
http://excel.fit.vutbr.cz

Web Tool for Creation, Management, and Use of a
Database of Sports Poses
Tomáš Křivánek*

Abstract
This paper is focused on two searching methods and how they can be used in any searching
and in any web application. Two most important qualities of any search are speed and accuracy.
One of the best methods in terms of speed is so-called livesearch. This method provides results
immediately when the user starts typing their search expression. That is why in many cases, the
user does not even have to finish their expression, because when seeing the result, the user can
immediately access it. Search accuracy is often achieved by using keywords or some part of text.
Another common way to organize and fetch documents are tags: a short string which identifies a
post or a photo. Multiple tags are then used similarly to plain keywords. This work proposes to
use tags as a new searching logical language, where presence and/or absence of tags can be
required. For this purpose I created a simple logical language “Queries”, because they can be used
very similarly to database queries. In my case, the language and the user interface is made very
simple so that a normal user can specify the query himself. This search tool is showcased in a web
application focused around yoga poses. Both methods are used there – the user can search in the
yoga poses database by name or by the queries language.

Keywords: livesearch — queries — sport — poses — database — quick — search

Supplementary Material: Demonstration Video
*xkriva29@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

This paper is focused on working with yoga poses, but2

the implemented methods can be used on any sport3

poses. In terms of yoga, there is also important the4

term yoga routines/sequences. Yoga poses are almost5

never exercised independently but they are organised6

into sequences, where each position is held for certain7

time interval and followed by another position. It8

would be great to have a tool which can organise these9

sequences and makes them easy to train.10

There are plenty of datasets with different sport-11

sposes. Best approach to browsing through yoga poses12

is on the Yoga journal website [1], where the poses are 13

organised into groups by type. It is by far the most 14

clearly designed website on Internet but still there is 15

no easy way to search through these poses by name 16

or by combination of different properties. Some user 17

interface elements on this websites are just too big 18

and it looks like a waste of space. On the other hand, 19

there are great descriptions and images of each yoga 20

pose so the sportsmen can easily train these poses ac- 21

curately. There is also a table of all poses included 22

on this website, which I have used as part of my yoga 23

poses dataset. However Yoga Journal website does not 24

http://excel.fit.vutbr.cz
https://www.youtube.com/watch?v=WupLOMUKEEU
mailto:xkriva29@stud.fit.vutbr.cz


provide a functionality to create yoga sequences.25

For composing yoga sequences, there are many26

separate applications [2], but they share a very big27

disadvantage, they all require monthly payments. They28

also provide many great features like mobile/desktop29

applications, they often have their own graphics, their30

poses are drawn, which is better, because they are31

more illustrative than real photographs. For example,32

Sequence Wiz uses very simple illustrations, and it33

looks like it is very easy to use. It also provides a34

feature where users can write notes to each position in35

sequence.36

My application must very clearly visualize database37

of yoga poses. It is also a demonstration how easy is38

to implement the livesearch method and how it can be39

done with any dataset. Users must be able to add new40

poses to database and add properties to the created41

poses. Users will be able to add these properties by42

adding tags. Searching should be possible by name43

or by logical combination of tags. These logical ex-44

pressions should be explained very clearly to everyday45

user, because for non-programmers, logical expres-46

sion might be confusing. Users will also be able to47

create their own sequences and train them with the48

application.49

2. Used technologies and languages50

Application is based on Model-View-Controller archi-51

tecture (Fig. 1). Backend (Controller) is programmed52

in Flask framework, which means it uses Python 353

as programming language. Flask offers easy imple-54

mentation and manipulation with HTTP requests from55

application’s frontend. Whole application, except of56

basic configuration, is then basically a specification of57

answers on HTTP requests which are addressed by a58

pathname in the URL.59

Flask

MongoDB

GET, POST

GET, POST answers

Database
requests

Database
answers

HTML, CSS, JS

Figure 1. Architecture of the application
NoSQL database MongoDB (Model) was chosen60

for the application. The PyMongo library is used to61

communicate with the database, which makes it very62

easy to connect to the MongoDB atlas server where the63

database is running. Since it is a NoSQL database, the64

data are organized into collections. Individual records65

are stored in BSON format, which stands for binary66

JSON (for the difference between JSON and BSON67

see Tab 1). This format makes it much easier to store68

more complex data structures like arrays or image. For 69

these, there is also an extra library called gridfs that 70

takes care of the distribution of the binary data in the 71

database, since a single record in BSON format cannot 72

exceed 16 MB. These large images are separated into 73

many records. The ability to store images and arrays 74

easily was key to choosing this type of database. 75

The frontend uses three languages – HTML, CSS 76

and Javascript. In HTML there is used a template en- 77

gine Jinja2 that allows to add a simple logic to HTML 78

itself. For example, render data from a database using 79

for loops or use conditional statements if-elif-else.The 80

CSS language is used for the graphical styling of the 81

entire website. There are no other CSS frameworks 82

or libraries used. Most of the application code comes 83

from Javascript, mainly because of the abundant use 84

of asynchronous requests and processing the answers. 85

Here jQuery is used. This library allows for a sim- 86

ple signal capture such as button presses, keystrokes 87

or mouse events. Animations on the page are pro- 88

grammed with the help of GSAP library, mainly by the 89

use of a timeline, which allows to chain the animations 90

of elements to be played consecutively. 91

Table 1. Comparison of JSON and BSON

JSON BSON
Encoding UTF-8 Binary

Data Support

String,
Boolean,
Number
Array

String, Boolean, Num-
ber (Integer, Float,
Long, Decimal128...),
Array, Date, Raw
Binary

Readability
Human and
machine

Only machine

3. Livesearch 92

As it was mentioned previously, livesearch is a method 93

when results of a search are displayed dynamically as 94

user writes in the search input box. 95

Livesearch has many benefits compared to tradi- 96

tional searching [3]: 97

• Results are shown as you type, 98

• results narrow as you continue typing, 99

• if results become too narrow, remove characters 100

to see a broader result. 101

Many algorithms, including the one that is ex- 102

plained by w3schools [3], use asynchronous requests 103

on the server which then evaluates the results of the 104

search. Basically, when the user changes the contents 105

of the search field, an asynchronous request is sent to 106

the server, which evaluates the search result and sends 107



Figure 2. Example of search using the query language with the syntax highlighter.

the search result as a response. Yoga poses does not108

use this approach, instead it uses regular expressions109

to match the yoga titles. All titles are displayed at the110

beginning, when user loads the website.111

Algorithm begins as the website loads by applying112

a jQuery event listener on the search box where users113

can type. This event listener triggers a function every114

time a keyboard key is released as user types in the115

search box. The function that is called on this event116

proceeds as follows:117

1. It stores a string which is currently in the search118

box to the variable text.119

2. It uses this variable to create a JavaScript Reg-120

Exp class with ’.*’ characters at the beginning121

and at the end, which results in regular expres-122

sion that matches each string that contains text123

variable string as a substring. For example when124

user enters a text: ”pose”, the regular expression125

will be initialized in this way :126

new RegExp(".*pose.*")127

3. It checks if the text is longer or shorter than128

before a keyUp event.129

(a) If the text got longer it loops through poses130

which are currently displayed and hides131

those which does not match the regular132

expression.133

(b) If the text got shorter it loops through poses134

which are currently not displayed and show135

those which does match the regular expres-136

sion.137

(c) If the text got the same length (but the138

text changed) it loops through all poses139

and hides those which does not match the140

regular expression and display those that141

does.142

This approach not only makes it much faster, be-143

cause there are no requests on the backend, but it is144

also optimized because it does not loop through every145

position but only through a displayed or not displayed 146

subset most of the time. 147

4. Queries 148

If the user wants to search by tags, he can switch to 149

search mode by using the button on the top right of 150

the search. This search method is more complex, so 151

it is not evaluated every time the search expression is 152

changed, but the user must confirm the search every 153

time by pressing the return key or clicking the search 154

button on the right side of the input. 155

A very simple compiler has been developed for the 156

Queries language that consists of four phases: 157

• Lexical analysis (Lexer) - The job of the tok- 158

enizer is to read tokens one at a time from the 159

input stream and pass the tokens to the parser 160

[4]. 161

• Syntax analysis - Syntax refers to the rules that 162

define the structure of a language. Syntax in 163

computer programming means the rules that con- 164

trol the structure of the symbols, punctuation, 165

and words of a programming language [5]. 166

• Expression is transformed from infix format to 167

postfix format. 168

• Interpretation of the postfix format. 169

Lexical analysis simply breaks the statement into 170

parts and marks them by their type. There are three 171

types: tag, keyword and brackets. The output of the 172

lexer is an array of objects that contain the types and 173

values of each token. Because the language is so sim- 174

ple and statements are not long, lexer always evaluates 175

whole statement before it proceeds to the syntax analy- 176

sis. 177

Syntax analysis works with a table of rules. Each 178

token type has its own rules, which consists of token 179

types that can follow after specific token type. For 180

example keyword AND can be followed by a tag or 181

opening bracket. 182



Transformation of infix notation to postfix nota-183

tion uses the sequential algorithm from [6]. For this184

algorithm to work there needs to be defined a prece-185

dence table (see Table 2) that tells the algorithm which186

operator has higher priority.187

Table 2. Precedence table (higher precedence value
means higher priority)

Operator Precedence Associativity

NOT 3 right-to-left
AND 2 left-to-right
OR 1 left-to-right

After all this is done, the postfix notation is sent to188

the server by jQuery AJAX request.189

Evaluating a query statement uses practically the190

same algorithm that is used for evaluating a logical or191

mathematical expression [7]. It scans the postfix ex-192

pression from left to right. Each time it encounters an193

operand it pushes it onto the stack, and each time it en-194

counters an operation it performs it with the operands195

on top of the stack. The token tag is represented by an196

array of poses that have this tag assigned. That means:197

• The result of the binary AND operation is an198

array of poses that have both tags assigned.199

• The result of the binary OR operation is an ar-200

ray of poses that have at least one of the tags201

assigned to them.202

• The result of the unary NOT operation is all203

poses that are not in the specified array.204

After a whole statement is processed server responds205

to the frontend which poses should be displayed.206

5. Sequence builder and trainer207

The composition of poses into a sequence can be di-208

vided into 4 steps. In the first step, the user chooses209

which poses he wants to insert into his routine. In210

the second part, the user can rearrange his selected211

poses. In the third part, for each position, the user has212

to add how long the athlete has to stay in the given213

position. And in the last part, the user specifies the214

name, difficulty, and caption of the routine and can add215

an identifying photo to the routine. After these parts,216

the routine is stored in the database and the user can217

use the yoga sequence trainer to practice the routine.218

Yoga sequence trainer consists of 4 parts (see Fig-219

ure 3):220

• Current position,221

• the remaining time, which says how long the222

athlete has to stay in this position,223

Figure 3. Yoga sequence trainer.

• loading bar that shows what part of the routine 224

the athlete is in 225

• and the next position. 226

6. Other application features 227

There are also other functionalities to improve the user 228

experience: 229

• Users can freely add tags to poses. 230

• Users can save their queries. 231

• Users can share their routines and queries with 232

others. 233

• Every yoga pose has its own detailed view, which 234

is displayed after clicking on the pose card. 235

• There are also custom administration pages for 236

the website. 237

7. Conclusion and Upcoming work 238

The result of this paper is a web application that offers 239

two different search methods than those commonly 240

used. Livesearch has proven to be a very convenient 241

search method, where users often do not even have to 242

complete a search term and still find a result. Searching 243

with Queries can be confusing for the average user at 244

first, but once the user gets used to this method of 245

searching it can provide more accurate results. 246

As far as application development is concerned, 247

the programming is practically done, what remains is 248

deep testing with many different users. So I will make 249

the application available to a few users with a test 250

scenario. On this scenario there will be a list of tasks 251

to be completed by the user. I will try to convince 252



the tester to describe his thoughts to me during the253

testing session: why he clicks on a particular button254

on the website? What does he expect when he presses255

some button on the web application, etc. This whole256

session will be recorded on camera and I will take257

notes at the same time. These notes will then help me258

focus on the biggest flaws. I will be able to review the259

recording and analyze the user’s interactions with the260

web application in more detail.261

The application was tested only by one user till this262

day. But this single testing showed that the livesearch263

method suited the particular tester very well and that264

the Queries language is not complicated at all, even if265

he is not a person with programming experience.266

In the future, the web application could be com-267

plemented by a mobile application that would be more268

focused on creating and training sequences, recording269

exercise results, counting burned calories, etc..270

Acknowledgements271

I would like to thank my supervisor prof. Ing. Adam272

Herout Ph.D. for his help and providing interesting273

ideas for new features. Another big thank you goes to274

my girlfriend who helped me a lot with the logo design275

and was an impartial judge of the application’s design.276

References277

[1] Yoga poses archives. https://www.278

yogajournal.com/poses/.279

[2] Julien. Top 7 best yoga sequence builder280

apps + 7 tips for planning yoga classes,281

Feb 2022. https://www.theyoganomads.282

com/yoga-sequence-builder/.283

[3] PHP example - ajax live search. https:284

//www.w3schools.com/php/php_285

ajax_livesearch.asp.286

[4] James Alan Farrell. Anatomy of a compiler, Aug287

1995. http://www.cs.man.ac.uk/˜pjj/288

farrell/comp3.html.289

[5] Woz U. What is syntax in com-290

puter programming?, Dec 2020.291

https://woz-u.com/blog/292

what-is-syntax-in-computer-programming/.293

[6] Eliezer Dekel and Sartaj Sahni. Parallel generation294

of postfix and tree forms. ACM Trans. Program.295

Lang. Syst., 5(3):300–317, jul 1983.296

[7] Bohuslav Křena M. Jan Honzı́k. IAL - 3.297

přednáška - lineárnı́ abstraktnı́ datové typy. Re-298

stricted for organization’s students, 10 2021.299

https://www.yogajournal.com/poses/
https://www.yogajournal.com/poses/
https://www.yogajournal.com/poses/
https://www.theyoganomads.com/yoga-sequence-builder/
https://www.theyoganomads.com/yoga-sequence-builder/
https://www.theyoganomads.com/yoga-sequence-builder/
https://www.w3schools.com/php/php_ajax_livesearch.asp
https://www.w3schools.com/php/php_ajax_livesearch.asp
https://www.w3schools.com/php/php_ajax_livesearch.asp
https://www.w3schools.com/php/php_ajax_livesearch.asp
https://www.w3schools.com/php/php_ajax_livesearch.asp
http://www.cs.man.ac.uk/~pjj/farrell/comp3.html
http://www.cs.man.ac.uk/~pjj/farrell/comp3.html
http://www.cs.man.ac.uk/~pjj/farrell/comp3.html
https://woz-u.com/blog/what-is-syntax-in-computer-programming/
https://woz-u.com/blog/what-is-syntax-in-computer-programming/
https://woz-u.com/blog/what-is-syntax-in-computer-programming/

	Introduction
	Used technologies and languages
	Livesearch
	Queries
	Sequence builder and trainer
	Other application features
	Conclusion and Upcoming work
	References

