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Abstract
Neural solvers have been increasingly explored with the aim of replacing computationally ex-
pensive conventional numerical methods for solving PDEs. This work focuses on solving the
time-independent Helmholtz equation for transcranial ultrasound therapy. Most of the popular
methods for modeling physics systems are based on U-net. However, convolutional neural networks
require the data to be sampled on a regular grid. In order to try to lift this restriction, we propose
an iterative solver based on graph neural networks. Unlike Physics-informed neural networks, our
model needs to be trained only once, and only a forward pass is required to obtain a new solution
given input parameters. The model is trained using supervised learning, where the reference
results are computed using the traditional solver k-Wave. Our results show the model’s unroll
stability despite being trained with only 8 unroll iterations. Despite the model being trained on the
data with a single source, it can predict wavefields with multiple sources and generalize to much
larger computational domains. Our model can produce a prediction for sub-pixel points with higher
accuracy than linear interpolation.
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1. Introduction

The transcranial ultrasound therapy has been recently
approved by Food and Drug Administration (FDA)
for essential tremor, and Parkinson’s disease treat-
ment [31]. Currently, there are experimental treat-
ments using ultrasound to create microbubbles, which
enable targeted drug delivery for Alzheimer’s disease
and brain tumors treatment [16].

The ultrasound transmitter positioning requires

a simulation of the ultrasound propagation through
a skull, which depends on solving the Helmholtz equa-
tion. The waves have to be focused in the area of
interest in order to make thermal ablation, and other
treatments [12] possible. The simulation using tradi-
tional solvers requires a lot of computational resources.
With a focus on reducing the simulation time, approxi-
mators based on neural networks have been proposed
— neural solvers.

Most neural physical systems adopt Convolutional
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Figure 1. Proposed system is based on a graph neural network (GNN) used as an iterative solver. Given the
speed of sound, wave sources, and residual (Equation (10)) of a wavefield prediction from the previous iteration,
the model outputs a refined prediction of the unknown wavefield. Unlike PINN methods, our model does not
require to be trained for each new set of PDE parameters.

Neural Networks (CNN) [34, 36] or Physics-informed
neural networks (PINN) [26, 17, 7, 32, 10]. The first
family of methods works only with data sampled on
a regular grid. On the other hand, the latter group
of methods is mesh-independent. However, the net-
works need to be retrained for each new set of PDE
parameters.

Our method tackles these problems by employ-
ing Graph Neural Networks (GNN) [30, 11], allowing
more variable mesh than CNNs. We use graph edges to
control the message passing between the nodes, which
correspond to the samples in a space. The network is
structured as an iterative solver [27]. Only a forward
pass of the model is required to solve a Helmholtz
equation for a new set of parameters.

and is able to solve the Helmholtz equation for
a new set of parameters using nothing but a forward
pass.

1.1 Governing Equations
This work focuses on equations used in sound-waves
modeling. Wave equation describes the propagation of
waves through space:

∂2u(x, t)

∂t2
= c2∇2u(t,x), (1)

where u : Rn → C is a wavefield, n ∈ Z+ denotes
the dimensionality, t, c ∈ R+ is a speed of sound
(SOS), and x ∈ Rn stand for time variable and spatial
coordinate, respectively.

However, in transcranial focused ultrasound ther-
apies [16, 12, 31], the focused ultrasound beam is
applied for a period of time exceeding the time re-

quired to reach a steady state. Consequently, the time-
independent Helmholtz equation is used in this work
to model the propagation of waves (Figure 2).

SourceWavefieldSpeed of
Sound (SOS)

Figure 2. In this work, a speeds of sound c contains
only a model of a skull, which has a different speed of
sound than the surrounding medium. Source values ρ
are zero, except at the location of a source, where the
value is set to the source amplitude. Inverse problem
is not contemplated in this work. Thus the wavefield u
is the only unknown in the equation.

Helmholtz equation The Helmholtz equation is a
result of the separation of variables in the Wave equa-
tion (Equation (1)). Although a simulation of ultra-
sound propagating through the skull involves nonlinear,
shear, and other effects, Stanziola et al. [34] present
that these effects can be added after computing the
wavefield modeled by Helmholtz equation. Thus, we
focus on modeling a simplified model of wave propa-
gation described by the Helmholtz equation subjected
to the Sommerfield radiation condition at infinity [33]:[

∇2 +

(
ω

c(x)

)2
]
u(x) = ρ(x), (2)
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Figure 3. To satisfy Sommerfield condition
(Equation (3)), an artificial layer (PML) is wrapped
around the domain Ω to attenuate all incoming waves.
Adapted from Stanziola et al. [34].

s.t. lim
|x|→∞

|x|
n−1
2

(
∂

∂|x|
− i

ω

c0

)
u(x) = 0, (3)

where n ∈ Z+ is the number of dimensions, ω ∈ R
stands for the angular velocity of the source, x ∈ Rn

is a spatial coordinate, c : Rn → R+ is the inho-
mogeneous speed of sound (SOS) at a certain given
point x, ρ : Rn → C denotes the forcing term, and
u : Rn → C is the unknown acoustic wavefield. The
inhomogeneous SOS is considered only within a do-
main of interest Ω, for the rest of the domain ∂Ω the
speed of sound is homogeneous with a value equal
to c0. Graphical example of the components of the
Helmholtz equation are shown in Figure 2.
Perfectly Matched Layer In order to satisfy the
Sommerfield radiation condition in a finite domain Ω,
a boundary condition such as Perfectly Matched Layer
(PML) [4] can be applied. PML is an artificial layer
surrounding the domain Ω attenuating all incoming
waves to prevent reflections from the domain’s border.
Consequently, PML simulates an infinite domain, as
shown in Figure 3.
By employing a PML, an absorption term is introduced
into the derivative operators:

∂

∂η
→ 1

γη

∂

∂η
, (4)

where η = x1, x2, . . . , xn, xj corresponds to the j-th
spatial dimension, and where

γη =

1, η ∈ Ω

1 +
i

ω
σ(η), otherwise

(5)

where ω is the angular velocity from Equation (2), Ω
is the domain of interest, and the absorption profile σ

is defined by the following equation:

σ(η) = σmax

(
1− η̂

∆L

)2

, (6)

where σmax is maximum PML absorption parameter,
∆L defines the width of a PML and η̂ is the spatial
distance from the domain border in a give dimension.

2. Related Works
In recent years, more emphasis has been put on re-
searching neural operators. The main objective of
these approximate solvers is to estimate the solution
of a given PDE faster or lift restrictions created by
conventional numerical solvers.

We consider PDEs of the following form:

(Lau)(x) = f, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(7)

where a represents parameters of a differential operator
L, and u, f are functions on the spatial domain. f
represents a forcing term, whereas u is the solution in
the forward simulation.

Although k-Wave [37] belongs to the conventional
solver family, it uses k-space pseudospectral method [5,
6, 22, 35], which allows sparser discretization than
FEM [13] and FDM [23]. Unlike traditional solvers,
neural solvers utilizes a neural network. In recent
years, CNNs [34, 36] has become one of the most
common approaches to model physical systems. How-
ever, these systems suffer by requiring input data to be
sampled on a regular grid. Nonetheless, CNNs yield
impressive results.

R = Lau− f (8)

Authors of Helmnet [34] pursue the identical objec-
tive as our work — solving the Helmholtz equation
(Equation (2)). Helmnet is structured as an iterative
solver based on U-net [27], instead of passing the PDE
parameters directly, the authors discovered that incor-
porating these parameters into the residual term R
(Equation (8)) eases the network learning the mapping
from the parameters of a PDE a to a solution u. Al-
ternatively to the other approaches [36], Helmnet is
trained using only a physics loss.

Recently, there has been growing interest in mesh-
independent methods. Various Physics-informed neu-
ral network (PINN) methods [10, 32, 7, 26, 17] use
multilayer perceptron (MLP) to map a spatial coor-
dinate x directly to solution u(x). In contrast with
previously mentioned methods, PINN methods learn
to represent the solution instead of computing one. The



networks need to be trained again for each new set of
PDE parameters a. Nevertheless, querying a new posi-
tion x requires only a forward pass of a model, making
it mesh-independent. PINN methods utilize an auto-
matic differentiation to compute the spatial derivatives
used in a physics loss. Thus, PINN methods enforce
strong form of the governing PDE.

Every physics system can be modeled using a
graph, as samples produced by spatial sampling can
be represented as nodes in a graph. Sanchez-Gonzalez
et al. [28] connect nodes in a certain radius, whereas
Pfaff et al. [24] operates directly with edges produced
by mesher. These two methods networks [24, 28] are
based on the Encode – Process – Decode architec-
ture defined under the Graph Network framework [3].
However, the mentioned methods predict only the time
evolution of time-dependent PDEs. Methods such as
Li et al. [18], Anandkumar et al. [2] have shown a
capability to solve time-independent PDEs. Graph
Kernel Network (GKN) [2] learns the Green’s func-
tion of a given PDE directly by encoding it in the
model’s weights. Unfortunately, the number of edges
grows quadratically with the number of nodes. Fourier
Neural Operator (FNO) [18] extends GKN by replac-
ing the integral kernel with convolution in the Fourier
space. A layer transforming data in the Fourier space
and transforming it back to the physical space is called
Fourier Layer.

3. Proposed Solution
To solve the Helmholtz equation, we propose an itera-
tive solver defined by the following equation:

uk+1 = fθ(v, e, uk, Rk), (9)

where uk and Rk are wavefield prediction and residual
at k-th iteration, fθ, v and e denote neural network,
node features and edge features, respectively. The
neural network fθ is described more extensively in
Section 3.2.

Unlike Helmnet [34], our solution employs super-
vised learning, thus a reference solution u∗(x) is re-
quired. The following section provides a more detailed
description the used dataset.

3.1 Skull Dataset
We use the method proposed by Stanziola et al. [34]
for synthetic skulls as sound speed maps. The shape of
the idealized skulls is created by summing circular har-
monics with random amplitude and shape. Since the
whole work considers normalized units ω = 1 rad/s
and background speed of sound of 1m/s, the skull
thickeness ranges from 2 to 10m with sound speed

varying from 1.5 to 2m/s. We set the grid size to
384 × 384 with 0.25m grid spacing to allow later
downsampling if needed

We employed k-Wave [37] to generate ground-
truth solutions for each sample. For each skull, three
random wave source positions are generated. Based
on the linearity of the Helmholtz equation, solutions
can be summed in order to create a new, more complex
solution with multiple sources (Figure 5). Training,
validation, and test sets contain 24000, 3000, and 3000
wavefields samples, respectively. The dataset is avail-
able on a public repository1.

3.2 Model Architecture
Figure 4 depicts used neural network, which is based
on Graph Network [3] with Encode – Process – Decode
structure [24, 28].

All parts of the process block ϕe, ϕv, both en-
coders ϵv, ϵe and decoder δv are implemented using
a two-layer MLP with ReLU activation function [1]
and a residual connection. The latent and output size
is 64, except δv, whereas the output size equals to the
model’s output size. The MLP is depicted in Figure 6.

All parameters from the Helmholtz equation, such
as SOS map, source map, or spatial coordinate, are
used as an input along with the prediction and its resid-
ual from a previous iteration. All nodes are sampled
on a uniformly spaced grid, where all nodes within a
radius r = 0.02 are connected.

Encode Encoder consists of two separate MLPs ϵv,
ϵe for nodes and edges, respectively. These encoders
transform input features (procesess each node and each
edge separately) into latent vector of size 64. Each
node feature vi with a spatial position xi is composed
of SOS mapc(xi), wave source distribution ρ(xi) and
PML absorption term σ(xi). The distance information
|xij| and xi−xj between connected nodes is encoded
in the edges.
The SOS map is sampled using 96× 96 regular grid.
Thus the data is downsampled using a factor of 4.
Connections between nodes are created using radius
r = 0.02, node coordinates are normalized to range
[0, 1].
Additionally, we use connections between every n-th
node (hop connection), increasing the model’s recep-
tive field (Figure 7). The hop connections can be seen
as a multi-resolution graph [19, 25] and should enable
the network to predict larger area in less unroll itera-
tions. Our model contains hop connections between
every 3-th, 5-th and 10-th node.

1https://sc-nas.fit.vutbr.cz:10443/
xnguye16/ssw-dataset
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https://sc-nas.fit.vutbr.cz:10443/xnguye16/ssw-dataset
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Figure 4. The network architecture consists of by three parts — encode, process, and decode. In the encoder
stage, all features are respectively transformed into latent vectors. A message-passing mechanism is executed in
the process stage, where information from neighboring nodes is aggregated to produce updated features for the
target node and edges. Lastly, the decoder transforms data from latent space to output space.

SOS MAP

WAVEFIELD A WAVEFIELD B

WAVEFIELD A+B

Figure 5. Synthetic skulls were generated by
summing several elliptical harmonics [34]. Reference
wavefields were computed using k-Wave [37]. For
each SOS map, three wavefields were computed, each
with a different source location. Due to the linearity of
the Helmholtz equation, wavefields can be added
together to produce a new, more complex wavefield.

Process Processor unit is a derivation of a processor
defined by Pfaff et al. [24], it consists of P identical
blocks — Graph Block [3]. Each block contains a
separate set of weights.
As depicted in Figure 8, the Graph Block consists
of three parts: ϕe, ϕv and ρe→v. Function ϕe is im-
plemented using an MLP. It encodes data of an edge
and nodes connected to it into a new edge feature.
Then edges connected to a node are aggregated using
function ρe→v. In our work, we use the mean func-
tion as an aggregation function. Aggregated features
are transformed using a function ϕv into an updated
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Figure 6. The main building block for the whole
network is based on two-layer MLP with a ReLU
activation function and a residual connection.

Figure 7. Hop connections connects every n-th node,
in this particular case n = 4. Hop connections
n ∈ {3, 5, 10} are used in the proposed solution.

version of node features. The previously mentioned
function ϕv is implemented using MLP as well. The
described functionality is also referred to as message
passing [10]. One Graph Block corresponds to one
message passing. More Graph Blocks result in a larger
receptive field of the network.
Decode Last stage of the network δv decodes node
features from latent space into the scaled wavefield
prediction βuk+1, where β = 500 is a scaling term
(see Section 3.4).
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Figure 8. Graph block consists of two parts: edge
block and node block. Edge block uses features of a
given edge a its nodes to update edge’s features. Node
block updates a node features based on all nodes
connected to the target node. Functions ϕe, ϕv are
implemented using MLPs, aggregation function ρe→v

is using the mean function in our work.

3.3 Residual Calculation
Due to explicit residual calculation, an approximation
of the Laplacian has to be computed. After Equa-
tion (2) is plugged in Equation (8) the residual is de-
scribed as follows:

R =

[
∇2 +

(
ω

c(x)

)2
]
u(x)− ρ(x), (10)

Based on the conducted experiments (Section 4.2),
we use pseudo-spectral method to approximate the
derivatives, which is restricted to the regular grid.

FFT-based Stanziola et al. [34] approximates first-
order derivatives using FFT-based derivative (Equa-
tion (11)), which are then composed into the Lapla-
cian. The Laplacian can not be computed directly
as a result of using PML as the boundary condition
(Equation (4)).

d

dη
f(η) ≈ F−1 (F (ikηf(η))) , (11)

where η ∈ {x1, x2, . . . , xn} denotes a spatial dimen-
sion, kη represents wavenumbers in a given direction,
F , F−1 are Fourier transform and its inverse, respec-
tively.
Average Gradient on Star Unlike the FFT-base
method, the Average Gradient on Star (AGS) and Per-
Cell linear Estimation (PCE) methods can be utilized
on an irregular grid. In a 2D mesh, for a triangle t with
vertices vi, vj , vk, PCE is defined as follows [21]:

∇ft ≈ (fj − fi)
(vi − vk)

⊥

2At
+ (fk − fi)

(vj − vi)
⊥

2At
,

(12)

where At is an area of the triangle t, fi is a value of a
vertex vi and (e)⊥ denotes a perpendicular vector e to
the vector e.
To compute per-vertex gradients, Average Gradient on
Star (AGS) averages all gradients from neighboring
vertices:

∇f(v) ≈ 1∑
i∈N (v)Ai

∑
i∈N (v)

Ai∇PCEfi (13)

where ∇PCEfi is defined by Equation (12) and N (v)
is set of vertices connected to the vertex v.

3.4 Model Training
As mentioned before, the model is trained using su-
pervised learning. Any addition of physics terms re-
sulted in unstable training and constraining the model’s
ability to learn more than only a small neighborhood
around the source.

Loss function Naturally, mean-squared error is ap-
plied as a loss function

L =
1

N

∑
||ûT − βu∗||22, (14)

where β = 500 is a scaling term, N is the number
of graph samples, ûT is the predicted solution after T
unroll iterations. In other words, loss function takes
into account only a prediction from the last unroll
iteration.
todobug no indent The value of scaling term β was se-
lected empirically. It can be seen as scaling the source
amplitude by β. Usage of the scaling term, changes
the magnitude as well as direction of loss function
gradients. Nonetheless, we are not certain, why the
scaling term is essential for successful training.
Training phases Although the model can be trained
end-to-end, the two-phased approach requires only half
of the computational time (Table 1). The first phase
involves training the network with 3 unroll iterations
for ≈ 70k optimization iterations. As illustrated in
Figure 9, the network is then fine-tuned for ≈ 10k opti-
mization steps with 8 unroll iterations. Both phases are
trained using the Adam optimizer [15] with a learning
rate α = 3e − 5. The network is trained on 8 A100
40GB GPUs using Pytorch Lightning2 distributed data
parallel (DDP) accelerator. Despite the fact that the
batch size is set to 2, the effective batch size is 16 due
to gradient averaging across 8 GPUs.

2https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/
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Figure 9. Even though end-to-end training requires the same number of optimization steps as the two-phased
approach, it requires more time since the duration of one optimization step is longer. Thus we opted for training
with two phases. The first part of training comprises 70k optimization iterations with three unroll iterations.
Afterward, the network is fine-tuned for less than 10k optimization iterations with 8 unroll iterations. Here the
network learns to stabilize unrolling. The displayed error curve was calculated on the validation set. Thus, peak
in the second phase of the training signalizes overfitting.
Table 1. Two phased training significantly reduces the
used computational resources compared to the
end-to-end approach. The training time was measured
on a computer with 8 A100 40GB.

End-to-end 2 phases
MSE 14.301 14.577
Duration [h] 21 10
Optim. steps ≈ 80k

4. Results
To evaluate the performance of the trained model, we
put our solution under multiple tests. Firstly, the
model’s ability to generalize is demonstrated using
samples outside of the training and validation distri-
bution, including a more than 5-times larger domain.
The reference solutions are computed using k-Wave
Toolbox [37]. Additionally, our model is compared to
Helmnet [34], where the MSE is used as an evaluation
metric:

MSE =
1

N
||û− u∗||22, (15)

where N is the nodes count, û and u∗ are predicted
and reference wavefield, respectively.

4.1 Generalization
Since our model has been trained only on synthetic
skulls, a square SOS map is out of the training distri-
bution. As depicted in Figure 10, our model is able
to predict SOS maps, which it has never seen, indi-
cating that the model learned to solve the Helmholtz
equation.

Furthermore, Figure 11 depicts that the model
learned the interaction between waves from multiple
sources, although it was trained on samples with a
single source.

0.00

0.45

-0.45

-0.15

0.15

-0.30

0.30

Reference Prediction

Speeds of sound

Figure 10. Although the model was trained only on
synthetic skulls, it is able to predict wavefield even
with the square heterogenity in the middle.
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Figure 11. The model is able to predict wavefields
even with multiple sources, despite it was trained with
single-source samples.

Unroll stability For most samples with 96 × 96
grid size, 8 unroll iterations are sufficient to predict
the wavefield for the whole computational domain.
Nonetheless, more complex wavefields require more
than 8 unroll iterations due to more wave reflections
that need to be simulated. However, a larger domain
requires more unroll iterations. To test whether our
model can predict wavefields even in larger domains,
we measured unroll stability for 128 iterations in a 96×



96 domain. As depicted in Figure 12, the error does
not rapidly diverge until approximately 70-th iteration.
To reduce the unroll divergence, a replay buffer [14]
is utilized. The replay buffer contains 400 quaternions
(uk, Rk, e, v). The iteration index k is randomly initial-
ized to an integer from 0 to the half of the maximum
iterations count Q — we set Q = 256. After training
the model with the replay buffer, the error does not
diverge (Figure 12). Thus, the model learned to do
“nothing”, when the wavefield is solved.

Unroll Iteration
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E
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Figure 12. Although, the model is trained with only 8
unroll iterations, the error does not greatly diverge
until 70-th iteration. To mitigate the unroll divergence,
we use a replay buffer. The unroll stability was tested
in a 96× 96 domain.

Larger domains Since the model depends on the
nodes coordinates xi ∈ [0, 1] (see Section 3.2), it is not
invariant to the domain size. To create a size-invariant
model, we first train the model during the first phase
as described in Section 3.4. During the second phase,
the input features corresponding to the coordinates of
the nodes are set to zero. With that modification, we
are able to train a size-invariant model, as shown in
Figure 13, where the model predicts the wavefield for
a 512× 512 domain.

4.2 Derivative Approximators
The FFT-based approximation of the residual is more
accurate than the AGS approximation. Although the
AGS is able to approximate the shape of the gradient
well, the magnitude error is significantly larger. The
proposed model is sensitive to directional and magni-
tude error in the Laplacian due to calculating the resid-
ual explicitly. As illustrated in Figure 14, with more
significant residual error, the model can predict the
wavefields only to a certain distance from the source.

4.3 Irregular Grids
To alleviate the constraint of using data sampled on
a regular grid, we experimented with data sampled
on different grids (see Figure 15). As experiments in
Section 4.2 show, using derivative approximators other
than the FFT-based is not feasible. Thus, we opt for

Figure 13. Our model is able to perform inference
even on larger domains 512× 512. However, during
fine-tuning, the position of each node (used as an
input feature) is set to zero. If the position is to zero
before the first phase of training, the model is not able
to converge to a state of stable unrolling.

(a) FFT-based derivative (b) AGS

Figure 14. Despite having only three unroll iterations,
the model with the FFT-based derivative
approximation, is able to predict significantly larger
area than with the AGS approximation. When using
AGS, the predicted area does not grow noticeable with
more unroll iterations.

utilizing FFT for computing the Laplacian. Although
the Fourier transform is defined on graphs [29], these
methods are more computationally expensive than the
regular FFT, which makes them impractical.

In order to use FFT with irregular grids, we utilize
a linear interpolator. Irregularly sampled data are in-
terpolated on a regular grid to compute the Laplacian.
Laplacian can then be computed as with a regular grid.
As the last step, the Laplacian computed on a regular
grid is sampled on the original irregular grid.

Regular Grid Samples are sampled on a regular
grid — they are evenly spaced.
Random Grid Samples coordinates are produced
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Figure 15. We utilize FFT-based derivative
approximation to compute the Laplacian. Thus we use
a regular grid in the proposed solution. We attempted
to lift the restriction of using the regular grid by
several experiments described in Chapter 4.3.

using a uniform random generator. As illustrated in
Figure 15, sampling with a random generator fails to
produce evenly spaced samples — producing samples
too close to each other results in numerical instabilities.
Offset Regular Grid To create data sampled on
a non-regular grid with evenly spaced samples, we
perturb data sampled on a regular grid. Given a grid
(96× 96), the sample coordinates are perturbed using
the following method:

x̂ = x+ U(−ϵ, ϵ), (16)

where x is the sample coordinates and U stands for
uniform distribution. The perturbation ϵ = 0.0026
is calculated as a 25% perturbation in a 96× 96 grid
(ϵ = 0.25 ∗ 1/96).
Results As can be seen in Figure 16, with data sam-
pled on a regular grid, the model performed the best.
Any irregularity in the data sampling grid results in
models incapable of stable unrolling. Although pre-
dicted wavefields on irregular grids do not look overly
different from the prediction on a regular grid (Fig-
ure 16), the difference is more distinguishable in Ta-
ble 2.
Table 2. Model is not capable of stable unrolling on
an irregular grid. The irregular grid increases the
model’s error substantially. Models are evaluated only
with 3 unroll iterations due to limited access to the
computational resources.

Regular Offset Reg. Random
MSE 24.8 27.1 27.9
Optim. steps ≈ 63k ≈ 70k ≈ 120k

4.4 Super-resolution
To test the model’s ability to predict wavefield for the
upsampled points, we insert data sampled on the ir-
regular grid into the uniformly sampled data in order
to increase resolution in certain areas of the computa-
tional domain (Figure 17).

During the training, we simulate super-resolution
by generating upsampled 500 points using a uniform
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Figure 16. Proposed model produces the best results
with data sampled on a regular grid. However, data
sampled on offset regular grid still produces usable
wavefields. However, randomly sampled data suffers
from an interpolation error, due to unevenly sampled
domain. All models are evaluated only with 3 unroll
iterations due to limited access to the supercomputer
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Figure 17. To train the network to perform prediction
for upsampled data, 500 random points are
concatenated to the uniformly sampled data. The
residual for the upsampled data is computed by
interpolating residual from the uniformly sampled
neighbors.

random generator. The upsampled data is then concate-
nated with the uniformly sampled data. Since the FFT
is defined well only on a regular grid, the residual can
be computed only for uniformly sampled data. Thus,
we obtain the residual of random points by interpolat-
ing the residual from uniformly sampled neighbors.

Results To evaluate predictions of upsampled points
by our model, the MSE is computed only from the
upsampled points and not from the uniformly sampled
data.
As shown in Table 3, our model yields lower error than
the interpolation method. Despite that, the MSE of
the upsampled points (MSE = 20.88) is substantially



higher in comparison with the prediction of uniformly
sampled points (MSE = 13.65). We hypothesize that
the higher error of the upsampled points is caused by
their irregularity, as shown by experiments described
in Section 4.3.
Table 3. As a baseline solution, we used interpolation
of the neighboring nodes. Compared with our model,
the MSE error of the upsampled points is notably
lower. Nonetheless, the MSE of the predicted uniform
samples is 13.65, which is significantly lower.

Interpolated Predicted
MSE 22.51 20.88

4.5 Training Noise
Pfaff et al. [24] demonstrated that noise injection dur-
ing training improved the unroll stability and lowered
overall error. The interpretation is that the error ac-
cumulating during unrolling can be reduced by sim-
ulating this error on the network input. It leads the
network to learn to correct the error, thus lowering the
overall accumulated error occurring during unrolling.
Table 4. Injecting 1.2% training noise described by
Equation (17), simulates prediction error. Using the
training noise forces the model to learn to correct its
prediction error during unrolling.

Noise [%] 0 0.6 1.2 2.4 4.8

MSE 14.58 14.56 14.37 15.76 15.43

Although, Pfaff et al. [24] uses noise injection
in the prediction of dynamical systems, we test the
training noise in our proposed solution as well. We
analyzed the distribution of the noise after 8 unroll
iterations and decided to model the error within 10%.
The training noise is set to the 8-th root of the error.
The unroll error depends on the predicted wavefield,
due to that fact we model the training noise as the
multiplicative noise. The following equation describes
the training noise:

ũk = uk + uk ∗ noise, (17)

where uk is the predicted wavefield at k-th iteration,
by injecting the noise in wavefield uk, the noise is
implicitly added to the residual Rk as well.

As shown in Table 4, by injecting noise 1.2% dur-
ing training, the model performance improved. Hence,
the model learned to reduce the prediction error from
previous iterations. Any higher training noise resulted
in worse results.

4.6 Pruning
One of the primary motivations behind neural solvers
is to reduce the time required to obtain a PDE solution.
Due to that reason, we analyze pruning the weights of
the network, which might improve the network speed.
However, Frankle and Carbin [8] formulate the Lottery
Ticket Hypothesis (LTH), stating that it can increase
the model accuracy as well. Frankle and Carbin [8]
uses the Iterative Magnitude Pruning (IMP) to find
Winning Tickets — pruned models performing better
than the unpruned one.

To formulate sparsity of the network, Pm denotes
the percentage of unpruned weights — Pm = 75%,
when 25% of weights are pruned.
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Figure 18. Any pruned network, with better
performance than the best unpruned network
(baseline), is referred to as winning ticket. Winning
tickets occurs only when the network is pruned before
the first phase of the training, where any networks
with Pm ≥ 72% is are a winning ticket (purple area).
Pm denotes the percentage of unpruned weights.

Our proposed method differs by employing two-
phased training. Pruning can be applied at the begin-
ning of the first phase or the second one. We followed
the LTH methodology and reset the model weights
after each pruning. Three different scenarios were
tested:

Training The pruning is applied before the whole
training starts, which is the beginning of the first train-
ing phase — training with 3 unroll iterations.
Fine-tuning As the name suggests, the model is
pruned at the beginning of the second training phase
(fine-tunning) — training with 8 unroll iterations. The
model weights are reset to the state at the beginning
of the second training phase, meaning the weights are
not set to initialization ones.
End-to-end End-to-end training with 8 unroll it-
erations were tested, where the network was trained
end-to-end. The network is pruned at the beginning of
the training — same as Frankle and Carbin [8].
Results As Figure 18 shows, the winning ticket can
be obtained only with the two-phased training. We



Table 5. Despite preserving the total message passing count equal to 60, exchanging the unrolls for message
pass count in a single unroll iteration results in higher error. We assume that the unroll iterations are essential
because of the residual. Without residual as an input, the model is not able to predict complex wave reflections.
GB refers to a Graph Block, which corresponds to a single message passing.

60 Unrolls, 1
GB

20 Unrolls, 3
GBs

12 Unrolls, 5
GBs

6 Unrolls, 10
GBs

4 Unrolls, 15
GBs

2 × 30 GBs

MSE 46.27 14.52 14.00 19.69 21.66 21.88

believe that the fine-tuning approach failed to produce
any winning tickets is due to not resetting the weight
to the ones from initialization. End-to-end approach
failed because it requires significantly more optimiza-
tion steps than the two-phased approach (see Chapter
3.4). Leaving the two-phased training approach to
be most likely to produce any winning tickets. The
winning tickets were obtained only with low levels
of pruning Pm ≥ 72%, meaning the network might
not be too overparametrized. Despite that there are
multiple methods for stabilizing the LTH [20, 9], due
to the expensive nature of the LTH experiments, we
did not conduct any related experiments.
Although the winning tickets are not sufficiently sparse
to utilize sparse multiplication or improve inference
speed, iterative pruning can be used to increase the
model’s accuracy.

4.7 Other Hyperparameters
Hop Connections The decision to use hop connec-
tions was based on the results from the first phase of
the training. The error decreased significantly with
hop connections in the first phase. However, as can
be seen in Table 6, after fine-tuning, where the model
truly learns the propagation of sound waves, hop con-
nections result only in an insignificant error decrease.
Table 6. Reason behind the usage of multiple hop
connections in the proposed solution was based on the
results from the first stage of the training.
Nonetheless, MSE from the fine-tuning stage prove
that the hop connections are unnecessary.

Hops {3, 5, 10} No Hops
First Phase 24.78 26.12
Fine-tuning 14.58 14.62

We hypothesize that the hop connections redundancy
in the latter stage of the training is that instead of
memorizing wavefield patterns, the network starts to
act as an iterative solver, where the prediction requires
only a smaller neighborhood, rather than the whole
domain.
Unroll Iterations vs. Message Pass Count This
section examines the trade-off between unroll itera-

tions and message passing count. A new residual is
computed from the predicted wavefield with every un-
roll iteration. On the contrary, a Graph Block passes
only a message (hidden state) to the next block. In
the following experiments, we fixed the total message
passing count to 60, only the ratio between unroll iter-
ations and graph blocks changes.
As Table 5 shows, unroll iterations are essential for
the wavefield prediction. More Graph Blocks (GB)
results in more learnable parameters — increasing the
model’s capacity. Nevertheless, model with 5 Graph
Blocks has the lowest error. We suppose that unroll
iterations are crucial due to the addition of residual
to the network’s input. We observed that without the
residual as input, the model cannot predict more com-
plex wave reflections and interactions. We assume, it
is due to inability of the network to learn a laplacian
operator. This experiment was conducted after the de-
sign choices, for that reason the proposed solution has
10 Graph Blocks.

4.8 Comparison with Helmnet
As depicted in Figure 19, the accuracy of Helmnet [34]
is remarkably higher than the accuracy of our solution.
We believe that the higher error of our model is caused
by not using a replay buffer. Thus, our model is not
trained with enough unroll iterations to learn to predict
the wavefield with such low error. Our assumption
is supported by Figure 20, when our model reaches a
certain level of error, it stops to improve the predicted
wavefield.

Due to a larger amount of data to be processed
(nodes and edges), our model is significantly slower
than Helmnet and k-Wave. Thus, failing at one of the
main aspects of the neural solvers.

5. Conclusions
Our Graph Network is capable of solving large do-
mains such as 512 × 512, thus moving beyond “toy”
problems. Unfortunately is slower than Helmnet as
well as the reference solver k-Wave. In addition, Helm-
net achieves a lower error by almost two orders of
magnitude compared to our solutions. Nevertheless,
our model is able to perform super-resolution, where
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Figure 19. Helmnet produces significantly more accurate wavefield than our solution. Nevertheless, our solution
produce adequate solution, but it cumulates a higher error with every iteration.
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Figure 20. Our model is notably slower than Helmnet
and k-Wave, and is not able to reach low error as
Helmnet. We assume, that the slower speed is because
graph contains more data to process (edges) than
images, despite containing the same amount of
information. The experiment was conducted on a
machine with a GPU A100.

it reached a lower error than the baseline method —
linear interpolation.

Even though our model was trained only on sam-
ples with a single source, it can predict a wavefield
with multiple sources, proving that our model learned
the interaction between sound waves. Additionally,
our model can perform inference in a 512× 512 com-
putational domain, although the model was trained
only in 96× 96 domain.

We demonstrated that the Graph Networks are able
to solve a second-order time-independent PDE within
a large computational domain. Also, we outlined the
problem of the difficulty of training an effective model
on an irregular grid. Lastly, we tested a neural solver
against the Lottery Ticket Hypothesis [8]. We were
able to produce winning tickets, but only with a low
level of sparsity Pm ≥ 72%. The winning tickets
are not sparse enough to utilize sparse multiplication,
but the iterative pruning can be used to improve the

accuracy of the model.
In the future, given the flexibility of Graph Net-

works, an emphasis can be given to training on the data
in a 2D space and later translating it to the 3D space.
We hypothesize that AGS could replace the spectral
method to compute the residual with denser sampling.
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