
http://excel.fit.vutbr.cz

Detection of Pre-Recorded Messages in Speech
Dominik Boboš*

Abstract
Recognition of pre-recorded messages in speech such as ”This number is not reachable” is useful
for any follow-up speech data mining. To investigate the identification of redundant information
in audio, it is necessary to have a large amount of data with the exact phrases repeated multiple
times. Such a set is generated by mixing pre-recorded messages into phone calls with variations
in speed, volume and repetitions. The created system tackles “known messages” and “unknown
messages” scenarios by using approaches like clustering or detection in chunks. Dynamic time
warping, approximate string matching and recurrent quantification analysis are compared, and
finally, all mentioned techniques are combined to obtain a precise and efficient system.

Keywords: Detection of re-occurring sequences in audio — Segmental dynamic time warping —
Recurrence quantification analysis — Fuzzy string matching — Bottleneck features — Phoneme
posteriors

Supplementary Material: Downloadable Code
*xbobos00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The typical scenario for investigating audio recordings
starts with a large dataset. Storing a large amount of
speech data comes with a lot of disadvantages. On
one hand, the low-level problems like running out of
free space. On the other hand, listening through unnec-
essary, repetitive data or time-consuming automatic
processing.

Since these recordings are often telephone calls,
many share typical features. For instance, ringing,
voicemail message, music on hold or any pre-recorded
message. The more recordings of telephone conversa-
tions, the higher the probability of occurrence of men-
tioned shared segments. These typically include pre-
recorded operator messages (for instance, ”Thank you
for calling, please leave a message.”, ”Sorry the num-
ber you are calling does not answer at the moment,
please try again later”).

Detection could improve productivity for many
professions, such as law enforcement agencies (LEA)
or call centres. Hence the main objective is to minimise
wasting time by listening to redundant information in
speech data and decrease processing time by further
automatic processing. That means that the requirement
for the system is to have a fast and accurate solution
with a minimum hardware load. Another requirement
is to have a robust system working independently on
the language, as with low-resource languages, it is not
possible to use such techniques as automatic speech
recognition.

To find similar or identical parts effectively in
a large dataset with nearly zero knowledge, it is es-
sential to choose the methodology for tagging detected
pre-recorded operator messages. Either mark an ex-
act time in the phone call or provide a binary deci-
sion only – whether the given recording contains pre-

http://excel.fit.vutbr.cz
https://github.com/DominikBobos/VUT-FIT-Excel-Fit-2022
mailto:xbobos00@stud.fit.vutbr.cz

recorded speech.
This paper presents two scenarios how to achieve

this task:
1. Known messages scenario – This scenario is

used to create reference clusters used in subsec-
tion 5.2. The cluster analysis is accomplished by
provided labelled pre-recorded messages. Re-
cordings are compared to reference clusters.

2. Unknown messages scenario – Here the sys-
tem does not know the pre-recorded messages
and has to infer them as repeated parts of calls.
This scenario is used in presented techniques in
section 4 and in the experiments presented in
section 5. This approach can be divided into
the following tasks:

(a) Detection based on a recording itself –
the process does not require any additional
information, and the pre-recorded message
is detected in itself (in subsection 4.2).

(b) Detection based on all files – Recordings
are compared to all recordings in the set or
by a chunk of the set. The new chunk is
randomly chosen with every recording (in
subsections 4.1 and 4.3).

(c) Detection based on clusters – Record-
ings are compared to the created clusters.
The cluster analysis requires list of candi-
dates as described in 5.2

This paper combines several techniques for search-
ing repeating sequences in speech. From the basic
ones like Dynamic Time Warping (DTW) – to search
the distance between two recordings, to more advanced
ones like Recurrence Quantification Analysis (RQA) –
which analyses diagonal line segments in recurrence
matrix. Approximate string matching (also known as
Fuzzy string matching) is used to analyse the similar-
ity between two phoneme strings. The best accuracy
while preserving low processing time is achieved by
the combination of all mentioned techniques.

2. Used techniques

2.1 Dynamic Time Warping
Even though the same person says the same sentence
twice, it will never sound exactly the same. It may vary
in length, speed, intonation, volume, pitch etc. Linear
frame-by-frame matching of two sequences will fail,
even though it is the same sentence. Dynamic time
warping (DTW) is an algorithm used to find the short-
est distance and compare two time series when the time
indices are not synchronised, the standard procedure
is explained in [1].

The comparison between linear matching and

DTW distance matching is shown in Figure 1.

Linear matching DTW matching

Figure 1. Comparison between linear matching and
DTW matching on two speech recordings. [2].

2.2 Segmental DTW
DTW is finding one global optimal alignment path
between the whole two sequences. This may be an
issue for detecting similarities in sub-sequences. In
Aren Jansen’s work, Segmental Dynamic Time Warp-
ing (S-DTW) is presented as a solution [3]. The prin-
ciple of the S-DTW algorithm is to use other diago-
nals of an optimal alignment path for searching than
the main diagonal. It consists of two main compo-
nents: i) Global constraints, which are restricting
space a warping path can take while producing multi-
ple alignment paths by changing starting and ending
points in the same two input sequences, and ii) path
trimming procedure which excludes largely distorted
regions of an alignment path by length-constrained
minimum average LCMA [4]. A comparison between
DTW and S-DTW for two utterances is shown in Fig-
ure 2.

2.3 Recurrence quantification analysis
Recurrence quantification analysis (RQA) is a method
of nonlinear data analysis. RQA calculates the value of
path alignments by dynamic programming [5]. RQA
provides objective quantification of important aspects
revealed by the plot – recurrence matrix (RM). Points
in an RM that form diagonal line segments are consid-
ered to be deterministic (apart from the isolated points)
[6]. The method is similar to DTW. However, instead
of finding the shortest alignment path, in the RQA anal-
ysis, the longest alignment paths are selected. RQA
quantifies the structure of RM by several metrics which
are used as a weights [7]. The used recipe for RQA is
described in [5].

0 1 2 3 4 5 6

File 2 Time [s]

0

1

2

3

4

5

6

7

Fi
le

 1
 T

im
e
 [

s]

SDTW distance: 23.534170

20000

40000

60000

80000

100000
d
is

ta
n
ce

 c
o
st

d
is

ta
n
ce

 c
o
st

0 1 2 3 4 5 6

File 2 Time [s]

0

1

2

3

4

5

6

7

Fi
le

 1
 T

im
e
 [

s]

DTW distance: 61.257470
Optimal path

Optimal path

20000

40000

60000

80000

100000

Figure 2. DTW and S-DTW alignment paths of
the two utterances, where File 1 contains the phrase
”Brno University of Technology” at the end, while
File 2 at the beginning.

2.4 Fuzzy string matching
There are many use cases when it is desirable to know
how similar one string is to another, such as text re-
trieval, signal processing, and computational biology.
Fuzzy string matching (FSM) (also known as Approxi-
mate string matching) is an algorithm for comparing
two strings approximately. For instance, ”I ate a fresh
green apple.” is similar to ”He eats fresh green apples.”
at the first sight, but not for the computer.

Levenshtein distance
The decent solution for quantifying the similarity is
the Levenshtein Distance (LD) (also known as ”edit
distance”). It compares strings by several edit opera-
tions, such as deletion, insertion, and substitution of
individual symbols. LD can be defined as the min-
imum cost of converting one string into another by
using a sequence of edit operations [8].

3. Simulated dataset
No publicly known solution exists for the problem,
that means no dataset as well.

To create a simulated dataset, the telephone opera-
tor pre-recorded messages were collected first: a total
of 26 unique recordings either downloaded from the in-
ternet or recorded from real telephone conversations.
The messages are in English, Czech and Slovak. They
were split into three categories: A) messages to oc-
cur at the beginning of the call, B) messages to occur
anywhere through the call and C) messages to occur
both at the beginning and the end of the call. All pre-
recorded messages were pre-processed (removal of
the initial silence and volume normalisation).

The next step is to mix the telephone operator
messages with 517.13 hours of phone calls from
the Switchboard corpus1 in total of 4870 conversations.
The conversations were trimmed to shorten calls to
uniform (in terms of hours) eight categories from a 15-
second-long to 180-second-long calls. For the mixing
process, approximately 10% of the trimmed phone
calls were chosen – 4260 calls. Also, 200 recordings
of zero length calls were chosen – the total number of
calls is then 4460.

To get close to realistic data, each pre-recorded
message is mixed into calls with varying speed (be-
tween 0.9 – 1.1), volume gain (between -6dB – +6dB)
and varied repetition (between 0.8 to 30.0). The aver-
age length of a mixed pre-recorded message is around
one minute. The total count of the mixed pre-recorded
messages is 4460 files of a total length of 150.66 hours.
The metadata of the changes made to the messages are
preserved in the filename.

The audio files are in 16-bit wave format with
a standard sample rate of 8000 Hz. The prepared
recordings were split into training and evaluation sets
and their subsets used for development – total numbers
are presented in table 1. Each of the sets contains rep-
resentatives of every pre-recorded telephone operator
message – just in a different ratio. With intention of
creating a universal dataset for varied techniques of
machine learning, ”Train” and ”Dev train” sets are
created but not used in evaluations [9]. For this work,
”Dev train” and ”Train” sets were not used at all. Only
the ”Dev eval” and ”Eval” sets are used for develop-
ment due to the high processing time of some methods.

4. Baselines
This section provides details about the baseline sys-
tems used for detecting the pre-recorded messages.
Their input can be i) either the recording itself (used
in RQA approach) and ii) pre-recorded messages
detection on all files or chunks of the set (used in DTW

1LDC Switchboard-1 Release 2:
https://catalog.ldc.upenn.edu/LDC97S62

https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC97S62

Table 1. Total lengths in hours and counts of audio
files in individual sets.

Database

Raw
phone calls

[hours]

Mixed calls
with messages

[hours]

Total
(raw + mixed)

[hours]

Total
(raw + mixed)

[count]
Train 339.31 117.63 456.94 35953
Eval 126.62 37.10 163.72 11467
Dev train 16.83 30.62 47.45 1394
Dev eval 4.31 6.48 10.79 374

and FSM approaches). The results provide binary de-
cision only – either the audio contains the message or
not.

For the work, I used standard MFCC features2,
phoneme posteriors3 and bottleneck features4.

Detection error trade-off (DET) curves [12] and
Equal error rate (EER) [13] are used for evaluation.
Clusters have an impact on the final accuracy of the sys-
tem, hence it is necessary to compare the performance.
For measuring the quality of clustering, metrics like
purity, rand index, normalised mutual information are
used, more in book [14].

4.1 DTW approach
DTW gives optimal results when comparing similarly
long time series with isolated words. However, in
our case, the recordings are of various lengths. Also,
the similar parts are repeated unevenly, and the posi-
tion of a pre-recorded message could be anywhere in
the file. The first important step is to find candidates
of similar parts between two recordings on the DTW
alignment path and then find DTW distance between
the candidates.

Searching for candidates
To find the candidates for determining similarity,
the DTW warping path is computed first and then
analysed. The algorithm finds the similarities by look-
ing back to the previous steps the warping path has
taken. In a DTW warping path, 3 moves are possible:
i) diagonal, ii) horizontal and iii) vertical. Three types
of moves that a two-step pair can get:

The ”good trend” (GT) type happens when the cur-
rent step is in diagonal direction. The direction of
the previous step does not matter in this case.

The ”false trend” (FT) type happens when the two-
step pair consists of two horizontal moves or two verti-

2Python package python speech features: https://python-
speech-features.readthedocs.io/en/latest/

3Phoneme recogniser based on long temporal context [10]:
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-
long-temporal-context

4BUT/Phonexia Bottleneck feature extractor-
(FisherMono NN model is used for extraction) [11]:
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-
feature-extractor

cal moves.
The ”neutral trend” (NT) type happens when

the two-step pair consists of one vertical and one hori-
zontal moves or one is in the diagonal direction.

The idea of the experimental function for finding
candidates is to start detecting the similarity when
the diagonal move occurs. Then each step is evaluated
and the corresponding point is added to the list.

FT type increments the false-trend variable and
the constant false trend variable. GT type increments
the good-trend variable and resets the variable respon-
sible for monitoring the constant false-trend types. NT
type resets only the constant false-trend variable.

The detection ends when the constant false trend
is larger than the given threshold 𝜎. Then the quality
of the detected part of a sequence is evaluated. First,
the length of the list needs to be longer than 𝛿 frames,
which means 𝛿/100 seconds. Sequences longer than
𝛿 are scored by the ratio of the triangle created by
the warping path, y-axis and x-axis. If the ratio falls in
given interval 𝜏, the detected line is a good candidate.
The whole process repeats until the end of the warping
path. In the presented baseline system, the variables
are set accordingly: 𝜎 = 25, 𝛿 = 200, and 𝜏 ∈ ⟨0.9,1.1⟩.
The behaviour and the results of the algorithm is shown
in Figure 3.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

Fi
le

 1
 T

im
e
 [

s]

0 20 40 60 80 100 120 140 160

File 2 Time [s]

File 2 Time [s]

0

10

20

30

40

Fi
le

 1
 T

im
e
 [

s]

DTW distance: 0.577564
Optimal path

similarity

similarity

similarity

2500

5000

7500

10000

12500

15000

17500

d
is

ta
n
ce

 c
o
st

d
is

ta
n
ce

 c
o
st

DTW distance: 0.537740
Optimal path

similarity

500

1000

1500

2000

2500

3000

Figure 3. DTW path with applied candidates
detection algorithm. The top one with one candidate is
later classified as a hit. The bottom alignment obtains
several candidates, but none of them resulted in a hit.

The proposed solution for the baseline DTW sys-
tem is to compare every feature vector and its found
candidates with all others. By using a brute-force
approach, it is immediately an 𝑂 (𝑛2) problem. How-
ever, a little trick is performed to get a better constant.
Each file is compared to a randomly chosen chunk of
all recordings. The chunk size is 1/8 of the set. As
the idea of detecting the pre-recorded messages is to
find parts repeated several times, at least one should
appear in the reduced bunch. Performance of DTW

https://python-speech-features.readthedocs.io/en/latest/
https://python-speech-features.readthedocs.io/en/latest/
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor
https://speech.fit.vutbr.cz/software/but-phonexia-bottleneck-feature-extractor

system does not meet the required accuracy and fast
processing time as shown in table 2.

Table 2. Results of the baseline DTW system on ”Dev
eval” dataset.

Features

Average
time

of one file
[seconds]

CPU-core
time

[hours]
EER

MFCC 244.39 8.46 41.17%
Phoneme
posteriors 284.30 9.79 30.48%

Bottleneck 477.49 16.53 29.41%

4.2 RQA approach
The RQA approach is based on Aren Jansen’s work [3].
RQA analysis expects the similarity matrix at the in-
put – a cosine distance is used for creating the ma-
trix. The self-similarity diagonal is removed. Default
settings for RQA from Librosa package 5 are used,
together with affinity mode and knight moves on.

As the telephone operator messages are often re-
peated several times within the recording, the recur-
rence matrix is computed for one file at a time only.
This approach allows working in linear time-space
of 𝑂 (𝑛) as each file is analysed only once. Samples
shorter than 3 seconds are not included, as short speech
conversation should not be present in the analysis for
correct computation. Shorter recordings are evaluated
with a high penalty score.

Next, the heuristic to filter out false alarms from
RQA analysis is to accept the best alignment sequence
longer than 𝛿 only. Such a heuristic, of 𝛿 = 2.5 seconds,
helps to reduce false alarms, as those alignment paths
usually happen to be only a word or a short inactive
part. An unsatisfactory result is evaluated with a large
score.

The alignment path from RQA analysis is scored
by the sum of the similarity points of the longest simi-
larity path, divided by the length of the path. Scores
below the threshold 𝜙 are marked as a hit. Lower
processing time is achieved by frame reduction (FR)
optimisation (more in subsection 5.1). MFCC features
perform significantly the best over the phoneme poste-
riors and bottleneck features. The average processing
time for one file and overall performance is presented
in table 3.

4.3 FSM approach
Fuzzy phoneme string matching approach is based
on Levenshtein distance. First, the text file output
from a phoneme recogniser by Petr Schwarz [10] is

5Librosa 0.8.0 on Zenodo:
https://zenodo.org/badge/6309729.svg

Table 3. Processing time and evaluation result of
RQA system with different settings. FR stands for
frame reduction, M means MFCC features, PP –
phoneme posteriors, BN – bottleneck features.

Average time
[seconds]

Total time
[minutes]

EER
[%]

Features M PP BN M PP BN M PP BNDataset
Dev eval

FR=5 2.06 2.56 3.08 12.84 16.95 19.20 1.60 15.50 16.04

Dev eval
FR=10 1.61 2.36 2.11 10.03 14.72 13.17 12.30 20.86 22.99

Dev eval
FR=20 1.05 1.68 1.55 6.52 10.45 9.65 32.62 28.88 27.81

Eval
FR=5 1.92 2.17 2.91 365.73 412.84 544.65 1.34 6.68 10.38

imported and parsed. The example of the phoneme
recogniser output can be as following:

0 1300000 s -12.662029
1300000 2700000 e -13.111244
2700000 14900000 pau -118.012054
14900000 15300000 n -3.924468

The first two columns represent time interval of a pho-
neme, where 1 second is represented as 10000000.
The third column shows an occurred phoneme. The last
one provides the confidence score of the occurred
phoneme. This output is parsed into list of lists with
following structure:

[[𝑓 𝑟𝑎𝑚𝑒𝑠], [𝑙𝑒𝑛𝑔𝑡ℎ𝑠], [𝑖𝑛𝑑𝑒𝑥 𝑚𝑎𝑝], 𝑠𝑡𝑟𝑖𝑛𝑔]

, where [frames] represents the list of intervals
(with trimmed 5 zeros from the end), [lengths]
is the list of phoneme durations in hundredths of sec-
onds, [index max] is the list of occurred phonemes
at the corresponding index, string is the phoneme
string of the whole recording with replaced ”pau” la-
bels to spaces, which is used in comparison. The out-
put from the example would be parsed into:

[
[[0,13],[13,27],[27,149],[149,153]],
[12.662, 13.111, 118.012, 3.924],
[’s’, ’e’, ’pau’, ’n’],
"se n"
]

Such a parsing allows to convert between features and
to return just needed parts of a string. A partial ratio
function from FuzzyWuzzy6 package tackles the prob-
lem with uneven phoneme string lengths. Let assume
a pair of strings of the same pre-recorded message.
One is repeated three times, the other one is repeated

6FuzzyWuzzy 0.18.0 on PyPI:
https://pypi.org/project/fuzzywuzzy/

https://zenodo.org/badge/6309729.svg
https://zenodo.org/badge/6309729.svg
https://pypi.org/project/fuzzywuzzy/
https://pypi.org/project/fuzzywuzzy/

once. Basic ratio function returns score 60%, while
partial ratio function returns 84%. However, this ap-
proach causes that even one word ”you” compared
to a whole sentence with ”you” somewhere returns
a score of 100%. This can be fixed by applying brute
force – ignore 100% scores, as it is almost certain that
it is shown case. It is important to realise that even
the same telephone operator messages will not prob-
ably return a score of 100%. The algorithm is based
on comparing each phoneme string to another – same
as the DTW approach. Accordingly, it is optimised by
chunking. The size of randomly chosen chunks from
the set is 1/4 of all recordings.

Table 4. Performance of baseline fuzzy string
matching system.

Dataset
Average time

[seconds]
Total time

[hours]
EER
[%]

Dev eval 29.57 3.07 18.18%
Eval 37.14 102.53 33.14%

5. Experiments
This section describes experiments and results to pro-
posed baselines, clustering techniques and optimisa-
tions.

5.1 Optimisations
Two main optimisations are used for decreasing pro-
cessing time: i) caching and ii) frame averaging.

Caching is the process of storing copies of files in
a temporary storage. A cache is a dictionary – the key
is the file name, and the value is the list with all com-
ponents needed for the present system for further pro-
cessing. This simple improvement rapidly reduce pro-
cessing time by almost 80% in some cases.

Frame averaging (or reduction) is a process of re-
ducing the size of the feature vector. Two proposed
methods for frame averaging is presented: i) dimen-
sions reduction and ii) reduction in a time axis.

Dimensions reduction – The posteriors feature vec-
tor represents three states for each one phoneme, mak-
ing it 138 elements long. To reduce computation time,
posteriors of triplets of states are summed to create
posterior of one phoneme class.

Reduction in a time axis – Each second in an array
is represented by hundred frames. The idea is to get
a mean value of 𝑛 frames to minimise computation
time while preserving as much information as possible.
Used in RQA approach and S-DTW clustering.

5.2 Clustering
Two types of clusters are used in evaluation: i) ref-
erence cluster – created by labelled pre-recorded mes-

sages (known-messages scenario) and ii) predicted
cluster – created by list of candidates from RQA anal-
ysis (unknown-messages scenario).

Clustering is performed to improve accuracy and
decrease processing time. Clustering removes the ne-
cessity to compare to every candidate and compare to
representatives of cluster classes only.

The clustering process consists of two steps. First
step – Voice Activity Detection (VAD) and filtering7.
RQA analysis is performed and only non-empty list of
frames from the analysis are preserved. Next, VAD is
applied to the output from the analysis.

The second step – dividing candidates into classes
by using S-DTW8. S-DTW clustering is performed on
the filtered RQA analysis from step one. The clustering
is based on Agglomerative Hierarchical Clustering
(AHC). Every cluster is sorted by the lengths of the ele-
ment – the shortest recordings are at the top.

The process of creating reference (ground-truth)
clusters for evaluation and experiments is based on
known messages and their labels. The filename pro-
vides information about the message ID, the start and
end of the message. Every message ID represents one
class – one cluster (of the total of 25 clusters). Every
cluster is sorted the same as the automatic one.

The performance of the clustering is shown in ta-
bles 5, 6. MFCC provides the best processing time,
however bottleneck features shows decent accuracy
even with high frame reduction. The best speed-
accuracy trade-off is with the 𝐹𝑅 = 20.

Table 5. Clustering performance evaluation by several
metrics on different features like MFCC features (M),
phoneme posteriors (PP), and bottleneck features
(BN) with various settings of frame reduction (FR).

Metric Purity Rand Index NMI

Features M PP BN M PP BN M PP BN
Dev eval
FR = 10 0.88 0.87 0.82 0.99 0.98 0.98 0.93 0.92 0.92

Dev eval
FR = 20 0.66 0.68 0.81 0.93 0.96 0.98 0.82 0.80 0.92

Dev eval
FR = 30 0.43 0.43 0.80 0.90 0.86 0.98 0.68 0.56 0.92

Dev eval
FR = 40 0.31 0.33 0.77 0.83 0.75 0.97 0.54 0.45 0.90

Eval
FR = 20 0.55 0.66 0.77 0.88 0.95 0.97 0.74 0.75 0.87

7Used VAD for filtering – py-webrtcvad on GitHub (used under
MIT license): https://github.com/wiseman/py-webrtcvad

8S-DTW implementation based on [4] by gray0302 on
GitHub. The implementation is modified to suit the needs:
https://github.com/gray0302/seg-dtw

https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad
https://github.com/gray0302/seg-dtw
https://github.com/gray0302/seg-dtw
https://github.com/gray0302/seg-dtw

Table 6. Processing time of clustering.
Total Time
[minutes]

Features M PP BN
Dev eval
FR = 10 18.30 141.04 288.90

Dev eval
FR = 20 4.93 28.51 58.20

Dev eval
FR = 30 2.20 8.67 17.93

Dev eval
FR = 40 1.76 6.52 11.15

Eval
FR = 20 183.57 237.97 217.63

5.3 Combination of all techniques

The final system combines all created systems to get
the best performance. This experiment uses both refer-
ence clusters and clusters created by a list of candidates
from RQA analysis and S-DTW AHC clustering. This
experiment is performed by i) clustering and ii)
FSM evaluation afterwards.

Clustering – the same process as described in sub-
section 5.2, where frame reduction of 𝐹𝑅 = 20 is used.
Used S-DTW clusters are created from the ”Eval”
dataset from all available features.

FSM evaluation – each testing file is compared
to the first three elements of each cluster class. Used
FSM in the experiment is modified to apply so called
pause analysis. In pause analysis, all silent parts longer
than 2 seconds are declared as dividing points. Then
the lengths of the segmented lists are checked. If
the segment is shorter than 50 elements of the list,
the segmented part is removed from the candidates.
The pause-analysis modification of the baseline fuzzy
string matching system aims to solve the main issue
with the baseline system by segmenting the recordings.
Results of the final system is shown in Figure 4 and
table 7.

Table 7. Results of final system. The system works
with both known messages (reference cluster) and
unknown messages (S-DTW cluster).

Ref
cluster

Average time
[seconds]

Total time
[hours]

EER
[%]

Features M PP BN M PP BN M PP BN
Dev eval 6.68 5.98 5.96 0.69 0.62 0.62 1.60 1.60 1.60
Eval 17.35 12.06 19.78 9.12 6.30 10.15 4.28 4.28 4.30

S-DTW
cluster

Average time
[seconds]

Total time
[hours]

EER
[%]

Features M PP BN M PP BN M PP BN
Dev eval 0.79 3.91 3.73 0.08 0.41 0.39 13.90 2.14 6.41
Eval 1.57 1.57 1.43 4.99 6.39 4.54 20.48 6.34 5.77

0.0095 0.08 0.5 2.5 8 20 40 65 80 93

FA [%]

0.5

2

5.5

15

30

45

65

80

91.5

Ref cluster MFCC
Ref cluster phoneme posteriors
Ref cluster bottleneck features

a) Eval (known)

0.0095 0.095 0.65 3 10 25 50 75 90 96.5

0.6

2.5

7.5

20

35

55

75

90

96

M
is

s
[%

]
M

is
s

[%
]

SDTW cluster MFCC

SDTW cluster phoneme posteriors

SDTW cluster bottleneck features

b) Eval (unknown)

FA [%]
Figure 4. Performance of the S-DTW cluster + fuzzy
string matching system on the ”Eval” dataset.
The system works with both known messages a) and
unknown messages b).

6. Conclusion and Future Work

In this paper, methods for detecting repetitive parts
across audio recording sets were presented. The re-
search aimed especially at searching for pre-recorded
telephone operator messages in speech conversations.

This paper took a deeper look at three techniques:
Dynamic time warping, recurrence quantification anal-
ysis and fuzzy phoneme string matching. The main
idea was to focus on the techniques when the system
runs without the knowledge of the messages. The main
goal was to find the most accurate and fastest approach.

To decide which system is the best, it was neces-
sary to simulate a dataset. It was accomplished by
mixing the operator messages into the Switchboard
corpus while changing the speed, volume gain and
a number of repetitions.

RQA performs the best among the three baseline
methods. The bottleneck features bring the highest ac-
curacy and MFCC features the fastest processing time.
To decrease computation time, caching and frame av-

eraging was applied. In the experiments, the best per-
formance is achieved by all techniques combined.

For future research, voice biometrics techniques
for creating voice-prints of a speaker is the point of
interest and how to integrate the method into the pre-
sented workflow.

Acknowledgements
I would like to thank my supervisor prof. Dr. Ing.
Jan Černocký for valuable suggestions and friendly
approach.

References
[1] B. J. Mohan and N. R. Babu. Speech recognition

using MFCC and DTW. 2014 International Con-
ference on Advances in Electrical Engineering
(ICAEE), pages 1–4, 2014.

[2] R. Portilla, B. Heintz, and D. Lee. Understand-
ing Dynamic Time Warping - The Databricks
Blog. https://databricks.com/blog/2019/04/
30/understanding-dynamic-time-warping.html,
2019. (Accessed on 02/26/2022).

[3] A. Jansen, K. Church, and H. Hermansky. To-
wards spoken term discovery at scale with zero re-
sources. In Proceedings of the 11th Annual Con-
ference of the International Speech Communica-
tion Association, INTERSPEECH 2010, pages
1676–1679, 2010.

[4] A. S. Park. Unsupervised pattern discovery in
speech: Applications to word acquisition and
speaker segmentation. PhD thesis, Massachusetts
Institute of Technology, 2006.

[5] J. Serrà, X. Serra, and R. Andrzejak. Cross recur-
rence quantification for cover song identification.
New Journal of Physics, 11:093017, 2009.

[6] J. P. Zbilut and Charles L. Webber Jr. Recur-
rence Quantification Analysis. American Cancer
Society, 2006.

[7] A. D. Likens, K. S. McCarthy, L. K. Allen, and
D. S. McNamara. Recurrence Quantification
Analysis as a Method for Studying Text Com-
prehension Dynamics. In Proceedings of the 8th
International Conference on Learning Analytics
and Knowledge, LAK ’18, page 111–120, New
York, NY, USA, 2018. Association for Comput-
ing Machinery.

[8] L. Yujian and L. Bo. A Normalized Levenshtein
Distance Metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6):1091–
1095, 2007.

[9] D. Boboš. Detection of Pre-Recorded Messages
in Speech, 2021. Bachelor’s thesis. Brno Uni-
versity of Technology, Faculty of Information
Technology. Supervisor J. Černocký.

[10] P. Schwarz. Phoneme recognition based on long
temporal context. PhD thesis, Brno University of
Technology, Faculty of Information Technology,
2009.

[11] R. Fér, P. Matějka, F. Grézl, O. Plchot, K. Veselý,
and J Černocký. Multilingually trained bot-
tleneck features in spoken language recogni-
tion. Computer Speech & Language, 46:252–267,
2017.

[12] A. Martin, G. Doddington, T. Kamm, M. Or-
dowski, and Mark A. Przybocki. The DET curve
in assessment of detection task performance. In
EUROSPEECH, 1997.

[13] N. Singh, Prof. R. Khan, and R. S. Pandey. Equal
error rate and audio digitization and sampling
rate for speaker recognition system. Advanced
Science Letters, 20, 2014.

[14] C. D. Manning. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

https://databricks.com/blog/2019/04/30/understanding-dynamic-time-warping.html
https://databricks.com/blog/2019/04/30/understanding-dynamic-time-warping.html

	Introduction
	Used techniques
	Simulated dataset
	Baselines
	Experiments
	Conclusion and Future Work
	References

