given edge and
connected nodes.

Updates node
features using
given node and

connected edges.

Figure 4. The network architecture consists of by three parts — encode, process, and decode. In the encoder
stage, all features are respectively transformed into latent vectors. A message-passing mechanism is executed in
the process stage, where information from neighboring nodes is aggregated to produce updated features for the
target node and edges. Lastly, the decoder transforms data from latent space to output space.

SOS MAP

WAVEFIELD A WAVEFIELD B

WAVEFIELD A+B

Figure 5. Synthetic skulls were generated by
summing several elliptical harmonics [34]. Reference
wavefields were computed using k-Wave [37]. For
each SOS map, three wavefields were computed, each
with a different source location. Due to the linearity of
the Helmholtz equation, wavefields can be added
together to produce a new, more complex wavefield.

Process Processor unit is a derivation of a processor
defined by Pfaff et al. [24], it consists of P identical
blocks — Graph Block [3]. Each block contains a
separate set of weights.
As depicted in Figure 8, the Graph Block consists
of three parts: ϕe, ϕv and ρe→v. Function ϕe is im-
plemented using an MLP. It encodes data of an edge
and nodes connected to it into a new edge feature.
Then edges connected to a node are aggregated using
function ρe→v. In our work, we use the mean func-
tion as an aggregation function. Aggregated features
are transformed using a function ϕv into an updated

Fu
ll
y

Co
nn

ec
te
d

Fu
ll
y

Co
nn

ec
te
d

La
ye
r

No
rm
al
iz
at
io
n

Re
LU

+

Figure 6. The main building block for the whole
network is based on two-layer MLP with a ReLU
activation function and a residual connection.

Figure 7. Hop connections connects every n-th node,
in this particular case n = 4. Hop connections
n ∈ {3, 5, 10} are used in the proposed solution.

version of node features. The previously mentioned
function ϕv is implemented using MLP as well. The
described functionality is also referred to as message
passing [10]. One Graph Block corresponds to one
message passing. More Graph Blocks result in a larger
receptive field of the network.
Decode Last stage of the network δv decodes node
features from latent space into the scaled wavefield
prediction βuk+1, where β = 500 is a scaling term
(see Section 3.4).

Node BlockEdge Block

GRAPH BLOCK

Aggregate edges
to nodes.

Process
edges.

Process
nodes.

Figure 8. Graph block consists of two parts: edge
block and node block. Edge block uses features of a
given edge a its nodes to update edge’s features. Node
block updates a node features based on all nodes
connected to the target node. Functions ϕe, ϕv are
implemented using MLPs, aggregation function ρe→v

is using the mean function in our work.

3.3 Residual Calculation
Due to explicit residual calculation, an approximation
of the Laplacian has to be computed. After Equa-
tion (2) is plugged in Equation (8) the residual is de-
scribed as follows:

R =

[
∇2 +

(
ω

c(x)

)2
]
u(x)− ρ(x), (10)

Based on the conducted experiments (Section 4.2),
we use pseudo-spectral method to approximate the
derivatives, which is restricted to the regular grid.

FFT-based Stanziola et al. [34] approximates first-
order derivatives using FFT-based derivative (Equa-
tion (11)), which are then composed into the Lapla-
cian. The Laplacian can not be computed directly
as a result of using PML as the boundary condition
(Equation (4)).

d

dη
f(η) ≈ F−1 (F (ikηf(η))) , (11)

where η ∈ {x1, x2, . . . , xn} denotes a spatial dimen-
sion, kη represents wavenumbers in a given direction,
F , F−1 are Fourier transform and its inverse, respec-
tively.
Average Gradient on Star Unlike the FFT-base
method, the Average Gradient on Star (AGS) and Per-
Cell linear Estimation (PCE) methods can be utilized
on an irregular grid. In a 2D mesh, for a triangle t with
vertices vi, vj , vk, PCE is defined as follows [21]:

∇ft ≈ (fj − fi)
(vi − vk)

⊥

2At
+ (fk − fi)

(vj − vi)
⊥

2At
,

(12)

where At is an area of the triangle t, fi is a value of a
vertex vi and (e)⊥ denotes a perpendicular vector e to
the vector e.
To compute per-vertex gradients, Average Gradient on
Star (AGS) averages all gradients from neighboring
vertices:

∇f(v) ≈ 1∑
i∈N (v)Ai

∑
i∈N (v)

Ai∇PCEfi (13)

where ∇PCEfi is defined by Equation (12) and N (v)
is set of vertices connected to the vertex v.

3.4 Model Training
As mentioned before, the model is trained using su-
pervised learning. Any addition of physics terms re-
sulted in unstable training and constraining the model’s
ability to learn more than only a small neighborhood
around the source.

Loss function Naturally, mean-squared error is ap-
plied as a loss function

L =
1

N

∑
||ûT − βu∗||22, (14)

where β = 500 is a scaling term, N is the number
of graph samples, ûT is the predicted solution after T
unroll iterations. In other words, loss function takes
into account only a prediction from the last unroll
iteration.
todobug no indent The value of scaling term β was se-
lected empirically. It can be seen as scaling the source
amplitude by β. Usage of the scaling term, changes
the magnitude as well as direction of loss function
gradients. Nonetheless, we are not certain, why the
scaling term is essential for successful training.
Training phases Although the model can be trained
end-to-end, the two-phased approach requires only half
of the computational time (Table 1). The first phase
involves training the network with 3 unroll iterations
for ≈ 70k optimization iterations. As illustrated in
Figure 9, the network is then fine-tuned for ≈ 10k opti-
mization steps with 8 unroll iterations. Both phases are
trained using the Adam optimizer [15] with a learning
rate α = 3e − 5. The network is trained on 8 A100
40GB GPUs using Pytorch Lightning2 distributed data
parallel (DDP) accelerator. Despite the fact that the
batch size is set to 2, the effective batch size is 16 due
to gradient averaging across 8 GPUs.

2https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/

10k 20k 30k 40k 50k 60k 70k

Iterations count

80k

Reaching model
state with stable

unroll.

Continue training
with 8 unroll
iterations.

Training with 3
unroll iterations.

MS
E

Figure 9. Even though end-to-end training requires the same number of optimization steps as the two-phased
approach, it requires more time since the duration of one optimization step is longer. Thus we opted for training
with two phases. The first part of training comprises 70k optimization iterations with three unroll iterations.
Afterward, the network is fine-tuned for less than 10k optimization iterations with 8 unroll iterations. Here the
network learns to stabilize unrolling. The displayed error curve was calculated on the validation set. Thus, peak
in the second phase of the training signalizes overfitting.
Table 1. Two phased training significantly reduces the
used computational resources compared to the
end-to-end approach. The training time was measured
on a computer with 8 A100 40GB.

End-to-end 2 phases
MSE 14.301 14.577
Duration [h] 21 10
Optim. steps ≈ 80k

4. Results
To evaluate the performance of the trained model, we
put our solution under multiple tests. Firstly, the
model’s ability to generalize is demonstrated using
samples outside of the training and validation distri-
bution, including a more than 5-times larger domain.
The reference solutions are computed using k-Wave
Toolbox [37]. Additionally, our model is compared to
Helmnet [34], where the MSE is used as an evaluation
metric:

MSE =
1

N
||û− u∗||22, (15)

where N is the nodes count, û and u∗ are predicted
and reference wavefield, respectively.

4.1 Generalization
Since our model has been trained only on synthetic
skulls, a square SOS map is out of the training distri-
bution. As depicted in Figure 10, our model is able
to predict SOS maps, which it has never seen, indi-
cating that the model learned to solve the Helmholtz
equation.

Furthermore, Figure 11 depicts that the model
learned the interaction between waves from multiple
sources, although it was trained on samples with a
single source.

0.00

0.45

-0.45

-0.15

0.15

-0.30

0.30

Reference Prediction

Speeds of sound

Figure 10. Although the model was trained only on
synthetic skulls, it is able to predict wavefield even
with the square heterogenity in the middle.

0.00

0.45

-0.45

-0.15

0.15

-0.30

0.30

Reference Prediction

Speeds of sound

Figure 11. The model is able to predict wavefields
even with multiple sources, despite it was trained with
single-source samples.

Unroll stability For most samples with 96 × 96
grid size, 8 unroll iterations are sufficient to predict
the wavefield for the whole computational domain.
Nonetheless, more complex wavefields require more
than 8 unroll iterations due to more wave reflections
that need to be simulated. However, a larger domain
requires more unroll iterations. To test whether our
model can predict wavefields even in larger domains,
we measured unroll stability for 128 iterations in a 96×

96 domain. As depicted in Figure 12, the error does
not rapidly diverge until approximately 70-th iteration.
To reduce the unroll divergence, a replay buffer [14]
is utilized. The replay buffer contains 400 quaternions
(uk, Rk, e, v). The iteration index k is randomly initial-
ized to an integer from 0 to the half of the maximum
iterations count Q — we set Q = 256. After training
the model with the replay buffer, the error does not
diverge (Figure 12). Thus, the model learned to do
“nothing”, when the wavefield is solved.

Unroll Iteration

MS
E

100800 604020 120

30

0

20

10

40

Stable Unroll

Replay bufferStandard

Figure 12. Although, the model is trained with only 8
unroll iterations, the error does not greatly diverge
until 70-th iteration. To mitigate the unroll divergence,
we use a replay buffer. The unroll stability was tested
in a 96× 96 domain.

Larger domains Since the model depends on the
nodes coordinates xi ∈ [0, 1] (see Section 3.2), it is not
invariant to the domain size. To create a size-invariant
model, we first train the model during the first phase
as described in Section 3.4. During the second phase,
the input features corresponding to the coordinates of
the nodes are set to zero. With that modification, we
are able to train a size-invariant model, as shown in
Figure 13, where the model predicts the wavefield for
a 512× 512 domain.

4.2 Derivative Approximators
The FFT-based approximation of the residual is more
accurate than the AGS approximation. Although the
AGS is able to approximate the shape of the gradient
well, the magnitude error is significantly larger. The
proposed model is sensitive to directional and magni-
tude error in the Laplacian due to calculating the resid-
ual explicitly. As illustrated in Figure 14, with more
significant residual error, the model can predict the
wavefields only to a certain distance from the source.

4.3 Irregular Grids
To alleviate the constraint of using data sampled on
a regular grid, we experimented with data sampled
on different grids (see Figure 15). As experiments in
Section 4.2 show, using derivative approximators other
than the FFT-based is not feasible. Thus, we opt for

Figure 13. Our model is able to perform inference
even on larger domains 512× 512. However, during
fine-tuning, the position of each node (used as an
input feature) is set to zero. If the position is to zero
before the first phase of training, the model is not able
to converge to a state of stable unrolling.

(a) FFT-based derivative (b) AGS

Figure 14. Despite having only three unroll iterations,
the model with the FFT-based derivative
approximation, is able to predict significantly larger
area than with the AGS approximation. When using
AGS, the predicted area does not grow noticeable with
more unroll iterations.

utilizing FFT for computing the Laplacian. Although
the Fourier transform is defined on graphs [29], these
methods are more computationally expensive than the
regular FFT, which makes them impractical.

In order to use FFT with irregular grids, we utilize
a linear interpolator. Irregularly sampled data are in-
terpolated on a regular grid to compute the Laplacian.
Laplacian can then be computed as with a regular grid.
As the last step, the Laplacian computed on a regular
grid is sampled on the original irregular grid.

Regular Grid Samples are sampled on a regular
grid — they are evenly spaced.
Random Grid Samples coordinates are produced

Uniform Offset Uniform Random

Figure 15. We utilize FFT-based derivative
approximation to compute the Laplacian. Thus we use
a regular grid in the proposed solution. We attempted
to lift the restriction of using the regular grid by
several experiments described in Chapter 4.3.

using a uniform random generator. As illustrated in
Figure 15, sampling with a random generator fails to
produce evenly spaced samples — producing samples
too close to each other results in numerical instabilities.
Offset Regular Grid To create data sampled on
a non-regular grid with evenly spaced samples, we
perturb data sampled on a regular grid. Given a grid
(96× 96), the sample coordinates are perturbed using
the following method:

x̂ = x+ U(−ϵ, ϵ), (16)

where x is the sample coordinates and U stands for
uniform distribution. The perturbation ϵ = 0.0026
is calculated as a 25% perturbation in a 96× 96 grid
(ϵ = 0.25 ∗ 1/96).
Results As can be seen in Figure 16, with data sam-
pled on a regular grid, the model performed the best.
Any irregularity in the data sampling grid results in
models incapable of stable unrolling. Although pre-
dicted wavefields on irregular grids do not look overly
different from the prediction on a regular grid (Fig-
ure 16), the difference is more distinguishable in Ta-
ble 2.
Table 2. Model is not capable of stable unrolling on
an irregular grid. The irregular grid increases the
model’s error substantially. Models are evaluated only
with 3 unroll iterations due to limited access to the
computational resources.

Regular Offset Reg. Random
MSE 24.8 27.1 27.9
Optim. steps ≈ 63k ≈ 70k ≈ 120k

4.4 Super-resolution
To test the model’s ability to predict wavefield for the
upsampled points, we insert data sampled on the ir-
regular grid into the uniformly sampled data in order
to increase resolution in certain areas of the computa-
tional domain (Figure 17).

During the training, we simulate super-resolution
by generating upsampled 500 points using a uniform

0.15

0.00

-0.15

-0.05

-0.10

0.05

0.10

Reference Regular Grid

0.15

0.00

-0.15

-0.05

-0.10

0.05

0.10

Offset Regular
Grid

Random Grid

Figure 16. Proposed model produces the best results
with data sampled on a regular grid. However, data
sampled on offset regular grid still produces usable
wavefields. However, randomly sampled data suffers
from an interpolation error, due to unevenly sampled
domain. All models are evaluated only with 3 unroll
iterations due to limited access to the supercomputer

Uniform Random Super-res

+ =

Figure 17. To train the network to perform prediction
for upsampled data, 500 random points are
concatenated to the uniformly sampled data. The
residual for the upsampled data is computed by
interpolating residual from the uniformly sampled
neighbors.

random generator. The upsampled data is then concate-
nated with the uniformly sampled data. Since the FFT
is defined well only on a regular grid, the residual can
be computed only for uniformly sampled data. Thus,
we obtain the residual of random points by interpolat-
ing the residual from uniformly sampled neighbors.

Results To evaluate predictions of upsampled points
by our model, the MSE is computed only from the
upsampled points and not from the uniformly sampled
data.
As shown in Table 3, our model yields lower error than
the interpolation method. Despite that, the MSE of
the upsampled points (MSE = 20.88) is substantially

higher in comparison with the prediction of uniformly
sampled points (MSE = 13.65). We hypothesize that
the higher error of the upsampled points is caused by
their irregularity, as shown by experiments described
in Section 4.3.
Table 3. As a baseline solution, we used interpolation
of the neighboring nodes. Compared with our model,
the MSE error of the upsampled points is notably
lower. Nonetheless, the MSE of the predicted uniform
samples is 13.65, which is significantly lower.

Interpolated Predicted
MSE 22.51 20.88

4.5 Training Noise
Pfaff et al. [24] demonstrated that noise injection dur-
ing training improved the unroll stability and lowered
overall error. The interpretation is that the error ac-
cumulating during unrolling can be reduced by sim-
ulating this error on the network input. It leads the
network to learn to correct the error, thus lowering the
overall accumulated error occurring during unrolling.
Table 4. Injecting 1.2% training noise described by
Equation (17), simulates prediction error. Using the
training noise forces the model to learn to correct its
prediction error during unrolling.

Noise [%] 0 0.6 1.2 2.4 4.8

MSE 14.58 14.56 14.37 15.76 15.43

Although, Pfaff et al. [24] uses noise injection
in the prediction of dynamical systems, we test the
training noise in our proposed solution as well. We
analyzed the distribution of the noise after 8 unroll
iterations and decided to model the error within 10%.
The training noise is set to the 8-th root of the error.
The unroll error depends on the predicted wavefield,
due to that fact we model the training noise as the
multiplicative noise. The following equation describes
the training noise:

ũk = uk + uk ∗ noise, (17)

where uk is the predicted wavefield at k-th iteration,
by injecting the noise in wavefield uk, the noise is
implicitly added to the residual Rk as well.

As shown in Table 4, by injecting noise 1.2% dur-
ing training, the model performance improved. Hence,
the model learned to reduce the prediction error from
previous iterations. Any higher training noise resulted
in worse results.

4.6 Pruning
One of the primary motivations behind neural solvers
is to reduce the time required to obtain a PDE solution.
Due to that reason, we analyze pruning the weights of
the network, which might improve the network speed.
However, Frankle and Carbin [8] formulate the Lottery
Ticket Hypothesis (LTH), stating that it can increase
the model accuracy as well. Frankle and Carbin [8]
uses the Iterative Magnitude Pruning (IMP) to find
Winning Tickets — pruned models performing better
than the unpruned one.

To formulate sparsity of the network, Pm denotes
the percentage of unpruned weights — Pm = 75%,
when 25% of weights are pruned.

BASELINE

100 85 72 61 44 38 32 27 23 20 17 14 12 1052

Pm [%]

MS
E

25

15

20

Training Fine-tunningEnd-to-end

Figure 18. Any pruned network, with better
performance than the best unpruned network
(baseline), is referred to as winning ticket. Winning
tickets occurs only when the network is pruned before
the first phase of the training, where any networks
with Pm ≥ 72% is are a winning ticket (purple area).
Pm denotes the percentage of unpruned weights.

Our proposed method differs by employing two-
phased training. Pruning can be applied at the begin-
ning of the first phase or the second one. We followed
the LTH methodology and reset the model weights
after each pruning. Three different scenarios were
tested:

Training The pruning is applied before the whole
training starts, which is the beginning of the first train-
ing phase — training with 3 unroll iterations.
Fine-tuning As the name suggests, the model is
pruned at the beginning of the second training phase
(fine-tunning) — training with 8 unroll iterations. The
model weights are reset to the state at the beginning
of the second training phase, meaning the weights are
not set to initialization ones.
End-to-end End-to-end training with 8 unroll it-
erations were tested, where the network was trained
end-to-end. The network is pruned at the beginning of
the training — same as Frankle and Carbin [8].
Results As Figure 18 shows, the winning ticket can
be obtained only with the two-phased training. We

Table 5. Despite preserving the total message passing count equal to 60, exchanging the unrolls for message
pass count in a single unroll iteration results in higher error. We assume that the unroll iterations are essential
because of the residual. Without residual as an input, the model is not able to predict complex wave reflections.
GB refers to a Graph Block, which corresponds to a single message passing.

60 Unrolls, 1
GB

20 Unrolls, 3
GBs

12 Unrolls, 5
GBs

6 Unrolls, 10
GBs

4 Unrolls, 15
GBs

2 × 30 GBs

MSE 46.27 14.52 14.00 19.69 21.66 21.88

believe that the fine-tuning approach failed to produce
any winning tickets is due to not resetting the weight
to the ones from initialization. End-to-end approach
failed because it requires significantly more optimiza-
tion steps than the two-phased approach (see Chapter
3.4). Leaving the two-phased training approach to
be most likely to produce any winning tickets. The
winning tickets were obtained only with low levels
of pruning Pm ≥ 72%, meaning the network might
not be too overparametrized. Despite that there are
multiple methods for stabilizing the LTH [20, 9], due
to the expensive nature of the LTH experiments, we
did not conduct any related experiments.
Although the winning tickets are not sufficiently sparse
to utilize sparse multiplication or improve inference
speed, iterative pruning can be used to increase the
model’s accuracy.

4.7 Other Hyperparameters
Hop Connections The decision to use hop connec-
tions was based on the results from the first phase of
the training. The error decreased significantly with
hop connections in the first phase. However, as can
be seen in Table 6, after fine-tuning, where the model
truly learns the propagation of sound waves, hop con-
nections result only in an insignificant error decrease.
Table 6. Reason behind the usage of multiple hop
connections in the proposed solution was based on the
results from the first stage of the training.
Nonetheless, MSE from the fine-tuning stage prove
that the hop connections are unnecessary.

Hops {3, 5, 10} No Hops
First Phase 24.78 26.12
Fine-tuning 14.58 14.62

We hypothesize that the hop connections redundancy
in the latter stage of the training is that instead of
memorizing wavefield patterns, the network starts to
act as an iterative solver, where the prediction requires
only a smaller neighborhood, rather than the whole
domain.
Unroll Iterations vs. Message Pass Count This
section examines the trade-off between unroll itera-

tions and message passing count. A new residual is
computed from the predicted wavefield with every un-
roll iteration. On the contrary, a Graph Block passes
only a message (hidden state) to the next block. In
the following experiments, we fixed the total message
passing count to 60, only the ratio between unroll iter-
ations and graph blocks changes.
As Table 5 shows, unroll iterations are essential for
the wavefield prediction. More Graph Blocks (GB)
results in more learnable parameters — increasing the
model’s capacity. Nevertheless, model with 5 Graph
Blocks has the lowest error. We suppose that unroll
iterations are crucial due to the addition of residual
to the network’s input. We observed that without the
residual as input, the model cannot predict more com-
plex wave reflections and interactions. We assume, it
is due to inability of the network to learn a laplacian
operator. This experiment was conducted after the de-
sign choices, for that reason the proposed solution has
10 Graph Blocks.

4.8 Comparison with Helmnet
As depicted in Figure 19, the accuracy of Helmnet [34]
is remarkably higher than the accuracy of our solution.
We believe that the higher error of our model is caused
by not using a replay buffer. Thus, our model is not
trained with enough unroll iterations to learn to predict
the wavefield with such low error. Our assumption
is supported by Figure 20, when our model reaches a
certain level of error, it stops to improve the predicted
wavefield.

Due to a larger amount of data to be processed
(nodes and edges), our model is significantly slower
than Helmnet and k-Wave. Thus, failing at one of the
main aspects of the neural solvers.

5. Conclusions
Our Graph Network is capable of solving large do-
mains such as 512 × 512, thus moving beyond “toy”
problems. Unfortunately is slower than Helmnet as
well as the reference solver k-Wave. In addition, Helm-
net achieves a lower error by almost two orders of
magnitude compared to our solutions. Nevertheless,
our model is able to perform super-resolution, where

Reference Helmnet Our Solution

Speeds of sound

Figure 19. Helmnet produces significantly more accurate wavefield than our solution. Nevertheless, our solution
produce adequate solution, but it cumulates a higher error with every iteration.

Time [s]

MS
E

10-2

100

10-1

101

121084 620 1614

Helmnetk-Wave Our Solution

Figure 20. Our model is notably slower than Helmnet
and k-Wave, and is not able to reach low error as
Helmnet. We assume, that the slower speed is because
graph contains more data to process (edges) than
images, despite containing the same amount of
information. The experiment was conducted on a
machine with a GPU A100.

it reached a lower error than the baseline method —
linear interpolation.

Even though our model was trained only on sam-
ples with a single source, it can predict a wavefield
with multiple sources, proving that our model learned
the interaction between sound waves. Additionally,
our model can perform inference in a 512× 512 com-
putational domain, although the model was trained
only in 96× 96 domain.

We demonstrated that the Graph Networks are able
to solve a second-order time-independent PDE within
a large computational domain. Also, we outlined the
problem of the difficulty of training an effective model
on an irregular grid. Lastly, we tested a neural solver
against the Lottery Ticket Hypothesis [8]. We were
able to produce winning tickets, but only with a low
level of sparsity Pm ≥ 72%. The winning tickets
are not sparse enough to utilize sparse multiplication,
but the iterative pruning can be used to improve the

accuracy of the model.
In the future, given the flexibility of Graph Net-

works, an emphasis can be given to training on the data
in a 2D space and later translating it to the 3D space.
We hypothesize that AGS could replace the spectral
method to compute the residual with denser sampling.

Acknowledgements
Firstly, I am very grateful to my supervisor prof. Ing.
Adam Herout Ph.D. for the patient guidence and ad-
vice he has provided. I am extremely grateful to my
girlfriend MUDr. Jana Hantáková for mental support
as well as neurological works analysis. I am also
deeply indebted to Dr. Antonio Stanziola for the ex-
tensive guidence, his never-ending positivity and sup-
port. Additionally, I would like to express many thanks
to doc. Ing. Jiřı́ Jaroš Ph.D. for his advicing and ac-
cess to the supercomputer. Last but not least, I thank
to Ing. Marta Jaroš for access to the computational
resources.

References
[1] Abien Fred Agarap. Deep learning using recti-

fied linear units (relu). CoRR, abs/1803.08375,
2018. URL http://arxiv.org/abs/
1803.08375.

[2] Anima Anandkumar, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Nikola Kovachki,
Zongyi Li, Burigede Liu, and Andrew Stuart.
Neural operator: Graph kernel network for
partial differential equations. In ICLR 2020
Workshop on Integration of Deep Neural
Models and Differential Equations, 2020. URL
https://openreview.net/forum?id=
fg2ZFmXFO3.

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://openreview.net/forum?id=fg2ZFmXFO3
https://openreview.net/forum?id=fg2ZFmXFO3

[3] Peter W. Battaglia, Jessica B. Hamrick, Victor
Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tac-
chetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, H. Francis Song,
Andrew J. Ballard, Justin Gilmer, George E.
Dahl, Ashish Vaswani, Kelsey R. Allen, Charles
Nash, Victoria Langston, Chris Dyer, Nico-
las Heess, Daan Wierstra, Pushmeet Kohli,
Matthew Botvinick, Oriol Vinyals, Yujia Li,
and Razvan Pascanu. Relational inductive bi-
ases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018. URL http://arxiv.
org/abs/1806.01261.

[4] Alfredo Bermudez, Luis Hervella-Nieto, Andrés
Prieto, and R. Rodrıguez. An optimal perfectly
matched layer with unbounded absorbing func-
tion for time-harmonic acoustic scattering prob-
lems. Journal of Computational Physics, 223:
469–488, 05 2007. doi: 10.1016/j.jcp.2006.09.
018.

[5] Norbert N. Bojarski. The k-space formulation
of the scattering problem in the time domain.
Journal of the Acoustical Society of America, 72:
570–584, 1982.

[6] Norbert N. Bojarski. The k-space formulation of
the scattering problem in the time domain: An
improved single propagator formulation. Acous-
tical Society of America Journal, 77(3):826–831,
March 1985. doi: 10.1121/1.392051.

[7] Steffen Eger, Paul Youssef, and Iryna Gurevych.
Is it time to swish? comparing deep learning
activation functions across NLP tasks. CoRR,
abs/1901.02671, 2019. URL http://arxiv.
org/abs/1901.02671.

[8] Jonathan Frankle and Michael Carbin. The
lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International
Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=
rJl-b3RcF7.

[9] Jonathan Frankle, Gintare Karolina Dziugaite,
Daniel M. Roy, and Michael Carbin. The
lottery ticket hypothesis at scale. CoRR,
abs/1903.01611, 2019. URL http://arxiv.
org/abs/1903.01611.

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F.
Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Pro-
ceedings of the 34th International Conference on

Machine Learning - Volume 70, ICML’17, page
1263–1272. JMLR.org, 2017.

[11] Marco Gori, Gabriele Monfardini, and Franco
Scarselli. A new model for learning in graph do-
mains. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005.,
volume 2, pages 729–734 vol. 2, 2005. doi:
10.1109/IJCNN.2005.1555942.

[12] David S. Hersh and Howard M. Eisenberg. Cur-
rent and future uses of transcranial focused ultra-
sound in neurosurgery. J Neurosurg Sci, 62(2):
203–213, Apr 2018.

[13] Frank Ihlenburg and Ivo Babuska. Finite element
solution of the Helmholtz equation with high
wave number Part I: The h-version of the FEM.
Computers & Mathematics With Applications, 30:
9–37, 1995.

[14] Steven Kapturowski, Georg Ostrovski, Will Dab-
ney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforce-
ment learning. In International Conference
on Learning Representations, 2019. URL
https://openreview.net/forum?id=
r1lyTjAqYX.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[16] Vibhor Krishna., Francesco Sammartino., and
Ali Rezai. A Review of the Current Therapies,
Challenges, and Future Directions of Transcra-
nial Focused Ultrasound Technology: Advances
in Diagnosis and Treatment. JAMA Neurol, 75
(2):246–254, 02 2018.

[17] Isaac E. Lagaris, Aristidis Likas, and Dimitrios I
Fotiadis. Artificial neural networks for solv-
ing ordinary and partial differential equations.
IEEE Transactions on Neural Networks, 9(5):
987–1000, 1998. doi: 10.1109/72.712178.

[18] Zongyi Li, Nikola Borislavov Kovachki, Kam-
yar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anand-
kumar. Fourier neural operator for paramet-
ric partial differential equations. In Interna-
tional Conference on Learning Representations,
2021. URL https://openreview.net/
forum?id=c8P9NQVtmnO.

[19] Wenzhuo Liu, Mouadh Yagoubi, and Marc
Schoenauer. Multi-resolution Graph Neural

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1901.02671
http://arxiv.org/abs/1901.02671
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.01611
http://arxiv.org/abs/1903.01611
https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=r1lyTjAqYX
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO

Networks for PDE Approximation. In Artificial
Neural Networks and Machine Learning –
ICANN 2021, volume 12893 of Lecture Notes
in Computer Science, pages 151–163. Springer
International Publishing, September 2021.
doi: 10.1007/978-3-030-86365-4\ 13. URL
https://hal.archives-ouvertes.
fr/hal-03448278.

[20] Jaron Maene, Mingxiao Li, and Marie-Francine
Moens. Towards understanding iterative magni-
tude pruning: Why lottery tickets win. ArXiv,
abs/2106.06955, 2021.

[21] Claudio Mancinelli, Marco Livesu, and Enrico
Puppo. Gradient field estimation on triangle
meshes. 10 2018. doi: 10.2312/stag.20181301.

[22] T. Douglas Mast, Laurent P. Souriau, Donald L.
Liu, Makoto Tabei, Adrian I. Nachman, and
Robert C. Waag. A k-space method for large-
scale models of wave propagation in tissue. IEEE
Trans Ultrason Ferroelectr Freq Control, 48(2):
341–354, Mar 2001.

[23] Gregory A. Newman and David L. Alumbaugh.
Frequency-domain modelling of airborne electro-
magnetic responses using staggered finite differ-
ences. Geophysical Prospecting, 43:1021–1042,
1995.

[24] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-
Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In In-
ternational Conference on Learning Represen-
tations, 2021. URL https://openreview.
net/forum?id=roNqYL0_XP.

[25] Charles R. Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space.
In Proceedings of the 31st International Con-
ference on Neural Information Processing Sys-
tems, NIPS’17, page 5105–5114, Red Hook,
NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

[26] Maziar Raissi, Paris Perdikaris, and George Em
Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward
and inverse problems involving nonlinear partial
differential equations. Journal of Computational
Physics, 378:686–707, 2019. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2018.10.045.
URL https://www.sciencedirect.
com/science/article/pii/
S0021999118307125.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-net: Convolutional networks for biomed-

ical image segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Ale-
jandro F. Frangi, editors, Medical Image Com-
puting and Computer-Assisted Intervention –
MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing. ISBN 978-
3-319-24574-4.

[28] Alvaro Sanchez-Gonzalez, Jonathan Godwin, To-
bias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics
with graph networks. In Proceedings of the 37th
International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning
Research, pages 8459–8468. PMLR, 2020. URL
http://proceedings.mlr.press/
v119/sanchez-gonzalez20a.html.

[29] Aliaksei Sandryhaila and José M. F. Moura. Dis-
crete signal processing on graphs: Graph fourier
transform. In 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing,
pages 6167–6170, 2013. doi: 10.1109/ICASSP.
2013.6638850.

[30] Franco Scarselli, Sweah Liang Yong, Marco
Gori, Markus Hagenbuchner, Ah Chung Tsoi,
and Marco Maggini. Graph neural networks
for ranking web pages. In Proceedings of
the 2005 IEEE/WIC/ACM International Con-
ference on Web Intelligence, WI ’05, page
666–672, USA, 2005. IEEE Computer Soci-
ety. ISBN 076952415X. doi: 10.1109/WI.2005.
67. URL https://doi.org/10.1109/
WI.2005.67.

[31] Bhavya R. Shah, Vance T. Lehman, Timothy J.
Kaufmann, Daniel Blezek, Jeff Waugh, Darren
Imphean, Frank F. Yu, Toral R. Patel, Shilpa Chit-
nis, Richard B. Dewey, Joseph A. Maldjian, and
Rajiv Chopra. Advanced MRI techniques for
transcranial high intensity focused ultrasound tar-
geting. Brain, 143(9):2664–2672, 09 2020.

[32] Vincent Sitzmann, Julien N.P. Martel, Alexan-
der W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with
periodic activation functions. In Proc. NeurIPS,
2020.

[33] Arnold Sommerfeld. Die greensche funktion
der schwingungslgleichung. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 21:309–
352, 1912. URL http://eudml.org/doc/
145344.

[34] Antonio Stanziola, Simon R. Arridge, Ben T.
Cox, and Bradley E. Treeby. A helmholtz equa-

https://hal.archives-ouvertes.fr/hal-03448278
https://hal.archives-ouvertes.fr/hal-03448278
https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=roNqYL0_XP
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://doi.org/10.1109/WI.2005.67
https://doi.org/10.1109/WI.2005.67
http://eudml.org/doc/145344
http://eudml.org/doc/145344

tion solver using unsupervised learning: Ap-
plication to transcranial ultrasound. Journal
of Computational Physics, 441:110430, Sep
2021. ISSN 0021-9991. doi: 10.1016/j.jcp.
2021.110430. URL http://dx.doi.org/
10.1016/j.jcp.2021.110430.

[35] Makoto Tabei, T. Douglas Mast, and Robert C.
Waag. A k-space method for coupled first-order
acoustic propagation equations. J Acoust Soc Am,
111(1 Pt 1):53–63, Jan 2002.

[36] Nils Thuerey, Philipp Holl, Maximilian Müller,
Patrick Schnell, Felix Trost, and Kiwon
Um. Physics-based deep learning. CoRR,
abs/2109.05237, 2021. URL https://
arxiv.org/abs/2109.05237.

[37] Bradley E. Treeby and Benjamin T. Cox. k-Wave:
MATLAB toolbox for the simulation and recon-
struction of photoacoustic wave fields. Jour-
nal of Biomedical Optics, 15(2):1 – 12, 2010.
doi: 10.1117/1.3360308. URL https://doi.
org/10.1117/1.3360308.

http://dx.doi.org/10.1016/j.jcp.2021.110430
http://dx.doi.org/10.1016/j.jcp.2021.110430
https://arxiv.org/abs/2109.05237
https://arxiv.org/abs/2109.05237
https://doi.org/10.1117/1.3360308
https://doi.org/10.1117/1.3360308

	Introduction
	Related Works
	Proposed Solution
	Results
	Conclusions
	References

