
http://excel.fit.vutbr.cz

Abstraction of State Languages
in Automata Algorithms
David Chocholatý*

1

20

q0s07

2

1
q1s04

q2s12

q33s2
1

q54
0

q5
q6

q1

q42
q1

3

q1s89

q9s4

q9s4

q11s22

q11s22

q11s22

q9s4

q33q2

q11s22

q11s22

1

1

1

0

0

1

3
2

2
3

0

1

2

1

0

3
0

3

1
1
2

3

2

1 0

Are the operations on finite automata
too complex?

Do not despair, we have a solution.

q0s0 q1s1

q2s2

q4s2

q1s2

q2s3

q3s2

q4s3

q5s2

0
1

1
0

1

0

0
1

1

Abstract
We explore possibilities of using various abstractions of automata languages in optimization of
automata algorithms used in mathematics, computation theory and logic. We focus on abstracting
languages of states to sets of possible word lengths or Parikh images, represented as semi-linear
sets, and exploring options of using them to optimize the construction of result of automata opera-
tions by pruning pairs of states with incompatible abstractions. We continue towards optimization of
these techniques.
We use synchronous product construction and its emptiness test as our benchmarking operation on
automata in our experiments. Nevertheless, our abstractions are applicable on many other typical
automata operations, e.g., complement generation etc.

Keywords: Finite Automata — State Languages Abstraction — SMT solving — Product Construc-
tion — Emptiness Test — Intersection Computation Optimization — State Space Reduction —
Length Abstraction — Parikh Image

Supplementary Material: Optimization Code and Experiments Results — Code Symboliclib

*xchoch08@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Automata theory is a well-known field of study used
in many areas. Automata are commonly used in math-
ematics and computation theory in general (e.g., in
model checking [1] or string solving and analysis [2]).
Their usage in the field of logic is just as important,
too (e.g., WS1S [3]).

Finite automata are conceptually straightforward.
However, operations on finite automata can produce
extensively larger and harder to work with result au-
tomata. Such operations are often expensive (have high
complexity). Our focus is on several usual operations
which take lots of computational time and generate
vast state space as a result. One of such operations
is the construction of finite automata intersection gen-

erated by the synchronous product construction algo-
rithm. We use product construction and its emptiness
test as a benchmarking operation in our experiments.

The intersection of finite automata combines the
original states from the individual automata to tuples
called product states in the generated state space by
finding corresponding transitions with the same sym-
bols. Every product state represents an intersection of
languages of two corresponding states in the original
automata. The synchronous product construction is
expensive on computational time. Furthermore, the
generated product state space increases exponentially
according to the number of used automata and the
number of their states1. However, there are often large

1The product construction sometimes explodes in a huge prod-

http://excel.fit.vutbr.cz
https://codeberg.org/Adda/optifa
https://codeberg.org/Adda/symboliclib
mailto:xchoch08@stud.fit.vutbr.cz


parts of the generated state space which cannot ac-
cept any words (no final states can be reached from
these states), yet are still generated. Therefore, it is
important to have a decent algorithm to minimize the
generated product state space as much as possible.

We focus mainly on decision-making about the
satisfiability problem—solving the emptiness of the in-
tersection of finite automata. We try to identify which
generated product states cannot lead to any accepting
states and do not continue from such states. When
states language abstraction of states in product state
are not compatible—the original languages of the cor-
responding states cannot accept the same words—we
can omit such product state and all their potential suc-
cessor states.

Our goal is to explore possibilities of using various
abstractions of automata state languages2 in optimiza-
tion of automata algorithms. We consider options of
using them to pruning pairs of states with incompat-
ible abstractions. We continue towards optimization
of these techniques. Our suggested optimization meth-
ods are applicable on many other typical automata
algorithms. Consequently, our discoveries have wider
impact on multiple automata operations.

We have previously used length abstraction of state
languages3 optimization in [4]. We have computed
possible lengths of accepted words for each automaton
and their states. Length abstraction is an effective
and simple method but the pruning capabilities are
not ideal. Length abstraction alone cannot sometimes
detect unnecessary state space for automata with rich
alphabet and many transitions from each state for such
state languages accept multitude of words lengths.

The optimization approach we consider now is
the computation of Parikh images4 for product states.
Parikh image of a word tells us how many times a
symbol occurs in a word5. Parikh image of a language
is then a semi-linear formula describing the relation
between the number of symbol occurrences in words
in a language. In contrast to the length abstraction, we
have additional information about the product states
(the number of symbols in words). We can more pre-
cisely identify unnecessary state space. However, the
Parikh image computation is an expensive operation.

It is necessary to decide whether the trade-off of

uct state space.
2Over-abstractions of original state languages, precisely. There-

fore, we cannot accidentally trim product states leading to at least
one accept state.

3to sets of possible word lengths
4represented as semi-linear sets
5A function which assigns each symbol a number of occur-

rences in a word.

unoptimized basic algorithm generating larger product
state space requiring less computation time for reduced
product state space generated by our optimized algo-
rithm using Parikh images with additional computation
time requirements is worth our attention. For certain
operations over the automata, the product state space
size is crucial. Considering we may need to work with
the same product multiple times or simply need to exe-
cute a single operation on the product6, reduced state
space can spare extensive amounts of computation
time further down the processing line. Furthermore,
generating smaller state space using our Parikh image
optimization can improve computation time for the
sole product generation algorithm in case substantial
parts of otherwise generated state space are pruned or
even when the whole product is proved to be empty,
which can be quickly determined by our optimization,
whereas the classic unoptimized algorithms would pro-
ceed to generate useless fragments of suppositional
product.

We have implemented these optimizations and ex-
perimented with several different automata, tried var-
ious combinations of them, generated their products
and tried to solve their emptiness test, focusing mainly
on the number of trimmed product states in the process.
For certain types of automata of certain qualities, this
optimization process works really well. Parikh image
abstraction usually trims vast state spaces where length
abstraction cannot prune anything and basic product
state space explodes exponentially (e.g., from 20000
to 10 product states). In addition, it is successful at im-
mediately stopping product generation if the product
is empty.

The contribution of this work can be summarized
as follows:

1. heuristic trimming generated state space of oper-
ations on finite automata based on Parikh image
computation, and

2. implementation and experimental evaluation of
said heuristic and its optimizations.

2. Preliminaries
Let us clarify a few definitions and terms often used
throughout this paper. The following definitions are
mostly adapted from [5] or [6].

Alphabet is a finite, non-empty set denoted by Σ.
Elements of an alphabet are called symbols or letters.
A finite, possibly empty, sequence of symbols over an

6Even more so if automata operations are chained one after
another, each operation increasing the complexity of the previous
one.



alphabet is a word w from the set of all words Σ
∗ over

an alphabet Σ.

Definition 2.1 (Deterministic finite automaton)
A deterministic finite automaton (DFA) is a 5-tuple
A = (Q,Σ,δ ,I,F), where:

• Q is a non-empty set of states,
• Σ is an input alphabet,
• δ is a transition function: Q×Σ→Q,
• I ∈Q is the initial state, and
• F ⊆Q is a set of final states.

A run of A on input a0a1a2 . . .an−1 is a sequence
q0

a0Ð→ q1
a1Ð→ q2

a3Ð→ . . .
an−1ÐÐ→ qn, such that qi ∈ Q for

0 ≤ i ≤ n, q0 = I and δ(qi,ai) = qi+1 for 0 ≤ i ≤ n− 1.
A run is accepting if qn ∈ F . The automaton A accepts
a word w ∈ Σ

∗ if it has an accepting run on input w.
A language recognized by finite automaton A is a set
L(A) = {w ∈ Σ

∗ ∣w is accepted by A}. A single transi-
tion from transition function δ is denoted as q

aÐ→ q′ if
q′ ∈ δ(q,a) and means one can get from state q to state
q′ with a transition symbol a. For every state, DFA
has at most one transition for a given symbol. Con-
sequently, DFA has exactly one run on a given word
from initial state to one of the accepting states (or non-
terminating states7 in case the word is not accepted by
the automaton at all).

Definition 2.2 (Non-deterministic finite automaton)
A non-deterministic finite automaton (NFA) is a 5-tuple
A = (Q,Σ,δ ,I,F), where Q, Σ and F are as for DFA
and:

• δ is a transition relation: δ ∶ Q×Σε → P(Q),
where Σε = Σ∪ε and P(Q) = {R ∣R ⊆Q} is a set
of subsets of Q, and

• I = {q ∣q ∈Q} is a non-empty set of initial states.

For every state and its transition symbol
P(Q) ∈ δ(q,a) is a singleton. For example,
δ(q1,a) = {q1,q2}.

Two finite automata A and B are said to be equiva-
lent when both accept the same language:
L(A) = L(B).

For every NFA A exists a corresponding equivalent
DFA B. Determinization is a process of converting
such NFA to DFA.

Definition 2.3 (Product construction) Operations
on automata A1 and A2 yield a result – a product A as a
5-tuple deterministic finite automaton A= (Q,Σ,δ ,I,F).

7No accept state is accessible from them.

Given two NFAs A1 = (Q1,Σ,δ1,I1,F1) and
A2 = (Q2,Σ,δ2,I2,F2) over the same alphabet Σ, we
can define:

• a set of states Q =Q1×Q2,
• a transition relation δ ∶Q×Σ→ P(Q),
• a set of initial states I = I1× I2, and
• a set of accepting states F = F1×F2.

The transition relation δ is described as
([q1,q2],a) = δ1(q1,a)×δ2(q2,a). For pairs of states
q1 and q2 from A1 and A2, respectively, and a common
transition symbol a of transitions q′1 ∈ δ1(q1,a) and
q′2 ∈ δ2(q2,a), we denote a single product transition as
[q1,q2]

aÐ→ [q′1,q′2], where [q′1,q′2] ∈ δ([q1,q2],a) for
the corresponding states [q1,q2] and [q′1,q′2] in A are
called product states.

Focusing mainly on intersection of automata, the
product construction tells that L(A) = L(A1)∩L(A2).

Finally, we test the emptiness of the resulting au-
tomaton language: L(A) does not accept any words.

Input : NFA A1 = (Q1,Σ,δ1, I1,F1),
NFA A2 = (Q2,Σ,δ2, I2,F2)

Output : NFA (A1∩A2) = (Q,Σ,δ , I,F) with
L(A1∩A2) = L(A1)∩L(A2)

1 Q,δ ,F ←∅
2 I← I1× I2
3 W ← I
4 while W ≠∅ do
5 pick [q1,q2] from W
6 add [q1,q2] to Q
7 if q1 ∈ F1 and q2 ∈ F2 then
8 add [q1,q2] to F

9 forall a ∈ Σ do
10 forall q′1 ∈ δ1(q1,a),q′2 ∈ δ2(q2,a) do
11 if [q′1,q′2] ∉Q then
12 add [q′1,q′2] to W

13 add [q′1,q′2] to δ([q1,q2],a)

Algorithm 1: Classic product construction

Definition 2.4 (Galois Connection) Galois connection
is a quadruple π = (P,α,γ,Q) such that:

• P = ⟨P,≤⟩ and Q = ⟨Q,⊑⟩ are partially ordered
sets (posets) and

• abstraction function α ∶ P→Q and concretiza-
tion function γ ∶Q→ P inverse to α . ∀p ∈ P and
∀q ∈Q:

p ≤ γ(q)⇔ α(p) ⊑ q.

In the terminology of abstract interpretation, P is
a concrete domain and Q is an abstract domain. If
α and γ functions form a Galois connection, ∀p ∈ P ∶
p ≤ γ(α(p)). That is, the abstraction may only over-
approximate the concrete semantics.



3. State Language Abstractions

We try to optimize operation on automata with our
optimizations methods. For the purpose of introducing
our methods, we focus solely on synchronous prod-
uct construction of automata intersection in this paper.
However, the proposed optimizations can be applied to
other operations as well. When constructing a product,
a considerate number of generated product states are
nonterminating and thus unnecessary. Furthermore,
the whole product must be constructed before we can
determine whether the automata intersection is empty.
Our optimizations decide the emptiness of parts of the
product (or the whole product) already in the process
of generating the product. We can thus prune nonter-
minating states before they are added to the product
and omit extensive product state space before even
considering it in the classic product generation algo-
rithm. We achieve this by computing state language
abstractions for each state the generated product state
consists of and deciding their compatibility.

Our optimization are applicable on two and more
automata, but for the ease of explanation, we will con-
sider only two automata (A1 and A2). We have intro-
duced the concept of state language abstractions in [4]
with length abstraction of state languages. The idea is
to find a state language abstraction α

X(q) of a state
q in abstraction X (αLA(q) for length abstraction and
now α

PI(q) for Parikh image abstraction) represent-
ing a formula in first-order predicate logic. Both our
α

LA(q) and α
PI(q) respect Galois connection. Hence,

they are an over-approximation of state language of
q. We compare such state abstractions in different
finite automata (α(q1) where q1 ∈QA1 , α(q2) where
q2 ∈QA2) to find out whether they are compatible with
each other. If not, we can assume the corresponding
state languages are neither and can prune such states.

The α
LA(q) is a fast and simple abstraction ab-

stracting accepted words to only their lengths, but can
be too general to detect nonterminating states in some
cases. In this section, we present a product construc-
tion optimization using Parikh image state language
abstraction which tries to make the abstraction more
accurate to prune larger quantities of unnecessary gen-
erated product state space.

Parikh images provide more information about the
finite automata than simple length abstraction as Parikh
image abstracts accepted words to numbers of occur-
rences of transition symbols in words regardless of
their position in words instead of only word lengths
without consideration of which transition symbols are
actually used. Parikh image abstraction allows us to
more precisely determine whether A1∩A2 =∅. How-

ever, the Parikh image computation itself consumes a
considerate amount of computational time for some of
the more extensive finite automata. The question is,
whether the added computation time compensates for
more precise product generation with higher product
states pruning capabilities.

We introduce an algorithm for Parikh image com-
putation applied on each potential product state
p = [q1,q2] to decide the compatibility of its α

PI(q1),
α

PI(q2) (mutual satisfiability of formulae describing
the abstractions). If the abstractions are proved to be
compatible, p is added to the generated product. Oth-
erwise, p is omitted and no additional p′ such that
p′ = δ(p,a) accessible only from p are added to the
queue to test their abstractions compatibility. General-
ization to n-tuples is then a matter of adding additional
abstraction equal to the number of input automata.

3.1 Parikh Image
We derive our Parikh image construction from the
Parikh’s theorem [7] described in [8], creating a semi-
linear Parikh image formulae for the given regular
language as a set of Parikh images for each word in
the language. However, our usage of Parikh image
of some regular language (and therefore of the cor-
responding finite automaton recognizing such regular
language) is restricted to determining the compatibility
of Parikh image state language abstractions. Therefore,
we only test for satisfiability of Parikh image formulae
describing α

PI(qi). We use SMT solver to resolve the
satisfiability of Parikh image formulae of the current
potential product state.

Our Parikh image formulae consist of the follow-
ing constraints, in conjunctive normal form. For each
potential product state, there exists exactly one our
formula of Parikh image describing its regular lan-
guage. We ask the SMT solver whether the Parikh
image constraints for corresponding states in the origi-
nal automata (one state per automaton) are compatible
with each other. This ensures that we construct only
those product states which satisfy the Parikh image
constraints, otherwise we deem such potential product
states redundant and such states can be pruned.

Given an NFA A = (Q,Σ,∆,I,F) where I is a sin-
gleton I = {q0}, Parikh image formula ϕ (as described
in [9] for solving string constraints) consists of the
following conjuncts. ϕ describes runs of A (precisely,
their over-approximation). The defined variables rep-
resent qualities of each run, their precise values the
precise qualities of the specific run. Satisfiable assign-
ment defines a set of runs with qualities given by the
assigned variable values.



1. Foremost, we define a variable uq for each state
q ∈ Q. uq defines how many times we enter q
and exit q again by specifying the difference
between the number of entries and exits. We
construct equations with uq for a run as follows:

• uq = 1 for q ∈ I,
• uq ∈ {0,−1} for q ∈ F and
• uq = 0 for q ∈Q∖(I∪F).

2. Second, we define a variable yt for each transi-
tion t ∈ ∆ such that yt ≥ 0 describing how many
times is t used in the run.

3. We can now present an equation introducing a
connection between uq and yt to evaluate the
difference between the number of entries and
exits for each q ∈Q as follows:

uq+∑
t∈∆+q

yt −∑
t∈∆−q

yt = 0.

where ∆
+
q is a set of ingoing transitions

∆
+
q = {(q′,a,q) ∈ ∆} and ∆

−
q is a set of outgoing

transitions ∆
−
q = {(q,a,q′) ∈ ∆} from the given

state q.
4. Furthermore, we declare the only free variable

#a for each transition symbol a ∈ Σ. #a describes
the number of occurrences of a in accepted words
regardless of their position in the words (the
number of a in the run). The constraint
#a =∑t=(q,a,q′)∈∆ yt ensures #a is consistent with
the number of used t with a.

5. Last, but not least, we make sure the regular lan-
guage expressed by Parikh image preserves the
connectedness of A—the used automata states
are accessible from I and they are connected by
transitions. Variable zq for each q ∈ Q is intro-
duced. zq represents the length of the path from
I to q in a spanning tree of the subgraph with
yt ≥ 0.
If q ∈ I, we add a constraint zq = 1∧yt ≥ 0. Oth-
erwise,

(zq = 0∧ ⋀
t∈∆+q

yt = 0)∨ ⋁
t∈∆+q

(yt ≥ 0∧ zq′ ≥ 0∧ zq = zq′ +1).

If the distance zq is 0, q is not in the run.

We gain an existentially quantified formula ϕ in
Presburger arithmetic describing language abstracting
α

PI for A with free variables #a:

α
PI ∶ ∃uq1 , . . . ,uqn ,zq1 , . . . ,zqn ,yt1 , . . . ,ytm ∶ ϕ

where n = ∣Q∣ is the number of states and m = ∣∆∣ is the
number of transitions in the finite automaton.

For SMT solving, it is paramount that we have
formulae without universal quantifiers, otherwise the

SMT solver computation could explode computation
time-wise. SMT solver work best with quantifier-free
or existential formulae. Thanks to how Parikh image
is constructed, our approach takes advantage of these
SMT qualities and our Parikh image formulae can be
inserted in SMT solver as quantifier-free.

3.1.1 Reduced Parikh Image
The presented Parikh image works as intended. Nev-
ertheless, the described Parikh image computation re-
quires extensive resources and computation time. How-
ever, we use Parikh image only for determining the
emptiness of the product. Given that most of the com-
putation time is taken by the evaluation of these con-
juncts, we try to minimize the number of Parikh image
formula conjuncts SMT solver needs to evaluate for
each ϕ .

Consequently, we infer our reduced Parikh image
from the above shown Parikh image to further optimize
Parikh image computation. We strip Parikh image of
for our purposes unnecessary constraints and unify
initial states as well as accept states.

Our reduced Parikh image consists of the following
conjuncts:

1. We use the conjuncts 1, except now we restrict
uq for each final state to have only the value −1,
i.e.:

uq = −1 for each state q ∈ F .

We can perform this reduction, because we know
for sure that by unifying final states of the au-
tomaton into one abstract final state, there will
be exactly only one final state where all words
accepted by the automaton end, but none passes
through this state earlier.

2. The conjuncts 2 and 3 remain unchanged, the
same holds for conjuncts 4.

3. However, we completely omit the conjuncts for
zq which ensure the connectedness of the Parikh
image representation of finite automaton. The
reason is that, as we have found out, the dif-
ference in pruning capabilities of Parikh image
with or without the conjuncts 5 on our bench-
mark automata is insignificant in comparison to
the computation time spared by removing these
conjuncts
The reason conjuncts 5 are so demanding com-
putation time-wise is that all these conjuncts
have to be always recomputed for each single
state Parikh image is computed for. Furthermore,
the conjuncts themselves are complex for even
simple automata. For that reason, SMT solvers



need extensive resources to compute Parikh im-
ages with these conjuncts in consideration.
Even then, if we require ensuring that the re-
duced Parikh image represents the connected-
ness of the finite automaton, we can include
these conjuncts, but, thanks to our unification
of initial and accept states, we change them as
follows to reflect our initial and accept state uni-
fication changes:
The constraint for when q is an initial state
(zq = 1∧ yt ≥ 0) remains unchanged. However,
for every other state, we remove the possibility
of yt = 0 and zq′ = 0 in the second half of the
conjuncts. The conjuncts look like this:

(zq = 0∧ ⋀
t∈∆+q

yt = 0)∨ ⋁
t∈∆+q

(yt > 0∧ zq′ > 0∧ zq = zq′ +1).

Our goal is to reduce the number of conjuncts
the SMT solver needs to compute for each potential
product-state. We focus on several optimizations such
as incremental SMT solving,

Due to how we have reduced our Parikh image
used for automata state language abstraction, we work
only with finite automata with a single initial state and
a single accept state. However, we can easily con-
vert any finite automaton into the required format with
adding two new states to each input automaton. One
for a new initial state from which one can transition
to all previous initial states and one for a new accept
state to which lead all previous accept states. The pre-
vious initial and accept states are changed to common
automata states.

3.1.2 Compatibility of Multiple Parikh Image State
Language Abstractions

So far, we have shown how to compute Parikh image
for a single finite automaton to represent said automa-
ton with a single formula. We want to use this formula
in such a way that would allow us to decide satisfiabil-
ity of those formulae for multiple automata simultane-
ously when the formulae are combined into a single
formula which we can decide its satisfiability for. The
following paragraphs show how we use these features
of Parikh images to determine satisfiability of multiple
Parikh image formulae.

We can compute ϕ1 for A1 and ϕ2 for A2. Each ϕi

represents exactly one Ai. Therefore, each ϕi by itself
is satisfiable for Ai where ϕi describes words accepted
by Ai

8.

8Our Parikh image is an over-approximation of the accepted
language of Ai. Therefore, there could exist such evaluation of
variables in ϕi which describes words not accepted by Ai. It is a
trade-off of precise representation of Ai for faster computation of
ϕi.

If each ϕi is satisfiable, we want to know whether
a combination of state language abstractions is com-
patible at the same time: sat(ΦPI(p)) such that
p = [q1,q2] is a product state,

Φ
PI(p) ∶ αPI(q1)∧α

PI(q2) and

sat(ψ) is True iff ψ is satisfiable, False otherwise.
However, to maintain the languages of specific

automata distinguishable, we label each variable uq,yt

(optionally, zq, too) for each ϕi according to i: uiq,yit

(ziq). The only exception are free variables #a which in
contrary are bound to transition symbols a ∈Σ common
to both Ai.

sat(ΦPI(p)) means there are words accepted by
all ϕi simultaneously and therefore by both Ai. Conse-
quently, the automata product would be non-empty.

3.2 Optimization Algorithm Using Parikh Im-
ages

We introduce the basic algorithm using Parikh image
computation to construct the product of the intersec-
tion of finite automata. The algorithm resembles the
length optimization algorithm from [4]. However, we
compute Parikh image formulae and determine their
satisfiability instead of generating lasso automata and
determining satisfiability of length abstraction formu-
lae now to optimize product construction.

We use Parikh image formulae to determine whether
p is to be added to the generated product P (in case
sat(ΦPI(p))) or omitted (in case ϕ1 and ϕ2 are unsat-
isfiable simultaneously in Φ

PI(p).
We can see our proposed algorithm using Parikh

image computation to optimize product construction
in the Algorithm 2. Similarly to the length abstraction
algorithm, we start with the initial states (our abstract
initial state, as described in Section 3.1.1) of A1 and
A2, compute ϕ1 and ϕ2 combined into a single for-
mula Φ

PI(p). If ¬sat(ΦPI(p)), P is empty and we
can stop the product generation at once. Otherwise,
sat(ΦPI(p)) is satisfiable and the corresponding prod-
uct state is added to P. We proceed to generate the
consecutive potential product states. We set the initial
states for Parikh image formulae computation to the
current state for each automaton Ai for each potential
product state and recompute the combined Parikh im-
age formula. We iterate over potential product states
from W (see line 6).

The expression in line 9 computes state language
abstractions by computing Parikh image formulae, de-
termines their compatibility (satisfiability of Parikh
image formulae) and returns the result as a boolean
value. We are only interested in the satisfiability test



result because we do not need any additional informa-
tion from the computed formulae. Therefore, a simple
boolean value is sufficient. The result of the satisfia-
bility test is used further in the algorithm to determine
whether the product state is added to the generated
product and consecutive potential product states are
appended to W . The Parikh image is computed as it is
explained in Section 3.1.1.

Input : NFA A1 = (Q1,Σ,δ1, I1,F1),
NFA A2 = (Q2,Σ,δ2, I2,F2)

Output : NFA P = (A1∩A2) = (Q,Σ,δ , I,F) with
L(A1∩A2) = L(A1)∩L(A2)

1 Q,δ ,F ←∅
2 I← I1× I2
3 W ← I
4 res← False
5 solved←∅
6 while W ≠∅ do
7 picklast [q1,q2] from W
8 add [q1,q2] to solved
9 res← α

PI(q1)∧α
PI(q2) is sat

10 if res = True then
11 add [q1,q2] to Q
12 if q1 ∈ F1 and q2 ∈ F2 then
13 add [q1,q2] to F

14 forall a ∈ Σ do
15 forall q′1 ∈ δ1(q1,a),q′2 ∈ δ2(q2,a) do
16 if [q′1,q′2] ∉ solved and [q′1,q′2] ∉W

then
17 add [q′1,q′2] to W

18 add [q′1,q′2] to δ([q1,q2],a)

Algorithm 2: Product construction algorithm with
Parikh image abstraction.

3.2.1 Optimization with Skippable States
Same as for the length abstraction algorithm from [4],
we can make use of skipping satisfiable product states
optimization. When sat(ΦPI(p)) for some potential
product state q = [q1,q2] and q generates only one con-
secutive potential product state q′ = [q′1,q

′

2] such that
q→ aq′ where a ∈ Σ, we can skip computing Parikh im-
ages for q′ as we know for sure sat(ΦPI(p′)) in order
to get a satisfiable result for Parikh image for state q.
We can add this functionality to our previous algorithm
by replacing line 9 with the content of Algorithm 3.

1 if not isSkippable([q1,q2]) then
2 res← α

PI(q1)∧α
PI(q2) is sat

3 else
4 res← True

Algorithm 3: Parikh image computation with skippable
states optimization.

3.3 Optimization with Incremental SMT Solv-
ing

We have to recompute Parikh image formula for every
potential product state whose state language abstrac-
tions compatibility we check. We would appreciate a
solution which would allow us to recompute only the
conjuncts which change between two formulae (for
two distinct product states) and keep the conjuncts
which remain unchanged from the previous computa-
tion to be used in the next computation without the
need to recompute them again. Our reduced Parikh
image algorithm is designed for such optimization.

Notice that some conjuncts of Parikh image remain
unchanged for the whole automaton, i.e., for every
potential product state we compute Parikh images for.
Therefore, we can use incremental solving features of
SMT solver, which precompute these conjuncts only
once when Parikh image is first computed9. We make
use of these already computed constraints to quicken
Parikh image computation for every other state.

Assume finite automata A and B (whose intersec-
tion we generate) and a state p = [a,b] where
a ∈QA,b ∈QB as a potential product state. The changes
of conjuncts in ϕA and ϕB are caused by moving (set-
ting) the states in both A and B corresponding to p
as new initial states IA = {a} and IB = {b} as we pro-
ceed further into the automata in product construction.
We start with the abstract initial states (one for each
original automata, IA = {a′0} and IB = {b′0}).

First, we compute Φ
PI(p0) such that p0 = (a′0,b′0).

Iff sat(ΦPI(p0)), we generate new potential product
states (e.g., p1 = (a1,b1) and p2 = (a1,b2)). Now we
need to check whether to include p1 and p2 to the
generated product, i.e., check that sat(ΦPI(p1)) and
sat(ΦPI(p2)), respectively. Taking p1, we set new
initial states IA = {a1},IB = {b1}. Similarly for p2, we
would set IA = {a1},IB = {b2}.

We now need to change every mention of initial
states in ϕA and ϕB because the initial states are dif-
ferent from those we used at the start (a′0 and b′0) and
for which we already computed Φ

PI(p0). We now
introduce an optimization of Parikh image computa-
tion which precomputes unchanged conjuncts only
once and recomputes only conjuncts mentioning initial
states.

3.3.1 Persistent and State Specific Clauses
To present optimization with incremental SMT solving,
we split α

PI(q) conjuncts into two groups: persistent
clause and state specific clause.

9Consequently, computing Parikh image for the first time (for
the first state of the given finite automaton) will take longer than
for the following product states.



Persistent clause represents Parikh image conjuncts
which can be precomputed once and used throughout
the whole process of working with the given finite
automaton. Persistent clause consists of unchanged
conjuncts of original Parikh image described in 3.1:
conjuncts 2, conjuncts 3 and conjuncts 4.

State specific clause consists of conjuncts which
change with every potential product state p tested for
satisfiability, and as such have to be constructed and
recomputed for every satisfiability test. The whole pro-
cess of recomputing state specific clause is the most
resource heavy part of the Parikh image computation
algorithm. Therefore, our goal is to minimize the num-
ber of conjuncts in a state specific clause as much as
possible. The state specific clause consists of con-
juncts 1 as they directly change according to initial
states and, optionally, if we want to include zq con-
juncts, conjuncts 3. We would need to recompute zq

conjuncts for each potential product state too because
the conjuncts compute with initial states.

SMT solvers are well optimized to improve their
performance by allowing incremental SMT solving.
As we can see, the majority of conjuncts can be pre-
computed for the whole product generation and only
taken into consideration with always recomputed new
state specific clause.

It is worth to note that the conjuncts 3 manipulate
with initial states but the structure of the conjuncts
could be reversed to compute connectedness of the
automaton in reversed order, from the accept states to
the initial states. In that case, the conjuncts could be re-
constructed as a part of the persistent clause dependent
on accept states which remain unchanged (the abstract
accept state) for the entire time. This additional op-
timization might be worth inspecting. Because the
inclusion of conjuncts 3 does not generate smaller
state spaces with our benchmark automata, we did not
investigate further yet.

SMT solvers can utilize their cache abilities to
compute similar, consecutive formulae faster. We can
observe how Parikh image satisfiability of successive
product states are computed quickly due to minimal
changes in formulae which SMT solvers can quickly
resolve while using the most of the previously com-
puted formulae constraints.

3.3.2 Algorithm for Incremental SMT solving Us-
ing Parikh Image

To implement incremental SMT solving to our current
Parikh image computation shown in Algorithm 2, we
need to make the following adjustments.

We need to precompute persistent clauses once A1
and A2. We insert a new line to our algorithm between

lines 5 and 6. The new line contains a call to a function
addPersistentClauses() which precomputes
persistent clauses for both A1 and A2. Note that the
function is called only once, before we enter the while
loop for iterating over potential product states.

We compute state specific clauses as normal when
we ask whether sat(ΦPI(p)) when we are checking
compatibility of both α

PI on line 9. However, we push
the previously precomputed state persistent clauses
to the SMT solver stack. This preserves them when
the current state specific clauses are dropped after
sat(ΦPI(p)) is resolved. For a pseudocode of the re-
placement of line 9, see Algorithm 4.

1 smtSolverPush()

2 res← α
PI(q1)∧α

PI(q2) is sat
3 smtSolverPop()
Algorithm 4: Add state specific clauses to SMT solver
for incremental SMT solving optimization.

The line 2 computes Parikh image formulae and
determines their satisfiability, as explained in Sec-
tion 3.1.1.

3.4 Optimization with SMT Solver Timeout
In the case of Parikh images computed with SMT
solver, it is easier to determine ¬sat(ΦPI(p)) than
sat(ΦPI(p)). Based on our experiments, we use time-
out functionalities of SMT solver to quicken the pro-
cess of resolving satisfiability of potential product
states.

We define a maximal amount of time SMT solver
can compute sat(ΦPI(p)) for a single product state
p to resolve its satisfiability. If SMT solver resolves
sat(ΦPI(p)) before the time runs out, we proceed as
normal. However, if the time runs out, the result of
the satisfiability test is unknown and we must presume
sat(ΦPI(p)).

This approach resolves sat(ΦPI(p)) of an over
abstraction described previously. We prune such po-
tential product states that sat(ΦPI(p)) can be resolved
quickly (within the defined timeout) while allowing the
inclusion of some potential product states which are in
fact unnecessary to the generated product. Neverthe-
less, we find pruning capabilities of this optimization
satisfactory and the computation time decreases no-
ticeably.

There is a problem with choosing the right time
limit for timeout for SMT solver. We say the ideal
timeout depends on a structure of finite automata we
are working with, their size and complexity. And on
how much time we are willing to give to the SMT
solver. The timeout is directly proportional to the re-



sults precision and reversely proportional to the scale
of over abstraction computed. The cost is that the com-
putation time requirements are directly proportional to
SMT timeout, too.

3.5 Parikh Image Optimization Enhanced by
Length Abstraction

One of the strengths of our optimization algorithms is
their high customizability. The different approaches
can be combined, easily parallelized and applied on
various operations on finite automata. We present an
approach which takes advantage of specific strengths
of our proposed optimization methods while trying to
mitigate their weaknesses and utilizes them in a single
algorithm.

We introduce a variation of satisfiability testing of
state abstractions. We use both length abstraction and
Parikh image computation to determine satisfiability of
state abstraction to optimize Parikh image computation
algorithm. The Algorithm 5 shows how we apply our
optimizations on a single potential product state.

1 if α
LA(q1)∧α

LA(q2) is unsat then
2 res← False
3 else
4 res← α

PI(q1)∧α
PI(q2) is sat

5 if res =Unknown then
6 res← True

Algorithm 5: Implementation of function checking
satisfiability of state abstraction using both length ab-
straction and Parikh image computation optimizations.

First, we test whether α
LA alone can prune the

generated product state space by omitting the current
potential product state [q1,q2] if ¬sat(ΦLA[q1,q2]). If
length abstraction succeeds in omitting [q1,q2] from
the product, we do not need to compute Parikh images
for [q1,q2] and can continue with the Parikh image al-
gorithm as if ¬Φ

PI([q1,q2]). Otherwise, we continue
with Parikh image computation for [q1,q2] (resolv-
ing satisfiability of its formulae as in the basic Parikh
image algorithm from 2).

4. Experiments and Results

The reference implementation10 of the proposed opti-
mizations, written in Python 3, as well as a complete
table of all of our experiments and their results and
graphs is publicly accessible on a Codeberg reposi-
tory11. There is further explanation of the following

10In the reference implementation, we use Z3 as an SMT solver
and automata operations are handled by for our uses modified
library Symboliclib.

11https://codeberg.org/Adda/optifa

graphs as well as additional graphs with description
and in-depth analysis of performed experiments.

Test benchmarks used in our experiments were ob-
tained from regular model checking. We have tested
various different finite automata and their combina-
tions. We have often used the same automata with
their slightly changed variations to simulate real world
examples of usually used automata to see how the opti-
mized algorithm reduces the generated state space for
certain types of automata with their typical qualities.

We have tested two main aspects:

• First, we have tested the generated state space
for emptiness test. That is, whenever we find a
solution—accepting state in the intersection, the
test ends, and we count the number of generated
product states to this moment. If no intersec-
tion is found, we end the test when it is certain
there is no accepting state and the intersection
is indeed empty.

• Second, for the same pair of automata, we have
tested the full product construction. Adding new
accepting states along the way and comparing
generated state spaces in the end for the full
product accepting the whole intersection of orig-
inal automata.

We show results of several experiments with Parikh
image computation optimization. At first, we are inter-
ested in pruning capabilities of Parikh image abstrac-
tion without further optimizations. Later, we provide
results for introduced optimizations of Parikh image
computation algorithm.

The following graphs in Figure 3 show the results
for both the emptiness test and full product construc-
tion of unoptimized Parikh image computation abstrac-
tion. The graph in Figure 1 shows the comparison of
product state spaces sizes in basic product construction
algorithm and our Parikh image computation algorithm
for emptiness test. Sorted in order of increasing prod-
uct state space size generated by the basic product
construction algorithm. The graph in Figure 2 shows
the same data, only for the full product construction
experiment.

We conclude from the experiments that Parikh im-
age optimizes the generated product state space in
nearly every case and produces equal or better results
than length abstraction every time. The strength of
Parikh image is its higher pruning capacity due to
wider range of information gathered from the automata.
In multiple cases, Parikh image optimization is able to
prune vast branches of potential generated product by

12Plot is linear around 0 instead of logarithmic.

https://codeberg.org/Adda/optifa
https://codeberg.org/Adda/optifa
https://codeberg.org/Adda/optifa
https://github.com/Z3Prover/z3
https://codeberg.org/Adda/symboliclib
https://codeberg.org/Adda/symboliclib
https://codeberg.org/Adda/optifa


0 100 101 102 103
0

100

101

102

103

Figure 1. Emptiness test

0 100 101 102 103 104
0

100

101

102

103

104

Figure 2. Full product

Figure 3. Comparison of state space sizes generated
by basic and optimized product construction
algorithms with length abstraction (blue dots) and
Parikh image computation (orange dots). Both axes
are in symmetrical logarithmic scale12, showing state
space sizes: x-axis of basic product, y-axis of
optimized product.

correctly determining incompatible transition symbols
even if possible lengths of accepted words are mutually
compatible, sometimes even entirely stopping product
construction immediately when basic and length ab-
straction constructions continue to generate state space
further.

Incremental SMT solving proves to be a great im-
provement to the Parikh image computation optimiza-
tion. The amount of clauses depends on the number
of states in finite automata, the number of transitions
and the number of initial or accepting states. The fol-
lowing experiment provides an example comparison
of the number of all clauses in Parikh image, clauses
common to all product states (persistent clauses) and
state specific clauses. For a product of 434 states,
each product state Parikh image contains 2652 clauses.
From those, 1782 clauses are persistent clauses and
the remaining 870 are state specific clauses. A propor-
tional ratio o persistent clauses in whole Parikh image
is around 67.2%. The number of persistent clauses
(experimentally determined to be usually around 70%)
for our benchmark automata means around 70% of
each computed Parikh image clauses can be precom-
puted once. Only 30% of clauses must be computed
repeatedly for each potential product state.

5. Conclusions
The most demanding parts of the intersection compu-
tation is the generation of product states and transi-
tions of the product automaton. We tried to reduce
the size of the generated state space by omitting the
states which cannot lead to any accepting state—that
is, omitting the branches which do not lead to any
accepting state—by performing the emptiness test of

such states using various state languages abstractions
over the original automata such as length abstraction
using lasso automata or Parikh image computation
based on Parikh’s theorem. Each approach has been
experimentally tested and further optimizations to the
proposed algorithms were introduced.

According to our experiments, product state space
is minimized especially for intersections with large
branches where no final states can be reached or for
intersections of automata accepting different lengths
of words recognized by the automata languages. Fur-
ther, for automata with long lines and similar automata
varying only slightly from each other. Experiments
show our algorithm generates smaller product state
spaces for both emptiness test and full product con-
struction, which are two usually used operations on
automata intersection. All our abstractions consider
over-approximation of possible products. Therefore,
our optimizations are safe to use for any uses resolving
operations on finite automata.

We have not encountered similar approaches to
product construction optimization using length abstrac-
tion or Parikh image computation to compare our re-
sults with. It might be worth investing into combining
our orthogonal approach with other existing algorithms
to see how the generated product state space is affected.
We are talking about abstraction techniques such as
CEGAR [10] and predicate abstraction [11], IMPACT
[12], possibly IC3/PDR [13]. All the above techniques
have proven efficient in hardware or software verifi-
cation, and they can be applied in automata too. First
attempts to use these techniques in finite automata
problem-solving are based on IC3 [14] and on the
interpolation-based approach of McMillan [15].

Acknowledgements
I would like to thank my supervisor,
Doc. Mgr. Lukáš Holı́k, Ph.D., who has provided es-
sential and necessary information about the topic, out-
lined possible solutions and answered every question I
have had throughout the whole time.

References
[1] Stephen F. Siegel and Yihao Yan. Action-based

model checking: Logic, automata, and reduc-
tion. In CAV (2), volume 12225 of Lecture Notes
in Computer Science, pages 77–100. Springer,
2020.

[2] Anthony Widjaja Lin and Pablo Barceló. String
solving with word equations and transducers: to-
wards a logic for analysing mutation XSS. In
POPL, pages 123–136. ACM, 2016.



[3] Tomás Fiedor, Lukás Holı́k, Petr Janku, Ondrej
Lengál, and Tomás Vojnar. Lazy automata tech-
niques for WS1S. In TACAS (1), volume 10205
of Lecture Notes in Computer Science, pages
407–425, 2017.

[4] David Chocholatý and Lukáš Holı́k. Opti-
mizing automata product construction and
emptiness test. In Excel@FIT 2021, 2021.
https://codeberg.org/Adda/excel_
at_fit_2021/src/branch/master/
paper.pdf.

[5] Javier Esparza. Automata theory: An
algorithmic approach. online, 2017.
https://www7.in.tum.de/˜esparza/
automatanotes.html.

[6] Michael Sipser. Introduction to the Theory of
Computation. Cengage Learning, 3rd edition,
2013.

[7] Dexter C. Kozen. Parikh’s theorem. In Automata
and Computability, pages 201–205, Berlin, Hei-
delberg, 1977. Springer Berlin Heidelberg.

[8] Javier Esparza, Pierre Ganty, Stefan Kiefer, and
Michael Luttenberger. Parikh’s theorem: A sim-
ple and direct automaton construction, 06 2011.

[9] Petr Janků and Lenka Turoňová. Solving string
constraints with approximate parikh image. In
Roberto Moreno-Dı́az, Franz Pichler, and Alexis
Quesada-Arencibia, editors, Computer Aided Sys-
tems Theory – EUROCAST 2019, pages 491–498,
Cham, 2020. Springer International Publishing.

[10] Edmund M. Clarke, Orna Grumberg, Somesh Jha,
Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In CAV, vol-
ume 1855 of Lecture Notes in Computer Science,
pages 154–169. Springer, 2000.

[11] Michael Colón and Tomás E. Uribe. Generating
finite-state abstractions of reactive systems using
decision procedures. In CAV, volume 1427 of
Lecture Notes in Computer Science, pages 293–
304. Springer, 1998.

[12] Kenneth L. McMillan. Lazy abstraction with in-
terpolants. In CAV, volume 4144 of Lecture Notes
in Computer Science, pages 123–136. Springer,
2006.

[13] Krystof Hoder and Nikolaj Bjørner. General-
ized property directed reachability. In SAT, vol-
ume 7317 of Lecture Notes in Computer Science,
pages 157–171. Springer, 2012.

[14] Lukás Holı́k, Petr Janku, Anthony W. Lin,
Philipp Rümmer, and Tomás Vojnar. String

constraints with concatenation and transducers
solved efficiently. Proc. ACM Program. Lang.,
2(POPL):4:1–4:32, 2018.

[15] Graeme Gange, Jorge A. Navas, Peter J. Stuckey,
Harald Søndergaard, and Peter Schachte. Un-
bounded model-checking with interpolation for
regular language constraints. In TACAS, vol-
ume 7795 of Lecture Notes in Computer Science,
pages 277–291. Springer, 2013.

https://codeberg.org/Adda/excel_at_fit_2021/src/branch/master/paper.pdf
https://codeberg.org/Adda/excel_at_fit_2021/src/branch/master/paper.pdf
https://codeberg.org/Adda/excel_at_fit_2021/src/branch/master/paper.pdf
https://www7.in.tum.de/~esparza/automatanotes.html
https://www7.in.tum.de/~esparza/automatanotes.html

	Introduction
	Preliminaries
	State Language Abstractions
	Experiments and Results
	Conclusions
	References

