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Abstract
Presburger arithmetics (PrA) is a decidable, first-order theory of natural numbers, with applications
in many areas in formal verification of software properties. SMT-solvers — tools implementing
various algorithmic approaches to deciding whether a formula has a solution — play a crucial role in
formal verification. In this paper, we document building a novel automatic SMT solver for PrA based
on finite automata — an approach that no SMT solver currently employs. We provide an overview
of challenges and their solutions arising from the complexity of such a tool, including results from
the concluded experiments already showing promise of this alternative approach. We also present
identified problems where the performance of the automata-based procedure struggles, which
present open research opportunities.
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1. Introduction

As mankind advances, it increasingly relies on the use
of computers to offload some of the tasks previously
requiring human intellect to autonomous machines.
This growing penetration of information technologies
into everyday life creates the necessity to build safe and
reliable software controlling those devices, bringing
attention to the role of formal verification of software.

One of the core tools used in program and hard-
ware verification is a Satisfiability Modulo Theories
(SMT) solver. The purpose of this tool is to automat-
ically deduce the existence of a solution to a given
formula, reasoning about the properties of examined
system. An SMT solver as such is a versatile tool
with applications not limited only to verification, but
also in various other areas of modern computer science
such as compiler optimization techniques or automated
theorem proving, further highlighting its importance.

One of the prominent theories used in the input
formulae of SMT solvers is Presburger Arithmetic
(PrA) [1]. This first-order theory provides a formal
basis for describing a system using linear integer arith-
metic constraints. The signature of this theory of natu-

ral numbers contains only a symbol for zero, a symbol
for a successor and a symbol for addition with cor-
responding axioms. Not having a notation for multi-
plication implies a limitation of its expressive power,
but it also allows the theory to remain decidable. This
property states that it is possible to deduce algorithmi-
cally whether a formula has a model in a finite number
of steps. Over time there have been numerous such
algorithms — decision procedures — developed, ap-
proaching the problem of determining the existence of
a model from different perspectives. A lot of current
research focuses on developing various heuristics im-
proving the performance of these procedures e.g. [2],
extending what we can decide automatically.

One of the younger decision procedures for PrA
is based on ideas introduced by Büchi in 1960 [3].
Büchi created a decision procedure based on the for-
mal model of finite automata, in which parts of the in-
put formula are represented as automata and these are
combined using operations on automata according to
logical connectives between the represented parts of
the input formula, copying the formula structure. For
an automaton to represent a formula, it must exactly
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accept all solutions of the formula encoded using some
chosen encoding. Büchi developed this decision pro-
cedure to show that a different theory (a second-order
theory of natural numbers called S1S) is decidable,
and it was not until 1996 when Boudet & Comon [4]
modified it to be used to decide PrA. To the best of
our knowledge, no decision procedure for PrA based
on this approach has been implemented in any SMT
solver yet. Moreover, the underlying formal model
of finite automata is a vivid research area with ad-
vancements such as new automata models [5], or more
efficient language inclusion checking of nondetermin-
istic finite automata [6]. The lack of any SMT solver
implementing the automata-based decision procedure
for PrA means that advancements in the automata field
have not yet been applied and evaluated within the
context of deciding PrA. The relative youth and the
lack of an SMT solver implementing this procedure
mean that an automata-based SMT solver for PrA is
still an unexplored field.

1.1 Contribution of the paper

We have succeeded in building a robust automata-
based SMT solver for PrA. The complexity of this
tool created numerous challenges that had to be solved
to achieve a functional implementation. These chal-
lenges include scalability problems due to the expo-
nential growth of time complexity wrt. the number of
variables in the input formula, or representing Boolean
variables as automata.

The implemented SMT solver was designed to pro-
vide a foundation for future research in the practical ap-
plications of automata in the context of deciding PrA.
Therefore, our solver supports a standardized input
language, allowing us to compare the automata-based
procedure to the state-of-the-art solvers. Our early
experiments presented in this work already identified
problems where automata vastly outperform other ap-
proaches utilized by the state-of-the-art SMT solvers
such as Z3 or CVC4. Having a functional automata-
based solver allowed us also to identify performance
bottlenecks of the underlying decision procedure that
present open research opportunities.

2. Description of an Automata-Based De-
cision Procedure

Presburger arithmetic is a first-order theory of inte-
gers Th(Z,+, 0, 1, <). The theory does not contain a
symbol for multiplication, however multiplication of a
variable by a constant is possible, as it is a shorthand

for summation:

nx
def
= x+ · · ·+ x︸ ︷︷ ︸

n

We say that the PrA formula ψ is atomic iff it has the
form ψ : ~a · ~x ∼ c where ~a is a vector of constant
variable coefficients, ~x is a vector of variables, c is a
constant, and ∼ is one of {≤, <,=,≡M} where M is
a constant. An example of an atomic formula can be
seen in Equation 1.

3x+ 4y − 10z ≤ 3 (1)

A finite automaton is a 5-tuple A = (Q,Σ, δ,
Q0, F ), where:

• Q is a finite non-empty set of states,
• Σ is a finite non-empty set of symbols, called

an alphabet,
• δ: Q× Σ→ 2Q is the transition function,
• Q0 ⊆ Q is the set of initial states,
• F ⊆ Q is the set of final states.
Let w ∈ Σ∗ be a string of alphabet symbols called

a word, |w| denotes the length of this word and let
wi denote the i-th symbol of the word w for every
1 ≤ i ≤ |w|. A run of the automaton A over the word
w ∈ Σ∗ is a sequence of its states q0, q1, · · · , q|w| that
satisfies qi ∈ δ(qi−1, wi) for every 1 ≤ i ≤ |w| and
q0 ∈ Q0. A word w ∈ Σ∗ is accepted by A, if there
exists a run q0, · · · , q|w| ofA over this word for which
q|w| ∈ F . The language of an automaton A, denoted
as L(A), is the set of all words accepted by A.

A formula ψ is represented via an equivalent au-
tomaton Aψ iff L(Aψ) contains exactly the solutions
of ψ encoded using some chosen encoding.

2.1 LSBF encoding
To encode models of PrA formulae, we represent their
solution space in a binary Least Significant Bit First
(LSBF) encoding. In contrast to non-binary encodings,
LSBF allows for more compact automaton transition
relations. LSBF also allows for a symbolic represen-
tation of the transition symbols using well-known for-
malisms such as Binary Decision Diagrams [7]. LSBF
is based on two’s complement — a binary represen-
tation of signed integers in which every number x is
represented by a bit vector b0 . . . bN−1 such that the
Equation 2 holds.

x = −2N−1aN−1 +

N−2∑
i=0

2iai (2)

Equation 3 shows a two’s complement represen-
tation of positive and negative numbers. However, as



automata are synchronous machines, we require that
all tracks have the same length. Extending a two’s
complement representation by repeating the aN−1 bit
— the sign bit — does not change the represented value,
making it possible for all variable tracks to have the
same length as shown in Equation 4. As the name
suggests, the LSBF reads the numbers in reverse order,
placing the least significant bits first on the input tape.
Equation 5 illustrates the LSBF encoding with track
values split into individual alphabet symbols as read
by an automaton.
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2.2 The Mechanism of an Automata-Based De-
cision Procedure

Logical connectives combining PrA formulae map nat-
urally to operations on regular languages and the cor-
responding finite automata. Let ϕ and ψ denote two
formulae in Presburger arithmetic, Aϕ and Aψ be au-
tomata encoding those formulae, and L(A) denote the
language of an automaton A. Then the construction
proceeds as follows:

• Negation¬ψ  ACψ , whereACψ encodesL(Aψ)
(Automaton complement)

• Conjunction ϕ ∧ ψ  L(Aϕ) ∩ L(Aψ)
• Disjunction ϕ ∨ ψ  L(Aϕ) ∪ L(Aψ)

Adding padding — extending the bit vector rep-
resenting some variable assignment by the sign bit —
does not change the encoded value, therefore, every
variable assignment has an infinite number of corre-
sponding bit vectors. Automata used during the de-
cision procedure must accept all possible encodings,
otherwise the same variable assignment, but with dif-
ferent encoding would be accepted by the automaton
Aψ representing solutions of ψ and the automaton
A¬ψ corresponding to ¬ψ.

The existential quantifier ∃x(ψ) maps to removing
the track for variable x in the automaton Aψ repre-
senting solutions of ψ. The track removal results in a
nondeterministic automaton A∃x(ψ) as the transitions
over symbols differing only in bits on the track for
the variable x no longer differ. Removing a track ex-
presses what the existential quantifier does in terms of
automata language — a variable assignment of the re-
maining unbound variables is accepted byA∃x(ψ) only

if there was an accepting run of Aψ over the same as-
signment together with some assignment of x. As there
is no direct operation on automata corresponding to the
universal quantifier ∀x, universal quantifiers must be
rewritten in terms of existential quantifiers and nega-
tion according to the law: ∀xϕ(x)⇔ ¬∃x(¬ϕ(x)).
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Figure 2. Automaton Aϕ for the inequality ϕ : x ≤ 4
over Z

The automata-based decision procedure works in a
bottom-up manner, starting by constructing automata
encoding atomic constrains using the IneqToNFA al-
gorithm. The IneqToNFA(α) construction creates an
automaton Aα accepting the solutions of α : ~a · ~x ≤ c,
where ~x is a vector of variables, ~a ∈ Z|~x| is a vector
of variable coefficients, and c ∈ Z is a constant. The
resulting automaton Aα has every state qi labeled by
an integer ci such that the language of every state qi are
the solutions of ~a · ~x ≤ ci. The only exception to this
labeling schema is the state qf , serving the purpose
of nondeterministically guessing that the symbol read
from any state is the last one, and therefore, it presents
the sign bit vector. Only after reading the signs can
we decide whether the read input is a model, hence,
qf is the only accepting state. An example of an au-
tomaton constructed by the IneqToNFA procedure
is portrayed in Figure 2.

After constructing automata for atomic constraints,
the procedure continues up the syntax tree of the for-
mula, combining the intermediate automata according
to the description above. After the entire input formula
ψ is processed, the decision procedure has constructed
an automatonAψ withL(Aψ) containing all models of
ψ. Therefore, ψ has a model iff L(A) 6= ∅. The entire
decision procedure is illustrated in Figure 1.



Does β : ∃x(¬(3x+ y ≤ 3 ∧ 2x− 4y ≤ 0)) have a solution?

∃x

¬

∧

ψ : 3x+ y ≤ 3 ϕ : 2x− 4y ≤ 0

parse(β)

L(A∃)
?
= ∅

A∃

AC

A∩

Aψ Aϕ

(4) NFAComplement(A∩)

(5) Projection(AC)

(6) DFS (A∃)

(3) NFAIntersection(Aϕ,Aψ)

(1) IneqToNFA(ϕ)
(2) IneqToNFA(ψ)

Figure 1. An illustration of the decision procedure for a formula β : ∃x(¬(3x+ y ≤ 3 ∧ 2x− 4y ≤ 0)).

3. Implementation of the automata-based
decision procedure for PrA

Our solver is implemented using the Python program-
ming language. The choice was driven by the desire to
be able to modify the implementation quickly and to
perform experiments with as little friction as possible.
Python presented itself as a great choice due to its dy-
namic nature and the vast library ecosystem. Naturally,
this decision impacts the performance, however, our
aim was not to best the state-of-the-art SMT solvers,
but rather to study the decision procedure and identify
its strengths and weaknesses.

One of the early design decisions was to support
a reasonable subset of SMT-LIB 1 — a standardized
Lisp-like language for encoding input formulae. Tech-
nically, any SMT solver accepting this language is a
Lisp interpreter with a unique evaluation strategy, in-
cluding ours. Therefore, our implementation has to
deal with various aspects of implementing an inter-
preter such as variable scopes or input preprocessing
removing syntactic sugar such as macros.

The core of the implementation is an automata
library implementing all the algorithms used through-
out the decision procedure, ranging from necessary
algorithms such as procedures for computing the inter-
section of given automata to optional algorithms for
experimentation purposes such as various automata
minimization procedures.

Initially, automata were represented in a fashion
similar to the formal definition. Due to practical rea-

1The standard is available at https://smtlib.cs.
uiowa.edu/language.shtml

sons, some restrictions were made during later devel-
opment, such as limiting the automaton states to only
plain integers instead of any type or disallowing au-
tomata to have distinct alphabets during the decision
procedure. Automata constructions typically produce
automata with states carrying semantical information,
tying the states back to the construction inputs. For
example, the states of the output automaton of the inter-
section procedure are tuples containing one state from
each of the input automata. However, by restricting
the state types to only integers, the states can no longer
reflect their semantics. The lost state semantics can
be optionally gained back as our automata library can
track the state semantics in the automaton metadata.

One of the crucial algorithms that needed to be
designed from scratch was an algorithm augmenting
the automaton structure after a variable track has been
projected away as a consequence of an existential quan-
tifier. Removing a variable track changes the sign sym-
bol, and as the automaton does not reflect this change,
there might be solution encodings with a certain num-
ber of sign bit repetitions that are not accepted. Com-
pared to automata-based decision procedures for other
theories, such as WS1S, every alphabet symbol can be
a sign symbol, further complicating the problem.

After building a prototype capable of deciding sim-
ple formulae, we encountered scalability issues caused
by the increased number of variables present in the
input formula when attempting to solve some of the
more advanced benchmarks. These issues arise due to
the design of classical automata algorithms relying on
iterating over the entire alphabet that grows exponen-
tially wrt. the number of variables used. We solved
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v1

v2

{q0, q1} {q2}

Figure 3. An MTBDD representing the function
f(v1, v2) = {(0, 0) 7→ {q2}, (0, 1) 7→ {q0, q1},(1, ?) 7→
{q0, q1}} where the ? symbol stands for a don’t-care bit.

this problem by using Multi-Terminal BDDs [8] — a
BDD variant that allows leaves to have arbitrary values
instead of one and zero — to store and manipulate the
transition relation in a compressed fashion. An exam-
ple of an MTBDD can be seen in Figure 3. The imple-
mentation relies on Sylvan [9] — a library providing
a performant MTBDD implementation. As Sylvan is
written in the C programming language, we had to cre-
ate a C library providing Sylvan with custom MTBDD
leaves and operators manipulating MTBDDs contain-
ing these leaves. To fully utilize the benefits MTBDDs
provide, we had to redesign all needed classical au-
tomata algorithms in terms of MTBDDs, avoiding un-
compressing the symbolic representation they provide.
A custom wrapper had to be written that abstracts away
the low-level details such as memory management and
data serialization, allowing interaction with the C li-
brary from Python. Our solver, therefore, provides
two execution backends the user can choose from: the
original one storing symbols explicitly, enabling easy
experimentation, and the high-performance MTBDD-
based one.

4. Experimental evaluation

We performed numerous synthetic tests when evalu-
ating the performance improvements of the MTBDD
backend. Speedups were observed with all automata
operations, especially with the intersection procedure
and the determinization procedure. The runtime im-
provements of the determinization procedure can be
seen in Figure 4.

Our solver was also compared with the state-of-
the-art SMT solvers Z3 and CVC4 on deciding the
Frobenius coin problem instances. The Frobenius coin
problem [10] is a famous mathematical problem that
can be formulated in the following fashion: What is
the largest amount not obtainable from given coins
of certain denominations? The precise formulation is
given by the following formula where ~w is the vector
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Figure 4. Comparison of determinization speed on
randomly generated automata

of coin denominations, m is the number of coins and
f is the solution:

Frob(f) : ∀~n ∈ Nm0 (f 6= ~w · ~n) ∧

(∀f ′ ∈ N0(∀~n′ ∈ Nm0 (f ′ 6= ~n′ · ~w))→ f ′ ≤ f)

The coin problem is not limited only to currency, and
it also appears in some areas of computer science, such
as the analysis of P-systems [11]. The results presented
in Figure 5 show that the automata-based procedure vastly
outperforms Z3.
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Figure 5. Comparison of runtime between our solver
and the state-of-the-art solvers Z3 and CVC4 on in-
stances of the Frobenius coin problem with two coins
and gradually increasing coin denominations.

Experimentation also identified interesting problems
with automata for atomic constraints having too many states.
More specifically, the benchmarks (originating from pro-
gram verification) contain atomic formulae of the following
form ~a · ~x ≡M 0 where M is a constant in the order of
hundreds of thousands. The automaton for such a formula
hasM states, causing the procedure to become prohibitively



expensive. We are currently researching the possibility to
use the cyclic nature of modulo to represent such atomic
constraints symbolically.

5. Conclusions
We have succeeded in creating an SMT solver for linear
arithmetic based on the formal model of finite automata —
an approach that no other SMT solver employs. By building
this tool, we have laid the necessary foundation required
for future research in the practical applications of automata
in the context of deciding Presbuger arithmetic. The cre-
ated solver supports a standardized input language, allowing
easy comparison of our solver to the state-of-the-art solvers
implementing different approaches. The ability to com-
pare the different approaches allows us to identify problems
where automata present a more performant decision proce-
dure, pushing the limits of what we can decide automati-
cally. Our experimentation already yielded very positive
results in favor of automata-based procedure when deciding
the Frobenius coin problem.

Our experiments also found benchmarks in which the
state-of-the-art solvers perform poorly, and therefore, these
benchmarks present an opportunity for automata to provide
a more performant solution. These benchmarks include
atomic constraints with modulo terms having moduli in
order of several hundreds of thousands, causing automata
for these constrains to have unfeasibly many states. In our
future work, we would like to focus on representing parts of
these automata symbolically by utilizing the cyclic nature
of modular arithmetic.
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damentals of Computation Theory, pages 171–180,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.


	Introduction
	Description of an Automata-Based Decision Procedure
	Implementation of the automata-based decision procedure for PrA
	Experimental evaluation
	Conclusions
	References

