
http://excel.fit.vutbr.cz

Simulator for Verifying the Properties of DAG-based
Consensus Protocols
Tomáš Hladký*

SIMULATION

Abstract
We study existing Directed Acyclic Graph (DAG) blockchain designs that propose to solve a
blockchains throughput problem, especially protocols PHANTOM and its optimization GHOSTDAG.
They utilize a Bitcoin protocol and propose a random transaction selection, resulting in increased
transaction throughput. However, it has been proved by a simulation that actors that use the random
transaction selection strategy have less profit than actors who do not follow the protocol and select
transactions rationally (i.e., most profitable). That proof has been made on a small network of
ten nodes with a circle topology. This article aims to extend, optimize, and automate an existing
blockchain simulator. We implement a Bitcoin-like network topology with realistic block propagation
latency. Furthermore, we optimize the simulator to run more simulations in parallel and faster,
including automation tools that can create or edit input configurations, perform a combination of
runs on multiple CPUs based on input parameters, and analyze profits and transaction collisions.
Finally, we perform experiments to verify malicious actors’ advantages in a Bitcoin-like network and
create a payoff function to punish this behavior.

Keywords: Simulator — DAG-based consensus — Blockchain — Optimizations — Payoff function
— Transaction throughput

Supplementary Material: Downloadable Code
*xhladk15@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Blockchain technology has emerged as one of the most
disruptive technologies in the last decade. In contrast
to a traditional database, blockchains are defined by
decentralization, immutability, transparency, and secu-
rity. This opened new possibilities to a wide range of
various fields (e.g., banking and finance, Internet of
Things (IoT), real estate, healthcare).

Blockchains suffer from a processing throughput
bottleneck. It limits the number of transactions pro-
cessed per unit of time. In Proof-of-Work consensus
protocols, it is caused by a limited number of included

transactions in the block and the time required to gen-
erate this block. Bitcoin [1] throughput is 3-7 transac-
tions per second. Ethereum can process 15-25 transac-
tions per second compared to the centralized financial
system Visa, which already had a peak of 10,547 trans-
actions per second [2]. This problem can be solved in
the following ways by modifying blockchain parame-
ters:

• Increasing block size and thus increasing the
number of transactions in a single block. How-
ever, this leads to centralization as bigger blocks
take longer to propagate on the network to all

http://excel.fit.vutbr.cz
https://github.com/Tem12/DAG-simulator
mailto:xhladk15@stud.fit.vutbr.cz


other miners. Smaller miners will be at a dis-
advantage because while they receive the latest
mined block, larger miners (or mining pools)
that have just sent this block can start mining
immediately for another block.

• Decreasing block creation time, determined
by mining difficulty. In Bitcoin, the difficulty
is dynamically changing to keep block creation
time (λ ) to an average of 10 minutes. Lower-
ing this value will also cause an increase in the
stale block rate. A stale block is a fully valid
block that was successfully mined but was not in-
cluded in the blockchain because another block
at the same height has already been included.
Therefore, stale blocks are discarded, which re-
sults in wasted power and resources. Stale block
occurrence is resolved by consensus.

As a response to the blockchain throughput prob-
lem, several protocols have been proposed (e.g., IOTA
[3], Obyte (Byteball) [4], SPECTRE [5], PHANTOM
and GHOSTDAG [6]) that change blockchain data
structure from single chain to Directed Acyclic Graph
(DAG), as displayed in Fig. 1. The advantage of
this structure over a back-linked list structure is that
it can process multiple blocks at the same height and
solves the limited throughput problem. As another
benefit, it also decreases the occurrence of stale blocks.
We focus on the PHANTOM (and its optimization
GHOSTDAG) [6] as they propose a different solution
than the other DAG-based consensus protocols. They
generalize Bitcoin protocol with Proof-of-Work and
present a random transaction selection instead of ratio-
nal transaction selection to reduce the probability that
the transaction will be included in more than one block
(hereafter transaction collision). However, the authors
of these protocols do not analyze how this incentive
would work in combination with a rational selection
strategy typical for blockchains that include transac-
tions with a fee. In [7] was proved by simulations that
this honest behavior results in extensively less profit
compared to malicious actors that do not stick to the
protocol and select transactions with the highest fee to
increase their profit (also called a rational strategy). In
general, if a transaction has a higher fee than others, its
chance of being processed in the next block is higher
because multiple miners have an incentive to include it
in the mining block to be rewarded with higher profit.
Further, they show that malicious actors have a nega-
tive impact on transaction throughput. The simulations
were performed on a simple circle topology with ten
miners.

Our work includes an extension to the existing

B0

B2

B1

B3

B5

B7

B9

B10

B12

B8

B11

B4

B6

Figure 1. A DAG-oriented blockchain

simulator to be capable of simulating a Bitcoin-like
network with over 7500 miners. This also includes
further simulator optimizations and automation, as
simulating such a network is a complex process. The
contributions of our work are as follows:

• We analyze the existing mempool implemen-
tation and compare the performance of multi-
index1, hash table, and red-black tree data struc-
tures with their usage requirements.

• We implement a new mempool data structure
that consists of a combination of hashtable and
red-black tree and prove it speeds up in the sim-
ulation process.

• We implement automation tools to create a Bitcoin-
like peer-to-peer network with proper latencies
between peers, a script to run a combination of
simulations on multiple CPU cores, and post-
process tools to analyze simulation results.

• We show that a single malicious actor who se-
lects transactions with the highest fee has a sig-
nificant advantage in profits over honest miners
who randomly select transactions in a Bitcoin-
like network with 7592 nodes.

• We create a payoff function to detect and punish
malicious behavior.

2. Related Work
2.1 IOTA
IOTA proposes new features compared to traditional
blockchains. The first of them is the way how net-
work processes transactions. Traditional blockchains
like Bitcoin or Ethereum have two roles. Those who
send transactions (users) and those who approve them
(miners). Transaction fees motivate miners to include
transactions to block. Using IOTA DAG, these roles
were merged into one, and instead of appending whole
blocks to the DAG structure, append a single transac-
tion. For the transaction to be verified, a new one must
be sent where the sender verifies the two previously

1https://www.boost.org/doc/libs/1_78_0/
libs/multi_index/doc/index.html

https://www.boost.org/doc/libs/1_78_0/libs/multi_index/doc/index.html
https://www.boost.org/doc/libs/1_78_0/libs/multi_index/doc/index.html


sent transactions from other users. IOTA has been
designed to work well for microtransactions. This in-
cludes IoT devices that send many small messages to
the blockchain. For this reason, there are no fees for
transactions like in Bitcoin. Its protocol aims to be
cooperative, not competitive.

In summary, IOTA has a potentially high through-
put and scales the number of nodes in the network
thanks to the DAG structure. The more nodes that
send transactions to the network, the faster these trans-
actions will be processed.

In order to secure the IOTA network, the protocol
uses a centralized element called ”Coordinator“. This
node ensures correct verification of transactions by
other nodes and thus prevents other network attacks,
resulting in slower transaction processing. IOTA, with
its centralized node, loses unique blockchain feature -
decentralization [3].

2.2 PHANTOM and GHOSTDAG
Compared to IOTA, this DAG structure includes blocks
instead of transactions and involves transaction colli-
sion problems. This problem causes processed trans-
actions to be included in multiple blocks. However,
they do not contain any centralized element. Both pro-
tocols propose a strategy to reduce the transaction col-
lision problem by using random transaction selection
on mining. PHANTOM utilizes a recursive k-cluster
algorithm to achieve a complete topological order of
a DAG structure, which is an NP-hard problem and
unsuitable for implementation. The authors created a
greedy approximation algorithm called GHOSTDAG
to get the same results. Nevertheless, solving the max-
imum k-cluster SubDAG problem is not necessary for
the context of this work, and it is abstracted in our
further simulations.[7]

2.3 Existing version of simulator
The original version of the simulator is proposed in [7],
and it is already an extension to the existing Bitcoin
mining simulator2. This first version was created by G.
Andresen and uses part of the code that is implemented
in Bitcoin Core3. Specifically, the event scheduler
module which is a base for discrete-event simulation.
The simulator was used to study network block propa-
gation and stale block rate. In [7] was extended by M.
Perešı́ni with honest and malicious transaction selec-
tion strategies and mempool implementation, which is
a data structure that stores all miners’ transactions that
can be included in future blocks.

2https://github.com/gavinandresen/
bitcoin_miningsim

3https://bitcoin.org/en/bitcoin-core/

3. Simulator extension proposal
We created a distribution of Bitcoin peer connections
from data in [8]. To simulate network delay between
peers, we made distribution from Bitcoin live mon-
itoring website [9]. With these data, we created a
configuration to simulate a Bitcoin-like network with
miners that use different transaction selection strate-
gies based on PHANTOM and GHOSTDAG. However,
the length of the simulation process shows that the sim-
ulator is not well optimized for the complex network.
Moreover, we sum up functional requirements for an
extended version of the simulator:

• Bitcoin-like network. We intend to further ver-
ify profit from malicious actors that use ratio-
nal transaction selection over proposed random
transaction selection based on PHANTOM and
GHOSTDAG on a network of larger size and
topology similar to Bitcoin. In addition, we plan
to analyze transaction collisions from results to
verify protocol throughput.

• Progress tracker. The simulation process in the
original version can take hours, days, or even
weeks but strongly depends on input parame-
ters. Since the original version was missing any
progress tracking, we require this feature to ana-
lyze running simulations further.

• Optimization. In order to simulate a complex
network, we require optimization that acceler-
ates the simulation process and has less memory
usage, enabling us to run more simulation pro-
cesses simultaneously.

• Automation. As we run multiple simulations
in parallel, we want to automate this process
and be able to run a combination of simulations
with different configurations and seeds. In addi-
tion, we demand automation in the processing
of simulation results.

• Payoff function. Assume we confirm our hy-
pothesis that malicious actors will also have an
advantage in profit gains in the larger peer-to-
peer network. In that case, we want to experi-
ment with payoff functions that split transaction
rewards that occurred in transaction collisions.

3.1 Proposed extensions
This section describes details of proposed extensions
for the simulator.

3.1.1 Bitcoin-like network
The simulator was extended with new parameters to
run a required Bitcoin-like network simulation, includ-
ing maximum mempool size, block size, and the option

https://github.com/gavinandresen/bitcoin_miningsim
https://github.com/gavinandresen/bitcoin_miningsim
https://bitcoin.org/en/bitcoin-core/


to define transaction generation size and generation
time with uniform distribution. Besides that, we in-
troduce scripts that can create and edit Bitcoin-like
network configurations with peer connections (see Fig.
2) and latencies (see Fig. 3). In our further experi-
ments, we will use created Bitcoin-like network of size
75924 nodes.

0 5 10 15 20 25 30 35 40 45 50 55 60
Number of connections [#]

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Figure 2. Distribution of the number of connections
per node created from data published in [8].

0 2000 4000 6000 8000 10000
Delay [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Figure 3. Distribution of block propagation network
delay. It was created from 24-hour data published in
[9] on Feb 28, 2022. Implemented distribution
continues up to 30000 ms. The figure only shows a
portion up to 10000 ms for better visibility.

3.1.2 Progress tracker
We propose a progress tracker to track percentage
progress and output the estimated remaining time to
measure simulation speed. The previous version was
missing a proper simulation ending, which is now im-
plemented in the progress tracker. It also outputs the
percentage fullness of mempool of the first honest and
malicious node.

4Number 7592 comes from https://bitnodes.io/, and
it states the number of IPv4 reachable nodes in the Bitcoin network
on Nov 24, 2021, when the first topology was created.

3.1.3 Optimization
The primary purpose of this simulator is to study how
miners’ transaction selection strategy affects their prof-
its and analyze transaction collision rates. We do not
simulate attacks on the network, and all simulated ac-
tors follow the consensus algorithm. Thus, we can
skip the consensus implementation. Simulation spends
most of the time with basic operations with mempool
such as access, insert or remove. For this reason, we
focus on optimizing the mempool data structure. By
examining existing operations of the mempool, we end
up with three different access categories to mempool,
and we can classify them as shown in Fig. 5. Direct
access is required to remove already included transac-
tions from mempool when the mined block gets broad-
casted to others miners. Random access is required
for honest miners when creating a block. Malicious
miners who include the highest fee transactions use
sorted access in descending order. We also want to
simulate situations when the miner’s mempool gets
full. In response, malicious miners update their mem-
pool with new transactions by removing transactions
with the lowest fee, which is an ascending order of
sorted access. Honest miners can either remove trans-
actions randomly or rationally and keep those with a
higher fee. However, if honest miners remove transac-
tions randomly, they would have a disadvantage over
malicious miners.

Table 1. Comparison of amortized time complexities
of hashtable and red-black tree data structures and
their combination for different mempool data access
methods. Random access for hashtable and
combination depends on n elements currently stored
in the hashtable and on its capacity m.

Access Hashtable RB tree Combination

Direct O(1) O(log(n)) O(1)

Random O(m
n ) O(n) O(m

n )

Sorted O(n∗ log(n)) O(log(n)) O(log(n))

As a result, we need to create a data structure that
supports all three access types. The original version
implements mempool using multi-index, a unique data
structure from the C++ boost library5. Multi-index
allows the creation of a container with multiple index
interfaces, including mentioned three access categories.
However, it is a generic data structure and is not well-
suited for our purpose. Therefore, we need to test

5https://www.boost.org/

https://bitnodes.io/
https://www.boost.org/


...

...

...

...

…

Hashtable buckets Red-black tree

0000

index bucket

0745

0001

0746

0002

0747 fee Red-black tree 
node ref.id

index Hashtable
item ref. fee

fee

fee

Figure 4. Mempool implementation created by combining hashtable and red-black tree data structures.
Complete transaction information (i.e., id and fee) are stored in the hashtable with reference to the node in the
red-black tree. These transactions are also stored in the red-black tree with a fee as a key. Node content includes
an index to a hashtable bucket and a reference to an item of a linked list stored in the bucket.

73

-

asc.

id

12

73

49

85

200

87

62

155

fee

Mempool

{id: 73, fee: 87}

{id: 85, fee: 155}

{id: 49, fee: 62}

Direct access
(id)

Random access

Sorted access
(asc./desc.)

Record

Record

Record

Figure 5. Showcase of different access methods to
mempool. Direct access returns a transaction specified
by id. An id is our simplified unique identifier of the
transaction. Random access returns a transaction
randomly selected from mempool. Sorted access
returns one or more transactions in either ascending or
descending order sorted by a fee.

other data structures. We focused on the red-black
tree and hashtable and have made their amortized time
complexities comparison shown in Table 1. Random
access in the red-black tree requires going through all
stored elements. It is important to note that we cannot
approximate random access because it would skew the
results (e.g., randomly choose a path for the red-black
tree to access the element). Initially, we analyzed and
excluded the red-black tree as this structure is effective
only when there is a low number of random accesses.
Performance of hashtable starts to decreases when the
simulation is set with parameters with higher values as
it requires much sorting.

Instead, we chose a combination of these data
structures to benefit from both of them (see Fig. 4).
This combined structure has a higher memory usage
(10.6 GB compared to 6.5 GB in hashtable in a net-

0 100000 200000 300000 400000 500000
Mempool capacity [transactions]

0:00:00

0:30:00

1:00:00

1:30:00

2:00:00

2:30:00

3:00:00

3:30:00

4:00:00

4:30:00

5:00:00

Si
m

ul
at

io
n 

du
ra

tio
n 

[h
ou

rs
]

Hashtable + Redblack tree version
Hashtable version

Figure 6. Simulation speed comparison with raising
mempool capacity. To simulate a mempool of
capacity similar to Bitcoin in future experiments, we
need to support a few tens and hundreds of thousands
of transactions.

work of 7592 nodes, each with a full mempool of
10000 transactions). We have made a comparison of
combined structure with hashtable when simulating
different mempool capacities (see Fig. 6). We choose
the combined structure as it outperforms other struc-
tures in speed.



Simulator
(Black box)

Input Output
Configuration

Configuration 
editing scripts

Script to run
a combination
of simulations

Post-process
analysis scripts

Simulation data

Figure 7. The external structure of our extended simulator

3.1.4 Automation
In order to run multiple simulations in parallel, we
studied memory usage during the simulation process.
The real-time data process causes simulation memory
usage to increase linearly, as it needs to store data for
each block to calculate results when the simulation
ends. We propose a post-process method to gather all
data during simulation and process results separately
after the simulation ends. This approach allows us to
analyze gathered data multiple times (e.g., apply dif-
ferent payoff functions), and we do not lose any data
if the simulation crash or does not finish. In addition,
memory usage is not increasing during the simulation
process. Therefore, we propose a script that runs a
combination of multiple simulations based on input
configurations and seeds, as shown in Fig. 7. We
can specify the number of simulation instances where
each instance uses one CPU core. The advantage of
this script is that when a simulation finishes, it au-
tomatically starts a new simulation from the waiting
queue on a free CPU core. This approach allows us to
run a large number of simulations effectively, and it
showed as valuable for computational resources used
for research.

To post-process gathered data, we implemented
two scripts: profit analysis and collision analysis. Both
scripts require only one argument, a path to a data file
generated by simulation. Scripts automatically parse
the name and open the metadata file. The simulator
generates metadata, data, progress, and mempool stats
files for every simulation. The metadata file contains
all details about the simulation, including a path for the
used configuration. Thus, post-process scripts have all
the required information. This process can be further
automated, and both scripts allow an optional argument
that sets output in CSV format, which is helpful for
large-scale post-processing.

3.1.5 Payoff function
The payoff function aims to punish malicious miners
and thus discourage them from similar behavior. If
multiple miners use a rational mining strategy, there
is competition for the highest-fee transactions, which
may result in transaction collisions. We want to pro-
pose a payoff function to split the profit from these
transactions. Thanks to the post-process approach, we
can experiment with different payoff functions on al-
ready gathered data. Payoff functions experiments are
evaluated in section 4.2.

4. Experiments on Bitcoin-like network
We performed two experiments. The first experiment
verifies that a single malicious node’s profit is higher
than an honest node in a Bitcoin-like network. The sec-
ond experiment focuses on multiple malicious nodes
and proposes a payoff function to punish their behavior
and distribute their profit to honest nodes.

4.1 Experiment 1
This experiment investigates whether a single mali-
cious miner has an advantage in making profits by us-
ing the rational transaction selection strategy compared
to honest miners who follow the random transaction
selection strategy in a created Bitcoin-like network
of 7,592 nodes. Parameters for this experiment are
displayed in Table 2.

We simulated a single malicious miner while con-
tinuously increasing his mining power relative to the
network. His connections to the peers in a network
of this size could affect his profits (i.e., connection to
well-connected nodes in contrast to poorly connected
nodes). Therefore, our experiment involves different
placements of the miner in the network, but it has
almost no change. His results are described as an aver-
age from multiple positions. We simulated the same



Table 2. Table of parameters used in experiment 1.

Parameter Value

Malacious miner strategy rational
Honest miner strategy random
Malicious miners count 1
Honest miners count 7591
Malicious miner mining power 0 to 40%
Block creation time (λ ) 20 seconds
Blocks 20000
Block propagation latency 5 sec / Bitcoin-like
Block size 20 transactions
Mempool capacity 10144 transactions
Transaction generation speed 60 to 180 seconds
Generated transactions 10 to 240

0 5 10 15 20 25 30 35 40
Malicious node relative mining power [%]

0

10

20

30

40

50

60

70

M
al

ici
ou

s n
od

e 
ab

so
lu

te
 p

ro
fit

 [%
]

Fair baseline
Malicious miner

Figure 8. Profit relative to mining power of a single
malicious miner in Bitcoin-like network with 7592
nodes.

network topology with Bitcoin-like block propagation
latency (see Fig. 3) but also with a fixed constant of
56 seconds. Results were the same, and latency did
not affect the final profit of the single malicious miner.
Fig. 8 shows the fair baseline, representing profits rel-
ative to the miner’s mining power. Each miner should
be rewarded for his work according to his number of
resources to keep fairness. However, the results show
that malicious miner has significantly more profits than
other miners.

4.2 Experiment 2
This experiment focuses on verifying the profits of
multiple malicious miners in the network and applying
the payoff function to reduce their profits. We simu-

65 seconds were selected according to the experiments per-
formed in [7].

Table 3. Table of parameters used in experiment 2.

Parameter Value

Malacious miner strategy rational
Honest miner strategy random
Malicious miners count 4 to 0
Honest miners count 7588 to 7592
Malicious miner mining power 10%
Block creation time (λ ) 10 seconds
Blocks 1000
Block propagation latency Bitcoin-like
Block size 500 transactions
Mempool capacity 10000 transactions
Transaction generation speed 5 to 30 seconds
Generated transactions 500 to 2000

lated a Bitcoin-like network with 7592 nodes while
focusing on four of them. Each of these four nodes
had 10% mining power relative to the network. We
started with four malicious nodes while continuously
decreasing their count to zero and increasing the num-
ber of honest nodes. The rest of the network consisted
of honest nodes. Parameters for this experiment are
displayed in Table 3. Fig. 9 shows that by increasing
the number of malicious nodes, their profit decreases
as there is greater competition. This also negatively
affects all honest nodes.

0/4 1/3 2/2 3/1 4/0
Number of nodes [malicious/honest]

6

8

10

12

14

16

18

20

22

Av
er

ag
e 

ab
so

lu
te

 p
ro

fit
 o

f n
od

es
 [%

]

Fair baseline
Honest miner
Malicious miner
Honest miner (payoff)
Malicious miner (payoff)

Figure 9. Profit earned by either honest or malicious
nodes from a selection of four with the most mining
power. Their profit is averaged for the displayed
number of nodes of two or more.

We propose a payoff function to punish this be-
havior. For this situation, we created a transaction
collision index (γ). This index can be calculated from
a number of colliding transactions included in a mined



0/4 1/3 2/2 3/1 4/0
Number of nodes [malicious/honest]

1.1

1.2

1.3

1.4

1.5

Av
er

ag
e 

tra
ns

ac
tio

n 
co

llis
io

n 
in

de
x 

of
 n

od
es

 (
)

Honest miner
Malicious miner

Figure 10. Comparison of different transaction
collision index values for malicious and honest nodes.

block. If a transaction has been included in more
blocks, its collision will have a greater weight. This
approach can separate honest and malicious nodes, as
shown in Fig. 10. Then, we applied a payoff function
which includes distributing 50% of rewards earned by
malicious nodes to honest nodes based on their mining
power (see Fig. 9). The results show that the rational
transaction selection used by malicious nodes is less
profitable than random transaction selection after using
a payoff function.

5. Conclusions
We extended a simulator with capabilities to simulate
the network topology of the size of a Bitcoin-like net-
work. We also confirmed the original question from
[7] by experimenting on a Bitcoin-like network with
more nodes. We proved by simulations that the ra-
tional transaction selection strategy generates more
profit than the random selection strategy (proposed in
PHANTOM and GHOSTDAG [6]) with a single ma-
licious actor. Finally, we created a payoff function to
discourage nodes from rational transaction selection.

We want to do further experiments with network
latencies similar to the Bitcoin network and simulate
more malicious miners in future work. Further, we
plan to continue to experiment with payoff functions
and study their impact on the profit of malicious actors.

Acknowledgements

I would like to thank my supervisor Mgr. Kamil Ma-
linka, Ph.D. and my consultant Ing. Martin Perešı́ni for

their invaluable guidance and support. I also acknowl-
edge that this work is part of the ongoing research on
Security@FIT at Brno University of Technology, Fac-
ulty of Information Technology where its contributors
are: Ing. Martin Perešı́ni, Ing. Federico Matteo Benčić,
Mag., Mgr. Kamil Malinka, Ph.D. and Ing. Ivan Ho-
moliak, Ph.D. Computational resources were supplied
by the project ”e-Infrastruktura CZ” (e-INFRA CZ
LM2018140 ) supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

References
[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-

tronic cash system, 2009.

[2] Shihab Hazari and Qusay Mahmoud. Improving
transaction speed and scalability of blockchain
systems via parallel proof of work. Future Internet,
12:125, 7 2020.

[3] Serguei Popov. The tangle, 2018.

[4] Anton Churyumov. Byteball: A decentralized
system for storage and transfer of value, 2016.

[5] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv
Zohar. Spectre: A fast and scalable cryptocur-
rency protocol. Cryptology ePrint Archive, Report
2016/1159, 2016.

[6] Yonatan Sompolinsky, Shai Wyborski, and Aviv
Zohar. PHANTOM GHOSTDAG: A Scalable Gen-
eralization of Nakamoto Consensus: September
2, 2021, page 57–70. Association for Computing
Machinery, New York, NY, USA, 2021.

[7] Martin Perešı́ni, M. Federico Benčić, Kamil Ma-
linka, and Ivan Homoliak. Dag-oriented protocols
phantom and ghostdag under incentive attack via
transaction selection strategy. pages 1–8. Institute
of Electrical and Electronics Engineers, 2021.

[8] Jelena Mišić, Vojislav B. Mišić, Xiaolin Chang,
Saeideh Gholamrezazadeh Motlagh, and M. Zul-
fiker Ali. Modeling of bitcoin’s blockchain de-
livery network. IEEE Transactions on Network
Science and Engineering, 7(3):1368–1381, 2020.

[9] KASTEL at KIT DSN Research Group.
Bitcoin network monitor, 2015. https:
//www.dsn.kastel.kit.edu/bitcoin/
index.html.

mailto:malinka@fit.vut.cz
mailto:malinka@fit.vut.cz
mailto:iperesini@fit.vutbr.cz
mailto:iperesini@fit.vutbr.cz
mailto:federico-matteo.bencic@fer.hr
mailto:federico-matteo.bencic@fer.hr
mailto:malinka@fit.vut.cz
mailto:ihomoliak@fit.vutbr.cz
mailto:ihomoliak@fit.vutbr.cz
https://www.dsn.kastel.kit.edu/bitcoin/index.html
https://www.dsn.kastel.kit.edu/bitcoin/index.html
https://www.dsn.kastel.kit.edu/bitcoin/index.html

	Introduction
	Related Work
	Simulator extension proposal
	Experiments on Bitcoin-like network
	Conclusions
	References

