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Abstract

Blichi automata complementation is an important operation for decision procedures of some logics,
proving termination of programs, or model checking of temporal properties. Due to the high space
complexity of Blichi automata complementation, it is necessary to look for some optimizations
reducing the size of generated state space. In this paper, we identify elevator automata, a class of
Blchi automata, which often occurs in practice. Thanks to their specific structure, we are able to
reduce the bound on the maximum rank of states in each strongly connected component, which is
one of the main causes of a state space blow-up in rank-based complementation. We compare
our techniques, implemented as an extension of the tool RANKER, with other state-of-the-art
tools and show that with these optimizations, rank-based complementation is competitive to other
complementation approaches and can give better results on a large set of benchmarks.
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Biichi automata (BA) were introduced in 1960s as an
auxiliary tool for a decision procedure of a fragment
of a second-order arithmeric [1]. This paper focuses
on complementing Biichi automata, which is a crucial
operation for decision procedures of various logics,
such as the monadic second-order logic S1S [1] or
temporal logics ETL and QPTL [2], as well as for
language inclusion and equivalence testing. Besides
the theoretical point of view, Biichi automata com-
plementation became important also in practice, for
example in model checking of temporal properties [3]
or termination analysis of programs [4, 5, 6].

The purpose of model checking is to automatically
check whether a system meets its specification. Both
the system and the specified (temporal) property can be
represented by a Biichi automaton. The problem of sys-
tem verification is then transformed into the problem
of language inclusion of these automata. More pre-
cisely, a system meets its specification if the language
of its Biichi automaton is a subset of the language of
the property automaton. Language inclusion check

is performed by complementing the property automa-
ton and checking if its intersection with the system
automaton is empty.

The idea behind termination analysis of programs
[4, 5, 6] is to construct a difference of two Biichi au-
tomata — one representing the program and one repre-
senting a set of paths with proved termination. These
paths can be safely removed from the program automa-
ton. The removal is done using automata difference,
which is implemented as an intersection of the pro-
gram automaton and the complement of the automaton
with terminating paths.

Due to the high space complexity of Biichi com-
plementation, different approaches and further opti-
mizations have been introduced since the original con-
struction by Biichi was presented in 1962. Apart from
reducing the upper bound of the size of the comple-
mented automaton, there was also an effort to find
the theoretical lower bound, finally refined by Yan to
(0.76n)" [7]. We focus on the rank-based complemen-
tation, which was introduced by Kupferman and Vardi
[8], improved with the help of Friedgut [9], and fur-
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ther optimized by Schewe [10], whose construction
produces the complement with the size matching the
lower bound modulo a O(n?) polynomial factor.

Even though Schewe’s construction asymptotically
matches the lower bound of (0.76n)", it may still gen-
erate a lot of unnecessary states and transitions. Opti-
mization heuristics are therefore critical for good per-
formance in practice. In rank-based complementation,
every state from a set of states reachable over the cur-
rent input is assigned a number (called its rank). The
main problem responsible for the generated state space
blow-up is the amount of nondeterminism, caused by
a lot of possibilities how to assign ranks to a set of
states. The number of possibilities depends combina-
torially on the maximum rank that can be assigned. It
is therefore desirable to reduce the maximum rank as
much as possible.

In this paper, we identify elevator automata, a class
of Biichi automata occuring often in practice, and
present an algorithm which can reduce the maximum
rank of each state and thus reduce the generated state
space. We implemented our optimizations in the tool
RANKER [11] and evaluated our approach on a large
set randomly generated BAs and BAs obtained from
LTL formulae. Our techniques significantly reduce the
generated state space and in some cases can produce
an exponentially better result compared to Schewe’s
optimal construction.

The following presents a part of my research pub-
lished at TACAS 22 [12].

An alphabet is a nonempty, finite set of symbols. The
symbol o is used to denote the set of non-negative
integers {0,1,2,3,...}. An (infinite) word o over al-
phabet ¥ is represented as a function o: @ — X where
the i-th symbol is denoted as ¢;. We abuse notation
and sometimes represent ¢ as an infinite sequence
o= 0o ... We use X2 to denote the set of all infinite
words over X.

A Biichi automaton (BA) is a quintuple A = (Q, Z,
6,1,F), where Q is a finite set of states, X is an alpha-
bet, & is a transition function §: Q x X — 22, I C Qs
a set of initial states, and F' C Q is a set of accepting
states.

A run of A on a word « is an infinite sequence
P =q0q14qz2 - .- such that gy € I and g;+1 € 8(q;, a;) for
every i > 0. Let inf(p) denote the set of states occuring
infinitely often in the run p of A on a word . The run
p is called accepting iff inf(p) N F # 0. The word o
is accepted by A if there exists an accepting run p of
A on o. The set of all words accepted by A is called

—aN—-bAc

—a/N—-bAc

Figure 2. Elevator automaton for LTL formula
GF(aV GF(bV GFc))

the language of A, denoted by £ (A).

Figure 1 shows an example of Biichi automaton
Aex = (0,%,0,1,F) with Q= {p,q}, X ={a,b}, I =
(P F={pyandd={p% p,p % q.9%q.9% p}.

A strongly connected component (SCC) of A is
a maximal set of states C C Q such that for any pair of
states ¢,q’ € C it holds that ¢ is reachable from ¢’ and
¢ is reachable from g. The notation 5‘ sfor SC Qis
used to denote the restriction of the transition function
ON(SXExS).

Let C be an SCC of a given Biichi automaton
A=(0,%,6,I,F) and Ac = (C,X,8,INC,FNC).
We say that C is deterministic iff the BA Ac is deter-
ministic, non-accepting iff CNF = 0, inherently weak
accepting iff every cycle in the transition diagram of
A|c contains an accepting state g € F, and frivial iff
|C| =1 and §c = 0.

Biichi automata complementation is a demanding and
complex problem and researchers have been search-
ing for more efficient complementation techniques
since the original algorithm by Biichi [1] was intro-
duced in 1960s. There are several approaches for com-
plementing BAs, for example Ramsey-based [2, 13,
14], determinization-based [15, 16] or slice-based [17]
complementation approach.

In this paper, we focus on rank-based comple-
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Figure 3. Rules for assigning types and rank bounds to SCCs. The symbols @ and @ are interpeted as O if all
the corresponding edges from the components having rank ¢p and ¢y, respectively, are deterministic; otherwise
they are interpreted as 2. Transitions between two components C; and C; are deterministic if the BA

(C, 5|C,(7),®) is deterministic for C = 6(C1,Z) N (CUCy).

mentation, which was first introduced by Kupferman
and Vardi [8] with the space complexity 2°("1ogn)
then improved by Kupferman, Vardi, and Friedgut [9]
to O((0.96n)") and made asymptotically optimal by
Schewe [10]. The space complexity of Schewe’s con-

struction matches the theoretical lower bound O((0.76n)")

given by Yan [7] modulo a quadratic factor O(n?).

In order to show the reason of a blow-up in the
generated state space of the complement, we have
to first introduce some necessary definitions. For
a given Biichi automaton A = (Q,X,6,1,F), a level
ranking is a function f: Q — {0,1,...,2|Q|} such that
{f(gs) | qr e F} C{0,2,...,2|0|},ie., f maps all ac-
cepting states of A to even ranks. Given a set of states
S C Q, a (level) ranking f: Q — {0,1,...,2|Q|} is
called S-tight if it has an odd rank r, { f(s) | s € S} D
{1,3,...,r},and {f(q) | ¢ € S} = {0}. A ranking is
tight if it is Q-tight. We use 7 to denote the set of all
tight level rankings.

Let A = (Q,%,6,I,F) be a BA. The algorithm
from [10], denoted as SCHEWE, constructs its comple-
ment € = (QUQ,,X,8,I' F") with macrostates of
the following form:

e 0 =29 and

s 0= {(S,0,f,i) €29 x 22 x Tx
{0,2,...,2n—2} | f is S-tight,
ocsnf (i)},

When we want to compute successors of a state
in Q> (which is also in ;) over a given symbol, all
three components S, O and i of a macrostate are given
deterministically. The high amount of nondeterminism
is caused by the f-component, i.e., by the number of all
possible tight level rankings of a successive macrostate.
For a given macrostate, the number of possible tight
rankings rises combinatorially with the macrostate’s
maximum rank. More precisely, for a given set of
n states and a maximum rank r, it corresponds to r!
multiplied by the Stirling number of the second kind
S(n,r) [9] - the number of ways to partition a set of
n labeled objects (states) into r nonempty unlabeled

subsets (ranks). A maximum rank sufficient for each
state is 2|Q| — 1 [8]. Some optimizations that can
reduce the amount of nondeterminism were already
presented in [18].

In this section, we introduce elevator automata, a large
class of Biichi automata with a particular structure, that
can be effectively complemented by setting bounds on
the maximum rank for states in every SCC.

A Biichi automaton A = (Q,X,6,1,F) is an ele-
vator (Biichi) automaton if for every SCC C of A it
holds that C is (i) deterministic, (ii) inherently weak
accepting (IWA), or (iii) non-accepting. Elevator au-
tomata occur often in practice, for example a lot of BAs
obtained from LTL formulae. An example of a BA ob-
tained from LTL formula GF(aV GF(bV GFc)) is
shown in Figure 2. This automaton consists of three
deterministic components.

We present an algorithm that assigns each SCC a la-
bel of the form TYPE:rank with the type of SCC and
the bound on the maximum rank of its states. The as-
signment is performed from terminal SCCs (i.e., SCCs
from which it cannot be reached to any other SCC) to-
wards SCCs with initial states. More precisely, a label
can be assigned to SCC C only if (i) C is terminal, or
(ii) a label was already assigned to all SCCs reachable
from C. We consider the following types of SCCs:
inherently weak accepting (IWA), deterministic (D),
and non-accepting (N). Note that there can be more
options to assign a type for some SCCs. The algorithm
assigns the type that is most suitable in terms of keep-
ing the rank bound as low as possible. This can be
different for every SCC, depending on the labels of its
successors.

For the following algorithm, we assume that an
elevator automaton contains no useless states (there is
therefore no terminal non-accepting SCC).

For a terminal SCC C, we assign the following
label:
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Figure 4. Elevator automaton A,;
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Figure 5. Complement of A,;. Our procedure will not
generate the red states (and their successors, which
are not shown in the figure).

1. IWA:0 if C is inherently weak accepting,
2. D:2 otherwise.

For non-terminal SCCs, we use the corresponding
rules from Figure 3. Children nodes denote already
processed successive SCCs. In particular, a child node
of the form k:/;, denotes an aggregate of all siblings of
the type k with ¢ being the maximum rank of these
siblings. For a non-terminal SCC C, the rules for
assigning a label are the following:

1. If C is trivial, we try both rules from Figure 3a

and Figure 3c and use the one with smaller rank.

2. Else if C is IWA, we use the rule in Figure 3a.

3. Else if C is deterministic accepting, we use the
rule in Figure 3b.

4. Else if C is deterministic and non-accepting, we
use one of the rules in Figure 3b and Figure 3c
that gives us a smaller rank.

5. Else if C is nondeterministic and non-accepting,
we use the rule in Figure 3c.

The maximum ranks of each SCC is then assigned
to all its states and macrostates with higher ranks are
not generated. Figure 4 shows an elevator automaton
A,; with assigned label for each SCC. Complement of
A 1s in Figure 5. Red macrostates are not generated
because value assigned to some state is higher than the
rank bound on maximum rank.

The algorithm for elevator automata can also be
extended to non-elevator BAs, i.e., BAs containing
anondeterministic accepting SCC that is not inherently
weak (see [12]).

The algorithm is based on a special structure of the
run DAGs [8] - directed acyclic graphs capturing all
runs of an input BA over a given (infinite) word. For
all BAs with n states, setting maximum rank for each
state to 2|n| — 1 is sufficient. This can be seen from
a ranking procedure presented in [8]. However, for
elevator automata, we are able to significantly reduce
the maximum considered rank for each component be-
cause of the structure of run DAGs. Whole reasoning
is shown in [12].

The optimization for complementing elevator automata
described in Section 4 was implemented as an ex-
tension of the tool RANKER [11] in C++. We used
two datasets for our experiments: (i) random with
11 000 BAs over a two letter alphabet used in [19],
and (ii) LTL containing 1 721 BAs over larger al-
phabets (up to 128 symbols) used in [20], obtained
from LTL formulae from literature or randomly gen-
erated. The automata were preprocessed using RA-
BIT [21] and SPOT’s autfilt (using the ——high
simplification level), trnasformed to state-based accep-
tance BAs (if they were not already), and converted to
the HOA format [22]. From this set, we removed au-
tomata that were (i) semi-deterministic, (ii) inherently
weak, (iii) unambiguous, or (iv) have an empty lan-
guage, since for these automata types there exist more
efficient complementation procedures than for unre-
stricted BAs [23, 20, 24, 25]. In the end, we were left
with 2 592 (random) and 414 (LTL) hard automata.
We use all to denote their union (3 006 BAs). Of
these hard automata, 458 were elevator automata.

We compared RANKER with other state-of-the-art
tools for BA complementation, namely, GOAL [26]
(implementing PITERMAN [16], SCHEWE [10],
SAFRA [15], and FRIBOURG [27]), SPOT 2.9.3 [28]
(implementing Redziejowski’s algorithm [29]), SEM-
INATOR 2 [20], LTL2DSTAR 0.5.4 [30], ROLL [31],
and the previous version of RANKER (denoted as
RANKERQ, p) with the heuristics from [18]. The ex-
perimental evaluation was performed on a 64-bit
GNU/LINUX DEBIAN workstation with an Intel(R)
Xeon(R) CPU E5-2620 running at 2.40 GHz with 32 GiB
of RAM and using a timeout of 5 minutes.

Our first experiment the effectiveness of our heuris-
tics for reducing the generated state space by compar-
ing the sizes of complemented BAs without postpro-
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Figure 6. Comparison of the state space generated by our optimizations and other rank-based procedures
(horizontal and vertical dashed lines represent timeouts). Blue data points are from random and red data points

are from LTL. Axes are logarithmic.

cessing. These results are useful for applications where
postprocessing is not needed, for example language in-
clusion or equivalence checking. Figure 6a compares
the generated state space with SCHEWE (the version
Reduced Average Outdegree from [10]) implemented
in GOAL. Comparison with RANKERQ,p, is in Figure
6b. We can see that the improvement was exponential
for many automata in both cases.

Our second experiment compares RANKER with
other state-of-the-art tools. It compares sizes of out-
put BAs, therefore, each automaton was postprocessed
with aut £i11t (simplification level ——high). Scat-
ter plots are given in Figure 7, where we compare
RANKER with SPOT (which had the best results on
average from the other tools except ROLL) and ROLL.
Summary statistics are in the lower part of Table 1.
RANKER has the second lowest mean (after ROLL)
and the third lowest median (after SEMINATOR 2 and
ROLL). The columns wins and losses represent the
number of cases where RANKER gives strictly better or
worse result, respectively. Comparing these columns,
we can see that RANKER gives more wins than losses
in comparison with any other tool.

In Figure 7a, we can see that in the majority of
cases RANKER gives a smaller BA than SPOT, espe-
cially for harder BAs (SPOT, however, behaves slightly
better on the simpler BAs from LTL). The results in
Figure 7b do not seem so clear. ROLL uses a learning-
based approach—more heavyweight and completely
orthogonal to any of the other tools—and can in some
cases output a tiny automaton, but does not scale, as

observed by the number of timeouts much higher than
any other tool.

Regarding runtimes, RANKER is comparable to
SEMINATOR 2, but slower than SPOT and LTL2DSTAR
(SPOT is the fastest tool). The number of timeouts
of RANKER is still higher than of some other tools
(especially PITERMAN, SPOT, and FRIBOURG).

The main problem of rank-based complementation is
the high amount of nondeterminism and unnecessar-
ily high bounds on the maximum rank causing state
space blow-up. Using the techniques presented in this
paper, we are able to significantly reduce the comple-
ment size of elevator automata, a large class of Biichi
automata occuring often in practice. Moreover, these
techniques can also be extended to general Biichi au-
tomata containing a deterministic, nonaccepting or
inherently weak accepting component. In comparison
to other BA complementation approaches, rank-based
complementation may be quite uneffective. However,
using the optimizations from this paper (along with
other optimizations from [18]), rank-based comple-
mentation becomes competitive to other approaches
and in a lot of cases can give better results than other
state-of-the-art tools.

I would like to thank my supervisor Ondiej Lengal and
my consultant Vojtéch Havlena for their ideas, advice,
and support.



Table 1. Statistics for our experiments. The upper part compares various optimizations of the rank-based
procedure (no postprocessing). The lower part compares RANKER to other approaches (with postprocessing).
The left-hand side compares sizes of complement BAs and the right-hand side runtimes of the tools. The wins
and losses columns give the number of times when RANKER was strictly better and worse. The values are given

for the three datasets as “all (random: LTL)”.

method mean median wins losses mean runtime [s] median runtime [s] timeouts
RANKER 3812 (4452 :207) 79 (93 :26) 7.83 (8.99 : 1.30) 0.51 (0.84 :0.04) 279 (276:3)
RANKERprp 7398 (8688 : 358) 141 (197 : 29) 2190 (2011 : 179) 111 (107 : 4) 9.37 (10.73 : 1.99) 0.61 (1.04 : 0.04) 365 (360 :5)
SCHEWE 4550 (5495 : 665) 439 (774 : 35) 2640 (2315 :325) 55 (1:54) |21.05 (24.28 : 7.80) 6.57 (7.39 :5.21) 937 (928 :9)
RANKER 47  (52:18) 22 (27:10) 7.83 (899 :1.30) 0.51 (0.84:0.04) 279 (276:3)
PITERMAN 73 (82:22) 28 (34:14) 1435 (1124 : 311) 416 (360 : 56) | 7.29 (7.39 : 6.65) 5.99 (6.04 : 5.62) 14 (12:2)
SAFRA 83 (91:30) 29 (35:17) 1562 (1211 : 351) 387 (350 : 37) |14.11 (15.05: 8.37) 6.71 (6.92:5.79) 172 (158 : 14)
SpPOT 75 (85:15) 24 (32:10) 1087 (936 : 151) 683 (501 : 182)| 0.86 (0.99 : 0.06) 0.02 (0.02 : 0.02) 13 (13:0)
FRIBOURG 91 (104:13) 23 (31:9) 1120 (1055 :65) 601 (376 : 225)[17.79 (19.53 : 7.22) 9.25 (10.15 : 5.48) 81 (80:1)
LTL2DSTAR 73 (82:21) 28 (34:13) 1465 (1195 : 270) 465 (383 : 82) | 3.31 (3.84:0.11) 0.04 (0.05:0.02) 136 (130 :6)
SEMINATOR2 79 (91:15) 21 (29:10) 1266 (1131 : 135) 571 (367 : 204)| 9.51 (11.25:0.08) 0.22 (0.39: 0.02) 363 (362 : 1)
RoOLL 18 (19:14) 10 (9:11) 2116 (1858 : 258) 569 (443 : 126)|31.23 (37.85 : 7.28) 8.19 (12.23 : 2.74) 1109 (1106 : 3)
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Figure 7. Comparison of the complement size obtained by RANKER and other state-of-the-art tools (horizontal
and vertical dashed lines represent timeouts). Axes are logarithmic.

The work presented in this paper is a part of my re-
search published at TACAS 22, on which we worked
together with my supervisor and consultant. In order
to not take credit for all the work, I specify what my
original contribution is. It is especially an extension of
the definition of elevator automata (originally without
inherently weak accepting components), and the im-
plementation of the algorithm assigning rank bound to
each state of an automaton.
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