
http://excel.fit.vutbr.cz

Ebe – A tool for automated file editing using genetic
programming
Marek Sedláček*

Abstract
File editing is a big part of today’s work for many people, but not everyone has programming skills
or deep knowledge of editing tools to make their editing efficient and quick. This is exactly what Ebe
is trying to solve. Ebe takes snippets of file edits done by the user and using genetic programming
it finds the correct algorithm to transform the whole file or even multiple files into desired output.
Ebe is currently in early version 0.3, but despite that Ebe already achieves some notable results
and already contains some additional features for more skilled users to get the most out of it. Ebe
is not only for non-programmers, since it can find some edits on its own within seconds, it is a great
alternative to handwriting a script for such edits. Even though machine learning is the current hot
topic, Ebe uses the approach of evolution – genetic programming – to find the solution, which makes
Ebe quite a unique tool and this approach brings in some advantages such as low computational
requirements and no need for internet communication with a cloud.

Keywords: Compiler — Interpreter — Genetic programming

Supplementary Material: Downloadable Code
*xsedla1b@vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

Almost everyone who does their work on computer has2

to work with files and edit them in some ways. It might3

be as simple as deleting a few lines or as complicated4

as deleting specific values and moving data or even5

whole columns around. For programmers, when it6

comes to those more difficult edits, this might usually7

mean writing a script to do these edits, but what about8

the others? Physicist that wants to transform a data9

set, linguist that want to remove unwanted entries and10

just overall anyone. Is editing by hand really the best11

solution? Or forcing these people to learn to program12

just to do a few edits like this?13

Doing small edits is a perfect job for a file editor14

and hands-on approach, but when editing a file with15

thousands of lines, this is no longer a viable option 16

and some other tool needs to be employed. In many 17

cases such “tool” is a program in some programming 18

language, but writing this code requires programming 19

skills and, depending on the skill, notable time to write 20

it and tests it. So a tool that claims to do this, should 21

not only “get the job done”, but also should not take a 22

long time to do so and require deep knowledge from 23

the user, otherwise working with the tool will take 24

longer than the actual work for which the file is edited. 25

Nowadays there are many methods and tools for 26

automated specialized file editing and file transforma- 27

tion. File types and their formats vary a lot and thus 28

only a one tool cannot handle all these types, but rather 29

specializes on a certain file type and format. But there 30

http://excel.fit.vutbr.cz
https://github.com/mark-sed/ebe
mailto:xsedla1b@vutbr.cz

still exist tools, which can handle almost all possible31

formats, but those tools then require the user to put in32

a lot of effort to make them correctly work for all the33

possible inputs and cases. Such example can be the34

AWK programming language, which was designed in35

the late 1980s by Alfred Aho, Peter Weinberger and36

Brian Kernighan for the sole purpose of file editing [1].37

Since AWK is used till this day and is a built-in tool38

for many operating systems [2], this only suggests that39

the need has not gone away, but in fact may have even40

gone up, with the rise of high computing and large41

storage capabilities for computers.42

Another popular editing approach is the use of gen-43

eral purpose programming language, such as Python44

3, Perl or even Bash. This approach allows to work45

with almost any file format, but requires additional46

work to adjust to it and deep enough knowledge of the47

language and the file that is being edited.48

Ebe is trying to tackle all of these problems, it49

requires the user to only know how to run it and offers50

a quite fast editing (compilation and interpretation)51

times compare to writing and running scripts by hand52

or even doing all the editing by hand.53

Currently Ebe is not a perfect do-it-all tool, but54

already offers a quite powerful ability to do many edits55

in a short time with the option that it will find these56

edits for the user. And unlike many other tools, offers57

the option to edits multiple similar files at once. It58

also uses data types and thus in combination with user59

defined expressions allows for changing values in the60

whole file based on an expression. And if someone61

does not trust the evolution, they can always write the62

editing algorithm themselves and then interpret it using63

Ebe.64

2. Genetic programming for code gener-
ation

65

Genetic programming (GP) is technique popularized66

by John Koza in the 1990s and it is a process of opti-67

mization [3]. When speaking about code generation68

with genetic programming, the whole process some-69

what imitates evolution in the nature. It starts with70

randomly initialized populations of candidate pheno-71

types, which in this case would be simple programs.72

Just as in the nature, these candidates are crossed with73

each other, mutated, scored and then the best ones74

are selected into future populations based on the scor-75

ing [4]. Scoring of the program and the strength of GP76

compare to pure randomness can be seen in figure 1.77

Scoring is a big part of genetic programming and78

there always needs to be a scoring function, called the79

“fitness function”. This function guides the evolution,80

0 20 40 60 80 100
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Performance of random engine (MiRANDa)
Evolution 1
Evolution 2
Evolution 3

0 50 100 150 200 250 300 350 400
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Performance of genetic engine (Jenn)
Evolution 1
Evolution 2
Evolution 3

Figure 1. Comparison of 3 iterations of program
evaluation using a pure random – MiRANDa engine –
program generation (top graph) and genetic
programming – Jenn engine – approach (bottom
graph). The GP approach steadily improves the
quality of the program, whereas random approach
relies only on brute force approach.

by favoring phenotypes with better fitness score [3]. 81

Without a fitness function, there is no way to guide the 82

evolution and thus this limits genetic programming to 83

a limited set of problems, where it can be employed. 84

The need for fitness function, somewhat limits the 85

use for code generation, since often the implemen- 86

tation of fitness function would result in no longer 87

needing the GP, since the fitness function would be 88

the solution itself. An example of this would be when 89

one was to evolve a sorting algorithm using genetic 90

programming. To score a solution, the output of the 91

generated code needs to be compared to some ground 92

truth, which in this case would be already sorted input 93

and thus the fitness function could be used for this job 94

instead of the generated program. 95

But this limitation does not mean that genetic pro- 96

gramming has no use in this field. On top of generating 97

code, where fitness function can be provided (such as 98

algorithms for file editing), it can help optimize func-99

tions (its time or even space complexity), by evolv-100

ing parts of the code into ways a programmer would101

not think of [5] or it can also help automatically fix102

bugs [6]. In other similar fields GP can be used for103

tasks such as generating computer art [7] 1, compose104

music [8] and many other uses.105

3. Ebe – Edit by Example106

Ebe is a program (compiler and interpreter) for editing107

files just from given examples.108

All the user has to do is create a snipped of file109

before and after the desired edits (input and output110

example), give this to Ebe and it will try to find a fitting111

algorithm (program in Ebel language), which would112

do the desired transformations from input example to113

the output example (example of Ebe’s usage can be114

seen in figure 2).115

Since Ebe is aimed also at people with little to no116

programming knowledge, Ebe’s philosophy is to not117

cause exceptions and errors as long as it is not neces-118

sary. Meaning that, when an incorrect instruction or119

input is encountered, rather than exiting the execution120

with error, only a warning is printed and the instruction121

or input is ignored. Ebe is very verbal about this and122

will notify about any problems, but this philosophy123

is quite handy when interpreting multiple files, which124

might slightly differ (a division by 0 might be encoun-125

tered or different data type at some position), but one126

Ebel will work on all of them.127

Ebe consists of multiple independent modules (see128

figure 3), where some of them can even be used in-129

dependently. One of the main modules is Ebec (Ebe130

compiler), which does all the necessary file parsing131

and guides the evolution, which happens in the Eben132

(Ebe engine). Once the compiler and engine evolve133

sufficiently fitting program, then this can be outputted134

or loaded into the Ebei (Ebe interpreter), which can135

then edit any number of files using this algorithm.136

The time for Ebe to generate a suitable program137

is non-deterministic and depends on lots of external138

factors. Some very simple programs can be evolved139

within tenth of a second and some difficult ones might140

take a few minutes to be evolved. This might be a141

significant time to some people, but compare to al-142

ternative approach with editing by hand or writing143

an editing script, this might be faster and simpler ap-144

proach, since it can run in the background, while other145

work is done.146

1Abstract evolution – a program for generating abstract com-
puter art using genetic programming – https://github.com/mark-
sed/abstract-evolution.

Figure 2. Example of Ebe’s user defined expressions
to change values in Fahrenheit to Celsius. This
example uses split compilation and interpretation, but
it is possible to do both in one Ebe invocation.

4. Ebe’s implementation 147

One of Ebe’s strengths is that it generates Ebel in- 148

structions, which in most cases care only about the 149

word’s position rather than its type or even value. This 150

means that the example provided can only have the 151

same structure as the actual file that needs to be edited. 152

Meaning that one can generate a general editing script 153

by only knowing the structure of the actual input file 154

(see listing 1 and 2). This gives the option to provide 155

someone an editing script without requesting the actual 156

data that needs to be edited, which could otherwise 157

be a problem for security or other reasons. This ap- 158

proach can also be useful in cases, where the output is 159

ambiguous to the input because of the values. 160

Listing 1. Example input file containing actual values.
Brno 42 5.0e-8 + True 161

Listing 2. Example input file, which is structurally
and type-wise equivalent to an input file in listing 1
and therefore can be used in place of 1 for Ebe.
A 0 0.0 + B 162

On the other hand Ebel language contains con- 163

structs, which allow to match on string value or word’s 164

type. These more advanced scripts can for example be 165

generated using Bee language and bee-hs compiler2. 166

This compiler uses a higher level abstraction language, 167

which it then compiles into Ebel and offers this way 168

an alternative scripting language for file editing for 169

programmers. 170

2Bee-hs – a compiler for Bee language, which is compiled into
Ebel – https://github.com/mark-sed/bee-hs.

https://github.com/mark-sed/abstract-evolution
https://github.com/mark-sed/abstract-evolution
https://github.com/mark-sed/bee-hs

Input file scanner

Preprocessor
Lexer Parser

Ebel scanner
Lexer Parser

Engine

Interpreter

Exam-
ple

input

Exam-
ple

output

*.ebel

input1input2inputn ...

outputnoutput2output1 ...

Compilation

Interpretation

Ebe

Figure 3. Diagram of Ebe’s workflow.

The genetic algorithm used in Ebe varies based171

on selected engine. Ebe currently offers 3 engines –172

the experimental engine MiRANDa, which uses only173

random walk, engine Taylor and engine Jenn. Tay-174

lor’s approach is quite similar to the approach used175

in Cartesian genetic programming, where only muta-176

tions are used [9] and the starting phenotypes contain177

only NOP instructions (“NOP tail”). Jenn is the default178

engine and uses genetic programming process quite179

similar to the one described by J. Koza [10], where180

staring population are random programs of random181

size and are during evolution based on set probabilities182

crossed over, mutated (where mutation only changes183

one instruction for another random one) and then se-184

lected into new populations. Fitness is calculated using185

one of the string comparison methods (listed bellow),186

which is applied to the example input interpreted using187

current phenotype and example output.188

Ebe is written in C++ and does not use any external189

libraries (for general use, otherwise GoogleTest) to al-190

low for easier portability and compilation. Ebe is a free191

and open-source project and is designed to be modular192

and extensible by others. It uses Flex and Bison for193

lexer and parser generation and thus allows developers194

to easily implement new parser and lexers for new file195

formats. The same can be done with engines, where196

engines are what powers and does the whole process of197

code generation using genetic programming (although198

it is possible to use different approach). On top of199

this Ebe’s evolutionary process can be even controlled200

at compile time with multiple command line options201

to set attributes such as the fitness function (Leven-202

shtein distance, Jaro distance, Jaro-Winkler distance or203

“one-to-one” character comparison), population size,204

number of generations, number of evolutions or even205

a timeout based on compilation time or minimum re- 206

quired output precision. These options are for more 207

skilled users and more often meant for experimenting 208

since Ebe contains heuristics, which decide all these 209

attributes for the user based on the input. 210

5. Ebel – Ebe language 211

Ebel is an imperative, case insensitive, programming 212

language designed for file editing and to work well 213

with genetic programming. 214

Ebel is not really meant to be written, but can be 215

and contains some syntactic sugar to make writing 216

and editing it more user-friendly. Ebel resembles a 217

bytecode and was designed in this way to allow for 218

quick parsing and execution in the interpreter. It is 219

interpreted over a file, where the Ebel code can be 220

thought of as a pipeline of instructions through which 221

the file objects (lexemes) go and get modified by. 222

Ebel is composed of multiple sections called passes. 223

A pass defines in which way the input file is read. Each 224

pass is then composed of instructions which take as an 225

input objects its parent pass parses (word or line). 226

Listing 3. Example of Ebel code.
PASS Words 227

NOP 228

DEL 229

DEL 230

PASS number Expression 231

SUB $1, $0, 32 232

MUL $2, $1, 5 233

DIV $0, $2, 9 234

RETURN NOP 235

PASS derived Expression 236

RETURN DEL 237

PASS Lines 238

SWAP 1 239

LOOP 240

The Ebel code in listing 3 will do the following:241

1. PASS Words - file will be interpreted word by242

word and for each line:243

1.1. NOP - 1st object will left as is,244

1.2. DEL - 2nd object will be deleted,245

1.3. DEL - 3rd object will be deleted,246

1.4. PASS number Expression - 4th ob-247

ject, if it is a number will be:248

1.4.1. SUB $1,$0,32 - subtract 32 from249

its value,250

1.4.2. MUL $2,$1,5 - multiply the new251

result by 5,252

1.4.3. DIV $0,$2,9 - divide the result by253

9 and save it as the new value for the254

object,255

1.4.4. RETURN NOP - end expression and256

do not modify the new result.257

1.5. PASS derived Expression - if 4th258

object was not a number, then use the fol-259

lowing without regarding its type:260

1.5.1. RETURN DEL - delete the object.261

2. PASS Lines - file will be interpreted line by262

line and for each line:263

2.1. SWAP 1 - swap current line with the fol-264

lowing one,265

2.2. LOOP - repeat until all lines were processed.266

As can be seen in listing 3, Ebel contains the means267

to carry out computations over a single word (num-268

bers, floats and even strings) in the edited file, but269

because of the problems with finding correct expres-270

sions, where for symbolic regression a large data set271

would be needed [11] and even then it could be am-272

biguous, this task is left to the user in the form of,273

already mentioned, user-defined expressions. If such274

expression is defined Ebe treats it as always correct,275

but still can evolve the other parts of the file to find a276

correct Ebel program.277

6. Real world Ebe use examples278

Ebe has not been long enough in a public version, but279

there are already some real world cases, where it has280

proven to be useful.281

6.1 Extracting hexadecimal color values from282

markdown table283

A documentation for WS2811 LED library 3 contained284

a table of predefined colors and their hexadecimal val-285

ues, which needed to be extracted (see first page teaser286

3https://github.com/FastLED/FastLED/wiki/Pixel-reference

image for reference). This is a very easy edit for Ebe 287

and it took only 100 ms to compile the correct Ebel 288

and interpret it. 289

It required the first line of the table to be put into 290

the input example file and then edit this by hand in the 291

output example file, but the overall time is insignificant 292

to the time it would take to edit this file by hand or 293

writing a script for this edit. 294

6.2 Adjusting feature indexes in biological 295

data set 296

In this case a desired section of human genome was 297

extracted from the whole genome in GTF format. But 298

to display this correctly in a genome browser program, 299

it needed for the start and end feature index (column 300

4 and 5) to be moved to a different position. In other 301

words the value 153350000 was needed to be sub- 302

tracted from all values in the column 4 and 5. 303

This problem is a perfect case for the use of user 304

defined expressions in Ebe. Here are the example 305

input file and example output file (which contains at 306

the position 4 and 5 the index subtraction): 307

Listing 4. Input example file for ebe (with line breaks
for readability).
chr1 hg38_knownGene exon 153357854 308

153357881 0.000000 + . gene_id 309

"ENST00000368738.4"; transcript_id 310

"ENST00000368738.4"; 311

Listing 5. Output example file for ebe (with line
breaks for readability).
chr1 hg38_knownGene exon {!$-153350000!} 312

{!$-153350000!} 0.000000 + . gene_id 313

"ENST00000368738.4"; transcript_id 314

"ENST00000368738.4"; 315

In the output example file (listing 5) the user de- 316

fined expression are between the {! and !} control 317

sequences and define the expression to be done over 318

the value at the expression’s position. Since this is 319

the only edit needed, Ebe compiles and interprets this 320

within milliseconds. The generated Ebel file can then 321

be used for any other GTF file (since GTF format is 322

standardized and does not change structure [12]) and 323

handles even large 50 MB file (123 705 lines) within 324

13 seconds time (on Intel® Core™ i5-4690 CPU). 325

7. Conclusions 326

Ebe displays a promise as an editing tool for not only 327

non-programmers. It requires minimum knowledge 328

of the tool, finds the algorithm for the user and even 329

allows to edit multiple similar files at once. 330

https://github.com/FastLED/FastLED/wiki/Pixel-reference

Although Ebe does not yet contain all the wanted331

features and optimizations, it still allows for some332

advanced edits, which it can find in a short time and333

most importantly it can do large simple edits, which334

might be lot of times needed more than the complex335

ones. With the addition of user defined expressions336

Ebe can also tackle more complex problems.337

Ebe also greatly showcases the possibilities and338

power of genetic programming for code generation and339

as an alternative for deep learning or neural network340

in some cases.341

As for the future of Ebe – it is still in development342

as a free and open source tool for anyone to try it out,343

with stable releases being published. The goal is to get344

Ebe to the point, where it can do more complicated345

edits faster than using other file editing approaches or346

at least in a similar time frame without any additional347

help from the user. Graphical interface is also consid-348

ered for future releases to make Ebe more usable to349

non-programmers.350

Since Ebe is open source, anyone is highly encour-351

aged to try it out, play around with it, change parts of352

it or even integrate Ebe or parts of it into their own353

project. It also allows for easy parser extensibility, so354

new file formats can be easily added into Ebe.355

Acknowledgements356

I would like to thank my supervisor prof. Ing. Lukáš357

Sekanina, Ph.D. for his help and Bc. Klára Ungrová358

for the design of Ebe’s logo.359

References360

[1] Alfred V. Aho, Brian W. Kernighan, and Peter J.361

Weinberger. The AWK Programming Language.362

Addison-Wesley Longman Publishing Co., Inc.,363

USA, 1987.364

[2] Canonical. Ubuntu manpage: Awk - pattern365

scanning and processing language. http:366

//manpages.ubuntu.com/manpages/367

trusty/man1/awk.1posix.html.368

[3] John R. Koza. Genetic Programming: On the369

Programming of Computers by Means of Natural370

Selection. MIT Press, Cambridge, MA, USA,371

1992.372

[4] Wildor Ferrel and Luis Alfaro. Genetic373

programming-based code generation for arduino.374

International Journal of Advanced Computer Sci-375

ence and Applications, 11(11), 2020.376

[5] Keith D. Cooper, Philip J. Schielke, and Devika377

Subramanian. Optimizing for reduced code space378

using genetic algorithms. In Proceedings of the 379

ACM SIGPLAN 1999 Workshop on Languages, 380

Compilers, and Tools for Embedded Systems, 381

LCTES ’99, page 1–9, New York, NY, USA, 382

1999. Association for Computing Machinery. 383

[6] Stephanie Forrest, ThanhVu Nguyen, Westley 384

Weimer, and Claire Le Goues. A genetic pro- 385

gramming approach to automated software repair. 386

In Proceedings of the 11th Annual Conference on 387

Genetic and Evolutionary Computation, GECCO 388

’09, page 947–954, New York, NY, USA, 2009. 389

Association for Computing Machinery. 390

[7] Yuchen Wang and Rong Xie. Pixel-based ap- 391

proach for generating original and imitating evo- 392

lutionary art. Electronics, 9(8), 2020. 393

[8] Dragan Matić. A genetic algorithm for com- 394

posing music. Yugoslav Journal of Operations 395

Research, 20, 01 2010. 396

[9] Julian Miller. Cartesian Genetic Programming, 397

volume 43. 06 2003. 398

[10] John R. Koza. Genetic programming - on the 399

programming of computers by means of natural 400

selection. In Complex adaptive systems, 1993. 401

[11] Hitoshi Iba, Ji Feng, and Hossein Izadi Rad. Gp- 402

rvm: Genetic programing-based symbolic regres- 403

sion using relevance vector machine. In 2018 404

IEEE International Conference on Systems, Man, 405

and Cybernetics (SMC), pages 255–262, 2018. 406

[12] GFF/GTF File Format. Definition and supported 407

options. http://www.ensembl.org/ 408

info/website/upload/gff.html. 409

http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/website/upload/gff.html

	Introduction
	Genetic programming for code generation
	Ebe – Edit by Example
	Ebe's implementation
	Ebel – Ebe language
	Real world Ebe use examples
	Conclusions
	References

